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Abstract: Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the
clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a
consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian
hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet
on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate,
vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery,
and prolonged viral shedding. This was accompanied by an altered, but not significantly different,
systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by
polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine
and lipid responses associated with severe human COVID-19. Our data support the hamster model
for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse
effects of metabolic disease on COVID-19.

Keywords: Syrian hamster; SARS-CoV-2; obesity; pathogenesis; lipid metabolism

1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiological agent
of coronavirus disease (COVID)-19 and can cause asymptomatic to severe lower respiratory
tract infections in humans [1,2]. Pre-existing comorbidities such as immunosuppression,
obesity, diabetes, or chronic lung disease can adversely affect the clinical outcome [3–6].
Of these, obesity and metabolic disorders are global pandemics of rising concern [7–9].
The underlying disease is driven mainly by changes in the global food system, which is
producing more processed, affordable, and effectively marketed food than ever before.
This diet, rich in saturated fats and refined sugars, is referred to as a Western Diet [10].
Long-term consumption of a Western Diet may result in chronic activation of the immune

Viruses 2021, 13, 2506. https://doi.org/10.3390/v13122506 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-0489-6591
https://orcid.org/0000-0002-5894-953X
https://orcid.org/0000-0002-7091-3046
https://orcid.org/0000-0003-2376-2633
https://orcid.org/0000-0001-8907-8821
https://orcid.org/0000-0002-2288-3196
https://doi.org/10.3390/v13122506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13122506
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v13122506?type=check_update&version=1


Viruses 2021, 13, 2506 2 of 20

system, impairing both innate and adaptive responses [11–13]. The Western Diet has been
associated with non-alcoholic steatohepatitis (NASH) and non-alcoholic fatty liver disease
(NAFLD). These disease syndromes predispose individuals to multiple comorbidities that
can include cirrhosis and liver failure. The relative risk of hospitalization and severe
COVID-19 outcome are significantly increased for patients afflicted by these comorbidi-
ties [3]. This has resulted in disproportionately worse outcomes in US ethnic and racial
minorities, where prevalence and incidence of metabolic disorders are increased [14].

It is currently unclear how certain comorbidities may determine disease manifestation
of COVID-19. Different studies have demonstrated that the Syrian hamster model is
suitable to model aspects of obesity and diabetes and for studying lipid metabolism [15,16].
In healthy hamsters, SARS-CoV-2 infection is associated with mild to moderate clinical
disease [17–19]. However, no studies have investigated COVID-19 in hamsters with
comorbidities. Here, we show in a Syrian hamster model how a continuous high-fat high-
sugar (HFHS) diet changed the metabolomic state in the Syrian hamster and the resulting
consequences on viral replication dynamics, immune protection, and disease severity after
infection with SARS-CoV-2.

2. Materials and Methods
2.1. Ethics Statement

Approval of animal experiments was obtained from the Institutional Animal Care
and Use Committee of the Rocky Mountain Laboratories. Performance of experiments
was done following the guidelines and basic principles in the United States Public Health
Service Policy on Humane Care and Use of Laboratory Animals and the Guide for the Care
and Use of Laboratory Animals. Work with infectious SARS-CoV-2 strains under BSL3
conditions was approved by the Institutional Biosafety Committee (IBC). Inactivation and
removal of samples from high containment was performed per IBC-approved standard
operating procedures [20].

2.2. Virus and Cells

SARS-CoV-2 strain nCoV-WA1-2020 (MN985325.1) was provided by CDC, Atlanta,
USA. Virus propagation was performed in VeroE6 cells in DMEM supplemented with
2% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL
streptomycin. VeroE6 cells were maintained in DMEM supplemented with 10% FBS,
2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin D10. Virus stock
(passage 4) was 100% identical to the initial sequence (MN985325.1) and no contaminants
were detected.

2.3. High-Fat High-Sugar Diet

Four to six-week-old male Syrian Golden hamsters (ENVIGO, n = 70 total) were
randomly assigned to either regular rodent chow (Teklad Global 16% Protein Rodent Diet,
Envigo, Indianapolis, IN, USA) or a HFHS diet for 16 weeks (Purina Chow #5001 with
11.5% Corn Oil, 11.5% Coconut Oil, 0.5% Cholesterol, 0.25% Deoxycholic Acid, and 10%
Fructose: Dyets Inc., Dyet#615088, Bethlehem, PA, USA). Pre-challenge oral glucose tests
were performed on all animals. Five animals from each diet group were euthanized after
the 16 wks for collection of pre-challenge tissue samples and weights. For each diet group,
5 animals were randomly designated for flexiVent calibration and excluded from further
analysis. Three animals in the HFHS regimen were euthanized throughout the 16-week diet
regimen due to secondary morbidities and were not included in analyses. Pre-challenge,
an additional 5 animals in the RD group and additional 8 animals in the HFHS group were
excluded from the study due to experimental reasons, and one animal in the HFHS group
due to secondary morbidities.
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2.4. Assessment of Glucose Tolerance

An oral glucose tolerance test (OGTT) was performed after 16 weeks of diet manipula-
tion [15]. Hamsters were fasted for 16 h overnight preceding the OGTT. An oral glucose
load (2 g/kg glucose) was administered. Blood samples were collected from the retroor-
bital sinus using capillary tube at 0-, 30-, 60-, and 120-min post glucose administration.
Blood glucose was measured using the AlphaTRAK blood glucose monitoring system
(Zoetis, Florham Park, NJ, USA), calibrated for cats. Serum was separated and used for
measurement of insulin. Insulin was measured using the rat/mouse insulin ELISA kit
from Millipore (Burlington, MA, USA) (EZRMI-13K), according to the manufacturer’s
instructions [21].

2.5. Lipidomics

Blood lipids were assessed for a subset of animals (n = 8–10) after 16 weeks of diet. A
total of 200 µL blood was collected and were measured using the Piccolo® Lipid Panel Plus
for humans (Abaxis, Union City, CA, USA) according to the manufacturer’s instruction.

2.6. Next-Generation Sequencing of Liver mRNA

Frozen tissues were pulverized in 1 mL of Trizol (ThermoFisher Scientific, Waltham,
MA, USA), 200 µL of 1-Bromo-3-chloropropane (MilliporeSigma, St. Louis, MO, USA) was
added, samples mixed, and centrifuged at 16,000× g for 15 min at 4 ◦C. RNA containing
aqueous phase of 600 µL was collected from each sample and passed through Qiashredder
column (Qiagen, Hilden, Germany) at 21,000× g for 2 min to homogenize any remaining
genomic DNA in the aqueous phase. Aqueous phase was combined with 600 µL of RLT
lysis buffer (Qiagen, Valencia, CA, USA) with 1% beta mercaptoethanol (MilliporeSigma,
St. Louis, MO, USA) and RNA was extracted using Qiagen AllPrep DNA/RNA 96-
well system. An additional on-column DNase-1 treatment was performed during RNA
extraction. RNA was quantitated by spectrophotometry and yield ranged from 0.4 to
17.8 µg. One hundred nanograms of RNA was used as input for rRNA depletion and NGS
library preparation following the Illumina Stranded Total RNA Prep Ligation with Ribo-
Zero Plus workflow (Illumina, San Diego, CA, USA). The NGS libraries were prepared,
amplified for 13 cycles, AMPureXP bead (Beckman Coulter, Pasadena, CA, USA) purified
using 0.95X beads, assessed on a BioAnalyzer DNA1000 chip (Agilent Technologies, Santa
Clara, CA, USA) and quantified using the Kapa Quantification Kit for Illumina Sequencing
(Roche, Basel, Switzerland). Amplified libraries were pooled at equal molar amounts
and sequenced on a NextSeq (Illumina, San Diego, CA, USA) using two High Output
150 cycle chemistry kits. Raw fastq reads were trimmed of Illumina adapter sequences
using cutadapt version 1.12 and then trimmed and filtered for quality using the FASTX-
Toolkit (Hannon Lab, University of Cambridge, Cambridge, UK). Remaining reads were
aligned to the Mesocricetus auratus genome assembly version 1.0 using Hisat2 [22]. Reads
mapping to genes were counted using htseq-count [23]. Differential expression analysis was
performed using the Bioconductor package DESeq2 [24]. Pathway analysis was performed
using Ingenuity Pathway Analysis (QIAGEN) and gene clustering was performed using
Partek Genomics Suite (Partek Inc., Chesterfield, MO, USA). Samples with too low quality
were removed from the analysis (Supplementary Materials Table S1).

2.7. Next-Generation Sequencing of Virus

For sequencing from viral stocks, sequencing libraries were prepared using Stranded
Total RNA Prep Ligation with Ribo-Zero Plus kit per manufacturer’s protocol (Illumina,
San Diego, CA, USA) and sequenced on an Illumina MiSeq at 2 × 150 base pair reads.
For sequencing from swab and lung tissue, total RNA was depleted of ribosomal RNA
using the Ribo-Zero Gold rRNA Removal kit (Illumina). Sequencing libraries were con-
structed using the KAPA RNA HyperPrep kit following manufacturer’s protocol (Roche
Sequencing Solutions). To enrich for SARS-CoV-2 sequence, libraries were hybridized
to myBaits Expert Virus biotinylated oligonucleotide baits following the manufacturer’s
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manual, version 4.01 (Arbor Biosciences, Ann Arbor, MI, USA). Enriched libraries were
sequenced on the Illumina MiSeq instrument as paired-end 2 × 150 base pair reads. Raw
fastq reads were trimmed of Illumina adapter sequences using cutadapt version 1.1227
and then trimmed and filtered for quality using the FASTX-Toolkit (Hannon Lab, CSHL,
University of Cambridge, Cambridge, UK). Remaining reads were mapped to the SARS-
CoV-2 2019-nCoV/USA-WA1/2020 genome (MN985325.1) using Bowtie2 version 2.2.928
with parameters –local –no-mixed -× 1500. PCR duplicates were removed using picard
MarkDuplicates (Broad Institute, Cambridge MA, USA) and variants were called using
GATK HaplotypeCaller version 4.1.2.029 with parameter -ploidy 2. Variants were filtered
for QUAL > 500 and DP > 20 using bcftools.

2.8. Inoculation Experiments

After 16 weeks, animals were then inoculated intranasally (I.N.) under isoflurane
anesthesia. I.N. inoculation was performed with 40 µL sterile Dulbecco’s Modified Eagle
Medium (DMEM) containing 8 × 104 TCID50 SARS-CoV-2. A subset of animals (n = 4–10)
were euthanized, and serum and tissues were collected at pre-challenge (0 DPI), 4, 7, 14,
and 21 DPI. Hamsters were weighted daily, and oropharyngeal swabs (21 DPI animals
only) were taken daily until day 7 and then thrice a week. Swabs were collected in 1 mL
DMEM with 200 U/mL penicillin and 200 µg/mL streptomycin. Hamsters were observed
daily for clinical signs of disease.

2.9. Lung Function Analyses

Lung function assessment was performed on pre-challenge, 7, 14, and 21 DPI. Ham-
sters were anesthetized with a combination of inhalant isoflurane and ketamine/xylazine
intraperitoneally. After animals reached a surgical plane of anesthesia a terminal tra-
cheostomy was performed as previously described [25]. Briefly, a cannula was introduced
into the trachea, secured with suture, and the animal underwent the forced oscillation
technique (FOT) using a flexiVent (SCIREQ, Inc. Montreal, QC Canada). Animals were kept
at a consistent surgical plane of anesthesia to the point of not resisting the FOT procedure.
Animals were immediately euthanized while deeply anesthetized after FOT was completed;
the surgical procedure was terminal.

2.10. Histopathology and Immunohistochemistry

Necropsies and tissue sampling were performed according to IBC-approved protocols.
Tissues were fixed for a minimum of 7 days in 10% neutral buffered formalin with 2 changes.
Tissues were placed in cassettes and processed with a Sakura VIP-6 Tissue Tek, on a 12 h
automated schedule, using a graded series of ethanol, xylene, and ParaPlast Extra. Prior to
staining, embedded tissues were sectioned at 5 µm and dried overnight at 42 ◦C. Using
GenScript U864YFA140-4/CB2093 NP-1 (1:1000) specific anti-CoV immunoreactivity, CD3
(Predilute) (Roche Tissue Diagnostics #790-4341), and PAX5 (1:500) (Novus Biologicals
#NBP2-38790, Littleton, CO, USA) were detected using the Vector Laboratories ImPress
VR anti-rabbit IgG polymer (# MP-6401) as the secondary antibody. Iba-1 (1:500) (abcam
#ab5076) was detected using Roche Tissue Diagnostics OmniMap anti-goat multimer (#760-
4647) as the secondary antibody. The tissues were stained using the Discovery Ultra
automated stainer (Ventana Medical Systems, Tucson, AZ, USA) with a ChromoMap DAB
kit Roche Tissue Diagnostics (#760-159). Histopathology was assessed by a board-certified
veterinary pathologist using criteria as previously applied to the Syrian hamster SARS
COV-2 model.

2.11. Morphometric Analysis

IHC stained tissue slides were scanned with an Aperio ScanScope XT (Aperio Tech-
nologies, Inc., Cumming, GA, USA, 30041) and analyzed using the ImageScope Positive
Pixel Count algorithm (version 9.1). The default parameters of the Positive Pixel Count
(hue of 0.1 and width of 0.5) detected antigen adequately.
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2.12. Viral RNA Detection

Swabs from hamsters were collected as described above. Then, 140 µL was utilized
for RNA extraction using the QIAamp Viral RNA Kit (Qiagen, Hilden Germany) using
QIAcube HT automated system (Qiagen) according to the manufacturer’s instructions with
an elution volume of 150 µL. Sub-genomic (sg) viral RNA and genomic (g) was detected
by qRT-PCR [26]. Then, 5 µL RNA was tested with TaqMan™ Fast Virus One-Step Master
Mix (Applied Biosystems, Foster City, CA, USA) using QuantStudio 6 Flex Real-Time
PCR System (Applied Biosystems) according to instructions of the manufacturer. Ten-fold
dilutions of SARS-CoV-2 standards with known copy numbers were used to construct a
standard curve and calculate copy numbers/mL.

2.13. Viral Titration

Viable virus in tissue samples was determined as previously described [27]. In brief,
lung tissue samples were weighed, then homogenized in 1 mL of DMEM2. VeroE6 cells
were inoculated with 10-fold serial dilutions of tissue homogenate, spun at 1000 rpm for 1 h
at 37 ◦C, the first dilutions washed with PBS and with DMEM2. Cells were incubated with
tissue homogenate for 6 days at 37 ◦C, 5% CO2, then scored for cytopathic effect. TCID50
was calculated by the method of Spearman–Karber and adjusted for tissue weight.

2.14. Serology

Serum samples were inactivated with γ-irradiation (2 mRad) and analyzed as pre-
viously described [28]. In brief, maxisorp plates (Nunc) were coated with 50 ng spike
protein (generated in-house) per well and incubated overnight at 4 ◦C. After blocking
with casein in phosphate buffered saline (PBS) (ThermoFisher) for 1 h at room temper-
ature (RT), serially diluted 2-fold serum samples (duplicate, in blocking buffer) were
incubated for 1 h at RT. Spike-specific antibodies were detected with goat anti-hamster IgG
Fc (horseradish peroxidase (HRP)-conjugated, Abcam) for 1 hr at RT and visualized with
KPL TMB 2-component peroxidase substrate kit (SeraCare, 5120-0047, Milford, MA, USA).
The reaction was stopped with KPL stop solution (Seracare) and read at 450 nm. Plates were
washed 3 to 5× with PBS-T (0.1% Tween) for each wash. The threshold for positivity was
calculated as the average plus 3× the standard deviation of negative control hamster sera.

2.15. Cytokine Analysis

Cytokine concentrations were determined using a commercial hamster ELISA kit
for TNF-α, IFN-γ, IL-6, IL-4, and IL-10 available at antibodies.com, according to the
manufacturer’s instructions (antibodies.com; A74292, A74590, A74291, A74027, A75096).
Samples were pre-diluted 1:10.

2.16. Serum Lipid Analysis

For abundance analysis of serum lipids signals were filtered using a 50% miss value
cut off and applying a raw intensity cutoff appropriate to the noise level of each class of
lipids. Signals were then normalized to internal deuterated SPLASH® LIPIDOMIX® Mass
Spec Standard (Avanti Polar Lipids, Alabaster, AL, USA). For compositional analysis of the
serum, bulk lipid datasets were further filtered using a 30% QC coefficient of variance cut
off prior to normalizing by the total signal sum. All univariate and multivariate analysis
was performed using GraphPad Prism or MarkerView (AB Sciex, Redwood City, CA, USA).
All parallel univariate analysis was subjected to a Benjamini–Hochberg correction using a
false discovery rate of 15%.

2.17. Statistical Analysis

All graphs were designed in GraphPad Prism software (version 8.0.1; GraphPad
Software). Significance tests were performed as indicated where appropriate. Statistical
significance levels were determined as follows: ns = p > 0.05; * = p ≤ 0.05; ** = p ≤ 0.01;
*** = p ≤ 0.001; **** = p ≤ 0.0001.



Viruses 2021, 13, 2506 6 of 20

3. Results
3.1. High-Fat and High-Sugar Diet Induces Metabolic Changes Characterized by Increased Early
Weight Gain and Glucose Tolerance

We investigated the impact of a consistent high-fat and high-sugar (HFHS) diet on the
Syrian hamster. Either a regular rodent (RD) diet or a high-calorimetric HFHS diet was
given to male Syrian hamsters (4–6-week-old) for 16 weeks ad libitum (n = 35, respectively).
Weight gain of juvenile hamsters was monitored weekly. Initially, animals on the HFHS
diet gained weight faster than animals on the regular diet, although this was a transient
difference. Difference in median weights was significant from the 2nd week onwards
until week 10 (Figure 1A, n = 35, ordinary two-way ANOVA, followed by Sidak’s multiple
comparisons test, p = 0.001, p = <0.001, p = <0.001, p = <0.001, p = <0.001, p = <0.001,
p = <0.001, p = 0.0011, p = <0.001). After week 10, weight gain either plateaued or decreased
in the HFHS group (median = 165 g), while in the regular diet group weight increased until
week 12 (median = 160 g), at which point the median weight between groups showed no
significant difference. We observed morbidity (4/35 = 11%) in the HFHS group, which was
absent in the RD group.

To assess the levels of glucose-associated symptoms triggered by a HFHS diet we con-
ducted an oral glucose tolerance test (OGTT). No difference in fasting blood glucose levels
between diet groups was observed (n = 30 (RD)/29 (HFHS), median = 150/147 mg/dL).
However, HFHS animals demonstrated impaired glucose intolerance upon application
of an oral glucose dose; blood glucose levels 30, 60, and 120 min after oral application
were significantly increased compared to RD animals (Figure 1B, n = 30 (RD)/29 (HFHS),
30 min median = 265/313 mg/dL and 60 min median = 290/347 mg/dL, ordinary two-way
ANOVA, followed by Sidak’s multiple comparisons test, p = 0.0004, p = 0.0009, respec-
tively). We compared the insulin response after application of oral glucose load and
found no difference between the diet regimens. The insulin resistance index (fasting glu-
cose level (mmol/L) x fasting insulin level (mIU/L) showed no significant differences
(Figure 1C, n = 30 (RD)/29 (HFHS), Mann–Whitney test, p = 0.6871) [4,29]. Five animals
were euthanized pre-challenge in order to assess diet induced pathology. There was no
difference in body fat-to-weight ratio (Figure 1D, n = 5, median = 1.905 (RD)/2.117 (HFHS)
Fat:Bodyweight ratio (mg/g), Mann–Whitney test, p > 0.9999).

3.2. High-Fat and High-Sugar Diet Induces Liver Damage and Systemic Hyperlipidemia

We investigated the changes in lipid metabolism through a blood lipid biochem-
istry panel (Supplementary Materials Table S1). Due to increased levels of fat in the
samples collected from HFHS animals, HDL and LDL could not be assessed, as some
values were too high for the instrument to read. Total cholesterol was increased in the
HFHS group (Figure 1E, n = 10 (RD)/7 (HFHS), median = 67.6/380 mg/dL). The median
(146 U/L) alanine aminotransferase (ALT), an indication of hepatocellular injury without
overt cholestasis, values in the HFHS animals were above the upper limit of previously
established reference ranges [30]. To understand which lipids were circulating in serum,
we analyzed serum by liquid chromatography tandem mass spectrometry (LC-MS/MS).
Aggregate signals across all lipid classes assayed in the HFHS animals compared to RD
were increased, comprising phospholipids, cholesterol esters, sphingolipids, neutral lipids,
lysophospholipids, and free fatty acids (Figure 1F, n = 5(RD)/4 (HFHS), Mann–Whitney
test, p = 0.0159, p = 0.0635, p = 0.0159, p = 0.0317, p = 0.0653, p = 0.0317, respectively). Hence,
we further assessed changes in the liver through gross and histologic pathology. Gross
pathology of livers differed substantially. Livers from animals on the HFHS diet were
diffusely pale, friable, and sections floated in formalin while RD hamster livers appeared
grossly normal. Histologically, hepatocytes were expanded by micro and macrovesicles in
HFHS animals, while hepatocytes in RD animals appeared normal (Figure 2A–F).
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levels measured on a commercially available lipid panel on an automated blood chemistry analyzer n = 10 (RD)/8 (HFHS) 
(see Table S1). (F) Serum aggregate lipids signal analyzed by liquid chromatography tandem mass spectrometry (LC-
MS/MS) at 16 weeks of diet regimen. Bar chart depicting median, 95% CI and individuals, n = 5 (RD)/4 (HFHS), Mann–
Whitney test. Abbreviations: RD = regular diet; HFHS = high-fat high-sugar; ALT = alanine aminotransaminase. p-values 
are indicated were appropriate. 
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Figure 1. High-fat and high-sugar diet induces metabolic changes characterized by increased juvenile weight gain and
glucose tolerance. Male Syrian hamsters were fed either a regular or high-fat high-sugar diet ad libitum for 16 weeks.
(A) Relative weight gain in hamsters on each diet regimen, measured weekly. Graphs show median ± 95% CI, n = 35,
ordinary two-way ANOVA, followed by Sidak’s multiple comparisons test. (B) Oral glucose tolerance test performed
at 16 weeks. Graphs show median ± 95% CI, n = 30 (RD)/29 (HFHS), ordinary two-way ANOVA, followed by Sidak’s
multiple comparisons test. (C) Insulin response after application of oral glucose load as shown by insulin resistance index
(fasting glucose level (mmol/L) x fasting insulin level (mIU/L)). Truncated violin plots depicting median, quartiles and
individuals, n = 30 (RD)/29 (HFHS), Mann–Whitney test. (D) Adiposity index as measured by testicular fat pads/total
body weight at 16 weeks. Bar chart depicting median, 95% CI and individuals, n = 5, Mann–Whitney test. (E) Blood
lipid ALT and cholesterol levels measured on a commercially available lipid panel on an automated blood chemistry
analyzer n = 10 (RD)/8 (HFHS) (see Table S1). (F) Serum aggregate lipids signal analyzed by liquid chromatography
tandem mass spectrometry (LC-MS/MS) at 16 weeks of diet regimen. Bar chart depicting median, 95% CI and individuals,
n = 5 (RD)/4 (HFHS), Mann–Whitney test. Abbreviations: RD = regular diet; HFHS = high-fat high-sugar; ALT = alanine
aminotransaminase. p-values are indicated were appropriate.
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values in the HFHS animals were above the upper limit of previously established refer-
ence ranges [30]. To understand which lipids were circulating in serum, we analyzed se-
rum by liquid chromatography tandem mass spectrometry (LC-MS/MS). Aggregate sig-
nals across all lipid classes assayed in the HFHS animals compared to RD were increased, 
comprising phospholipids, cholesterol esters, sphingolipids, neutral lipids, lysophospho-
lipids, and free fatty acids (Figure 1F, n = 5(RD)/4 (HFHS), Mann–Whitney test, p = 0.0159, 
p = 0.0635, p = 0.0159, p = 0.0317, p = 0.0653, p = 0.0317, respectively). Hence, we further 
assessed changes in the liver through gross and histologic pathology. Gross pathology of 
livers differed substantially. Livers from animals on the HFHS diet were diffusely pale, 
friable, and sections floated in formalin while RD hamster livers appeared grossly normal. 
Histologically, hepatocytes were expanded by micro and macrovesicles in HFHS animals, 
while hepatocytes in RD animals appeared normal (Figure 2A–F). 
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either a regular or high-fat high-sugar diet ad libitum and five animals from each group were sacrificed week 16 for analyses
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of liver tissue. (A,D) Gross imaging of a representative liver from one hamster on the RD and one hamster on the HFHS diet
regimen. (B,E) 20× photomicrograph of H&E-stained slide. (C,F) 400× photomicrograph of H&E-stained slide. (G) RNA
was isolated for gene expression analyses from liver tissue at 16 weeks. Using Integrated Pathway Analysis (Qiagen),
significantly upregulated canonical pathways were identified. Graphs show pathways associated with cell recruitment,
activation, and immunological inflammation (p > 0.05, z-score ≤ −2 or ≥ 2). (H) Integrated Pathway Analysis (Qiagen)
was used to depict the gene network associated with nonalcoholic steatohepatitis. Symbols refer to legend below figure.
Red: gene upregulation in high-fat high-sugar animals as compared to regular diet animals. Green: downregulation in
comparison to regular diet.

To further characterize the effect of the HFHS diet regimen on the liver, we evaluated
global changes in the gene expression after 16 weeks. Principal components analysis of the
complete gene expression profile revealed expected grouping with each diet regimen group
containing their associated replicates (Supplementary Materials Figure S1A, n = 5 (RD),
4 HFHS). In total, 2114 genes were significantly, differentially expressed (p < 0.05 and >2
fold) in the liver. To assess the enrichment of these differential genes, they were imported
into Ingenuity Pathway Analysis (IPA) software. The results show that in the comparison
of HFHS to RD animals 124 canonical pathways were significantly enriched and 200 down-
stream effects were predicted on biological processes and disease or toxicological function
(p-value < 0.05, z-score ≤ −2 or ≥ 2): amongst which were cell recruitment, inflamma-
tion, activation, and immune-associated pathways (Figure 2G, Supplementary Materials
Table S2 shows all significant predicted downstream effects). Interestingly, we also ob-
served a pathway activation pattern reminiscent of NAFLD TNF-driven inflammation,
(Figure 2H).

Together, these data suggest that HFHS diet induced drastic changes in glucose uptake
and lipid metabolism, characterized by systemic dyslipidemia and gross changes in liver
pathology. This translated into increased inflammation and a gene expression profile in the
liver reminiscent of fatty liver disease.

3.3. High-Fat and High-Sugar Diet Exacerbated Disease Severity after SARS-CoV-2 Infection

We challenged hamsters (RD: n = 20, HFHS = 13 (group size adjusted for the HFHS
group due to the morbidity of the model pre-challenge)) with 8 × 104 TCID50 SARS-CoV-2
via the intranasal route. Animals were euthanized at 7 days-post inoculation (DPI) (RD:
n = 10, HFHS = 4), at 14 DPI (RD: n = 5, HFHS = 4) or monitored until 21 DPI (RD: n = 5,
HFHS) = 5. We observed marginally more severe morbidity in the HFHS group, in which
two animals reached euthanasia criteria (>20% relative body weight loss) at 8 and 9 DPI,
respectively (Figure 3A). While the HFHS animals demonstrated non-infection associated
morbidity, the timing and symptoms associated with these fatalities suggest that they were
caused by the infection. In the RD group, a median peak weight loss was observed at 6 DPI
(~7% relative body weight), after which animals recovered and returned to pre-challenge
weights by 14 DPI. Weight in HFHS animals was significantly decreased after 3 DPI and
negative area under the curve (AUC) analysis between 1 and 14 DPI revealed significant
difference (Figure 3B, n = 10 (RD)/7 (HFHS), Mann–Whitney test, p = 0.0002). In the HFHS
group median peak weight loss was reached at 8 DPI (~16% relative body weight) and no
animal recovered pre-challenge weights until the end of the study at 21 DPI.

To better understand the clinical impact of a HFHS diet on SARS-CoV-2 infection, the
respiratory function of the hamsters was evaluated. We performed forced oscillation tests
on mechanically ventilated hamsters pre-challenge, and on 7, 14, and 21 DPI. No significant
differences in pulmonary function were detected between the RD and HFHS groups at any
time point.
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Figure 3. High-fat and high-sugar diet exasperated disease severity after SARS-COV-2 infection. Male Syrian hamsters were
fed either a regular or high-fat high-sugar diet ad libitum for 16 weeks, then challenged with 8 × 104 TCID50 SARS-CoV-2.
(A) Survival after challenge for RD (n = 10) and HFHS (n = 9) in the 14 and 21 DPI groups. (B) Relative weight loss in
hamsters after challenge. Left graph shows median ± 95% CI. Right graph shows area under the curve (AUC, negative
peaks only) between 1 and 14 DPI of surviving animals. Bar chart depicting median, 95% 0 CI and individuals, n = 10 (RD)/7
(HFHS), Mann–Whitney test. (C) Lung function analysis after challenge. (D) Pressure–volume loops at pre-challenge, 7,
14, and 21 DPI. Abbreviations: RD = regular diet; HFHS = high-fat high-sugar; DPI = days post inoculation. p-values are
indicated were appropriate.

Pulmonary function after SARS-CoV-2 infection has not been assessed in the Syr-
ian hamster yet, so we combined the groups to evaluate changes over the course of
infection. Inspiratory capacity was significantly decreased in 7 DPI as compared to pre-
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challenge (Figure 3C, baseline: n = 5 (RD)/3 (HFHS) and 7 DPI: n = 5 (RD)/4 (HFHS),
baseline median = 4.345/4.032 and 7 DPI median = 3.195/3.464 mL, ordinary two-way
ANOVA, followed by Tukey’s multiple comparisons test, p = 0.0107). Elastance of the
respiratory system was significantly increased at 7 DPI (baseline median = 2.68/3.032 and
7 DPI median = 4.138/3.852 cmH2O/mL, p = 0.0022), as was tissue elastance (baseline
median = 2.514/2.450 and 7 DPI median = 3.021/3217 cmH2O/mL, p = 0.0040). The
resistance of the airway not associated with gas exchange (Newtonian resistance) was
not significantly different at any time point; however, total resistance was significantly
increased in 7 DPI as compared to pre-challenge (baseline median = 0.151/0.167 and
7 DPI median = 0.181/0.205 cmH2O.s/mL, p = 0.034). Changes in peripheral resistance
were also detected by an increase in tissue damping at 7 DPI as compared to pre-challenge
animals, which reflects how oscillatory energy is dispersed or retained within parenchy-
mal tissue (baseline median = 0.564/0.623 and 7 DPI median = 0.695/0.720 cmH2O/mL,
p = 0.0158). Recovery to pre-challenge was observed for all parameters by 14 DPI. Together,
these changes in respiratory function led to an overall decrease in shape parameter k,
which reflects the curvature of the pressure–volume curve, on 7 DPI (Figure 3D, base-
line median = 0.193/0.180 and 7 DPI median = 0.168/0.158/cmH20, ordinary two-way
ANOVA, followed by Sidak’s multiple comparisons test, p = 0.0001). While not signif-
icant, a slower recovery to pre-challenge values for resistance and tissue damping was
observed in the HFHS group. This could indicate that functional lung recovery in this
group was slower.

3.4. High-Fat and High-Sugar Diet Is Associated with Exudate, Vasculitis, Inflammation of the
Epithelia and Hemorrhage, Fibrin and Edema, and Decreased Viral Clearance

Next, we assessed the pathology in the lungs at necropsy, 7 DPI. Grossly, lungs dis-
played lesions with multifocal dark red foci visible on the surface of the lobes (Figure 4A–J).
Across groups the 7 DPI lungs were more turgid, failed to collapse, and had increased
lung weights as compared to pre-challenge lungs (Supplementary Materials Figure S2A).
Lung weight recovery appeared slower in HFHS animals. Histopathologically, only a
subset of RD animals demonstrated increased lung damage (n = 5/10, >50% lung tissue
affected). At 7 DPI, foci were multifocal and adjacent to bronchi and blood vessels as
well as peripherally along the sub pleural margin. Overall, no significant difference was
seen between the cumulative pathological score between diet groups. However, three out
of four animals demonstrated lesions in >50% of tissue (Figures 4K and S2B). In HFHS
animals, foci were multifocal but less clearly delineated due to hemorrhage, edema, and
fibrin. Interstitial pneumonia was characterized by thickened septa due to inflammatory
cells, fibrin and edema and lined by hyperplastic type II pneumocytes. Alveoli were filled
with inflammatory cells, edema and organizing fibrin. The two HFHS animals which
were euthanized at day 8/9 due to severe disease and weight loss (>20%) both showed
pneumonia, hemorrhage, edema, and inflammation (Supplementary Materials Figure S3).

At 14 DPI, thickened septa, presumably from interstitial fibrosis with alveolar bron-
chiolization, were observed in lungs from RD animals (n = 2) (Supplementary Materials
Figure S4A–D). In contrast, HFHS animals at 14 DPI had less septal thickening and more
septal, alveolar, and perivascular inflammation (n = 2). At 21 DPI four out of five of the
RD animals and three out of three of the HFHS animals had thickened alveolar septa with
alveolar bronchiolization (Supplementary Materials Figure S4E–H).

Immunohistochemistry staining for SARS-CoV-2 antigen was increased at 7 DPI in
lungs of HFHS animals compared to RD animals (median = 2.71 (RD)/5.043 (HFHS),
n = 10/4) (Figure 4E,J,L). To confirm this finding, we compared genomic RNA, subge-
nomic (sg) RNA (surrogate for replicating virus), and infectious viral particles isolated
from lungs at 7 DPI. Levels of gRNA and sgRNA in the lungs of HFHS animals at 7 DPI
were significantly increased as compared to RD animals. Additionally, no infectious
virus could be isolated from a subset of RD animals and overall, significantly more infec-
tious virus could be isolated in HFHS animals (Figure 4M–O; RD: n = 10, HFHS: n = 4,
gRNA median = 6.935/8.513 copies/g lung (log10), sgRNA median = 5.639/7.896 copies/g
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lung (log10) and infectious virus median = 1.63/3.703 TCID50/g (log10), Mann–Whitney
test, p = 0.0240, p = 0.0240 and p = 0.0120, respectively).
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Figure 4. High-fat and high-sugar diet is associated to increased pulmonary pathology and decreased viral clearance.
Animals were euthanized at 7 DPI with SARS-CoV-2 in order to compare lung pathology and viral titers. (A–J) Gross
and photomicrographic images of hamster lungs taken at 7 DPI. (A,F) Gross necropsy findings consisted of multifocal
well-circumscribed dark red foci throughout turgid lobes which failed to collapse. (B,G) Dark red foci in the gross images
correlate with the consolidated foci adjacent to airways and scattered along the pleural margin in the sub-gross images.
HE 1.4×. (C,H) Foci of interstitial pneumonia adjacent to terminal bronchioles and accompanying blood vessels. HE
20×. (D,I) Pneumonia consists of alveoli containing neutrophils, eosinophils, alveolar and septal macrophages, fibrin,
edema and septa lined by hyperplastic type II pneumocytes, HE 400×. Syncytial cells are common (see inset, HE,
1000×). Pneumonic areas in the HFHS diet hamsters frequently had abundant intra-alveolar edema (*) and organizing
fibrin (>) mixed with inflammatory cells. Note the vessel wall disrupted by sub-endothelial leukocytes and cellular
debris (⇓). (E,J) Anti-SARS-CoV-2 immunoreactivity in the lungs from the regular diet hamsters is rare compared to the
frequent pneumocyte immunoreactivity in the lungs of the HFHS diet hamsters, IHC, 400×. (K) Individual pathological scores.
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(L) Quantitative count of SARS-CoV-2 immunoreactivity by morphometric analysis. Bar chart depicting median, 95%
CI, and individuals, n = 10 (RD)/4 (HFHS), Mann–Whitney test. (M,N) Lung viral load measured by g and sgRNA.
Bar chart depicting median, 95% CI and individuals, n = 10 (RD)/4 (HFHS), Mann–Whitney test. (O) Infectious virus
measured by lung titration. Bar chart depicting median, 95% CI and individuals, n = 10 (RD)/4 (HFHS), Mann–Whitney
test. (P) Viral load in oropharyngeal swabs measured in sgRNA copy number for RD and HFHS animals. Graphs show
median, individual animals and 95% CI (shaded area). Dotted line = peak shedding. (Q) Area under the curve (AUC)
analysis of virus shedding shown in (P). Bar chart depicting median, 95% CI and individuals, 21 DPI: n = 5 (RD)/3 (HFHS),
Mann–Whitney test. (H) Dotted line = limit of detection. Abbreviations: g = genomic; sg = subgenomic; DPI = days post
inoculation; H&E = hematoxylin and eosin stain; IHC = immunohistochemistry. p-values are indicated were appropriate.

To better understand if the HFHS diet contributed to changes in viral replication
kinetics in the upper respiratory tract, swabs from the oropharynx were analyzed for the
presence of sgRNA. Respiratory shedding in both groups peaked at 2 DPI. Shedding in
HFHS animals was constantly high up until 10 DPI, while shedding began decreasing in
RD animals after 6 DPI. To compare the overall shedding burden, we performed an area
under the curve (AUC) analysis for both groups depicting the cumulative shedding. HFHS
animals presented significantly higher cumulative shedding (Figure 4P,Q, n = 5 (RD)/3
(HFHS), median 41.48/44.44 AUC (log10), Mann–Whitney test, p = 0.0357).

3.5. Immune Infiltration in the Lung during the Acute-Phase of Infection and Humoral Immunity
Are Not Significantly Affected by High-Fat High-Sugar Diet

Using immunohistochemistry, we investigated the infiltration of macrophages (IBA
1 staining), T-cells (CD3 staining), and B-cells (Pax 5 staining) over the course of infection
(Figure 5). Macrophages were detected throughout all sections but were increased in 7 and
14 DPI samples in pneumonic areas irrespective of diet regimen. In addition, T lymphocytes
were increased in 7 and 14 DPI samples in pneumonic areas. No increase in B cells was
observed. To quantify the influx of macrophages and T cells we used morphometric
analysis (Supplementary Materials Figure S5). No significant difference was seen between
the RD and HFHS groups. Both macrophages and T cells increased in numbers at 7 DPI
as compared to pre-challenge conditions for both groups. (Figure 6A,B, pre-challenge:
n = (RD)/2 (HFHS) and 7 DPI: n = 10 (RD)/4 (HFHS), median macrophages = (3.075/3.530
(pre-challenge))/(13.630/10.480 (7 DPI)) % reactivity and median T cells = (4.515/4.125 (pre-
challenge))/(11.340/11.255 (7 DPI)) % reactivity, ordinary two-way ANOVA, followed by
Sidak’s multiple comparisons test, p = 0.1007/0.3564 and p = 0.0001/0.0001, respectively).

The humoral response to SARS-CoV-2 was not significantly impacted by diet regimen.
Animals seroconverted at 7 DPI, as measured by anti-spike IgG ELISA (Figure 6C, 7 DPI:
n = 10 (RD)/4 (HFHS), 14 DPI: n = 5 (RD)/4 (HFHS), 21 DPI: n = 5 (RD)/3 (HFHS), ordinary
two-way ANOVA, followed by Tukey’s multiple comparisons test, p = 0.8573, p = 0.8203
and p = 0.5468, respectively). Neutralization of virus by sera collected at 14 and 21 DPI was
compared to assess potential differences in affinity maturation and no significant difference
was found (Figure 6D, 14 DPI: n = 5 (RD)/4 (HFHS), 21 DPI: n = 5 (RD)/3 (HFHS), 14 DPI
median = 120/80 and 21 DPI median = 120/120 reciprocal titer, ordinary two-way ANOVA,
followed by Tukey’s multiple comparisons test, p = 0.5535 and p = 0.4688, respectively).

3.6. Prolonged SARS-CoV-2 Shedding, Systemic Immune and Metabolomic Dysregulation after
High-Fat High-Sugar Diet

The cytokine kinetics were analyzed in serum throughout the course of infection by
ELISA. Serum samples were collected pre-challenge (0 DPI), on 7, 14, and 21 DPI (Figure 6E).
Pro-inflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-6, antiviral interferon
(IFN)-γ, and IL-10 did not significantly differ between diet regimens pre-challenge. After
infection, RD animals mounted a significant IFN-γ response which lasted into recovery (14
and 21 DPI), while no response was seen in HFHS animals (RD: n = 5/10, HFHS: n = 4, pre-
challenge median = 629/618, 7 DPI median = 737.85/550.6, 14 DPI median = 702.3/623.55,
21 DPI median = 1042.3/609.8 pg/mL, ordinary two-way ANOVA, followed by Sidak’s
multiple comparisons test, pre-challenge: p = 0.58157, 7 DPI: p = 0.0090, 14 DPI: p = 0.7373,
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21 DPI p < 0.0001). In contrast, serum IL-6 was increased in HFHS animals compared to
RD animals at 7 DPI (median = 2795.5 (RD)/2859.2 (HFHS) pg/mL), but this was found to
be not significant. IL-10 levels were equally increased in some HFHS animals during the
acute phase and remained elevated at 14 DPI (RD: n = 5/10, HFHS: n = 4, pre-challenge
median = 1894.6/2131.5, 7 DPI median = 2071.75/2773.95, 14 DPI median = 1768.5/2354.35,
21 DPI median = 1733.7/2407.6 pg/mL ordinary two-way ANOVA, followed by Sidak’s
multiple comparisons test, pre-challenge: p = 0.9933, 7 DPI: p = 0.0548, 14 DPI: p = 0.1408,
21 DPI p = 1259). This was found not to be significant. TNF-α serum levels demonstrated
an ambivalent pattern.
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Figure 5. Immune infiltration and in the lung during acute-phase of infection and humoral immunity is not significantly
affected by high-fat high-sugar diet. Animals were euthanized at 0, 7, and 14 DPI and the presence of SARS-CoV-2
antigen, T-cells, B-cells and macrophages investigated. (A,B) Pre-challenge RD and HFHS diet hamster lungs. (G,H) IBA1;
(M,N) CD3 and (S,T) Pax5. (C,D) Lungs at 7 DPI. (I,J) IBA1; (O,P) CD3 and (U,V) Pax 5. (E,F) Lungs at 14 DPI. (K,L) IBA1;
(Q,R) CD3 and (W,X) Pax 5. (A–F) HE. All images 200x. Abbreviations: RD = regular diet; HFHS = high-fat high-sugar;
DPI = days post inoculation.

To examine compositional changes in the circulating lipidome over the course of
infection, the lipidome was analyzed between 0 and 7 DPI of infection. This analysis re-
vealed distinct lipid dynamics in response to SARS-CoV-2 infection (Figure 6F). RD animals
displayed a serum lipid shift in response to infection consisting primarily of decreased
levels of phospholipids with mixed representation of lipid classes and a distribution of
long chain and polyunsaturated fatty acids (PUFA). HFHS serum displayed a more drastic
pattern of lipid depletion and enrichment. Specifically, HFHS serum reflected a sharp
enrichment of free polyunsaturated fatty acids (PUFA) and a combination of enrichment
and depletion of PUFA containing phospholipids. This response peaked at 7 DPI and
began to return to homeostasis by 14 DPI, though certain lipid patterns were carried out
until 21 DPI.
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Figure 6. Disease manifestation is accompanied by prolonged viral shedding, systemic immune and metabolomic dys-
regulation after high-fat high-sugar diet. Animals were euthanized pre-challenge, at 7, 14, and 21 DPI with SARS-CoV-2
and serum and lung tissue collected for immune and lipid mediator analyses. (A,B) Lung infiltration of T-cells (CD3)
and macrophages (IBA1) was quantified by morphometric analysis. Bar chart depicting median, 95% CI and individuals,
pre-challenge and 14 DPI: n = 2, 7 DPI: n = 10 (RD)/4 (HFHS), ordinary two-way ANOVA, followed by Tukey’s multiple
comparisons test. (C) ELISA titers against spike protein of SARS-CoV-2 (lineage A) in serum obtained pre-challenge, at 7, 14,
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and 21 DPI. Bar chart depicting median, 95% CI and individuals, pre-challenge and 14 DPI: n = 5 (RD)/4 (HFHS), 7 DPI:
n = 10 (RD)/4 (HFHS), 21 DPI: n = 5 (RD)/3 (HFHS), ordinary two-way ANOVA, followed by Sidak’s multiple comparisons
test. (D) Virus neutralization titers against SARS-CoV-2 (lineage A) in serum obtained at 14 and 21 DPI. Bar chart depicting
median, 95% CI s and individuals, 14 DPI: n = 5 (RD)/4 (HFHS), 21 DPI: n = 5 (RD)/3 (HFHS), ordinary two-way ANOVA,
followed by Sidak’s multiple comparisons test. (E) Serum levels (pg/mL) of INF-γ, TNFα-, IL-6, and IL-10 measured by
ELISA from serum collected on 0, 7, 14, and 21 DPI. Bar chart depicting median, 95% CI and individuals, pre-challenge/14
and 21 DPI: n = 5 (RD)/4 (HFHS), 7 DPI: n = 10 (RD)/4 (HFHS), ordinary two-way ANOVA, followed by Sidak’s multiple
comparisons test. (F) Lipid time-course heatmap: changes in PUFA-containing serum lipids associated with an active
SARS-CoV-2 infection as measured by LC-MS/MS. Autoscaled intensities are displayed for serum lipid species that were
significantly changed between 0 and 7 DPI in either regular diet or HFHS diet hamsters with a false discovery rate of 15%
equating to p = 0.0256, 0.0193 for RD and HFHS, respectively. * FA22:6 (HFHS p = 0.0374) is displayed for comparison to
clinical data despite not passing FDR filters. Abbreviations: TNF = tumor necrosis factor; IFN = interferon; IL = interleukin;
RD = regular diet; HFHS = high-fat high-sugar; DPI = days post inoculation; = virus neutralization. p-values are indicated
where appropriate.

4. Discussion

The development of animal models that faithfully recapitulate certain aspects of
human disease remains a top priority in SARS-CoV-2 research. Healthy Syrian hamsters
develop mild to moderate disease like most human cases; however, they do not exhibit
the more severe respiratory disease seen in humans with comorbidities such as obesity,
diabetes, or other chronic illness [8,31,32]. Thus, we developed an experimental infection
model of hamsters exclusively fed a high-fat high-sugar diet to model the impact of Western
Diet on COVID-19 severity. In the Syrian hamster, this diet caused diet-induced morbidity,
led to increased weight gain during adolescence, and ultimately led to an increased glucose
tolerance, systemic hyperlipidemia, increased total cholesterol, and a liver pathology
reminiscent of a NAFLD-like phenotype. The lack of net weight gain in this model may
present a means of decoupling liver associated pathologies such as NAFLD from obesity-
associated disease more broadly. In humans, NAFLD is predominantly a consequence
of obesity and frequently associated also with other comorbidities as well [33]. In the
context of COVID-19, NAFLD is associated with increased hospitalization and disease
severity [34].

The morbidity observed in the absence of infection in the HFHS group should be
considered in future studies utilizing this model. In particular, this feature of the model may
make survival-based studies difficult. Human clinical studies of COVID-19 are plagued
by this same difficulty in quantifying the contribution of infection and the associated
comorbidities to the eventual cause of death. If appropriately controlled for in this model
the relative contribution to death from the infection and the comorbidities can be quantified.
We observed that male hamsters on a HFHS diet demonstrated delayed lower and upper
respiratory tract clearance after infection with SARS-CoV-2, which was accompanied by
more severe disease presentation. Our data is in agreement with findings in mice, which
have reported enhanced morbidity in aged and diabetic obese mice in a mouse-adapted
SARS-CoV-2 model [35]. Conversely, we also observed increased weight loss, pathology,
delayed lung recovery, and influx of immune cells into the lung in a subset of hamsters
fed a regular diet as compared to what has been shown in younger animals [17,19]. This
is likely due to the increased age of the animals used in this study [36]. Previously, lung
function analysis after SARS-CoV-2 infection in a rodent model has only been demonstrated
in ACE2 mice [37]. While not significantly different between the diet groups, we performed
functional lung analysis for the first time in the Syrian hamster after SARS-CoV-2 infection
and demonstrated that this model also recapitulates increased total airway resistance and
decreased inspiratory capacity. This suggests that the Syrian hamster, besides recapitulating
lung pathology, may also be a useful model for mechanistic studies of the respiratory
parameters affected by COVID-19.

Importantly, the HFHS Syrian hamster model presented here recapitulated two key
mediators of severe human COVID-19, but only marginally. One unique feature of the
cytokine profile in human disease is the elevation of IL-6 and IL-10, which have been
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indicated as causes of increased pathology [38–41]. In line with this, in HFHS animals we
observed increases in serum IL-10 and IL-6 levels after infection, but these were not signifi-
cant and more in-depth characterization is required to establish if the cytokine response in
serum truly is affected. Secondly, in response to infection, HFHS animals showed a more
severe response in their serum lipids at 7 DPI compared to RD animals. The lipids that dom-
inated this response were free-PUFAs and PUFA-containing phosphatidylethanolamine
(PE). In addition, we saw mixed increase and decrease of PUFA-containing plasmalo-
gens and triacylglycerols. The metabolic comorbidities associated with severe COVID-19
were previously shown to correlate with specific mobilization of serum lipids in a human
cohort [42]. Specifically, disease severity, defined by ICU admittance, was shown to be
associated with increased free PUFAs and PUFA-containing phosphatidylethanolamine, as
well as a decrease of PUFA-containing phosphatidylcholine and plasmalogen, compared to
non-ICU hospitalized patients. These imbalances were reflected in the circulating milieu of
immune-active, PUFA-derived lipid mediators in these patients. The lipid pattern findings
in the Syrian hamster model suggest that these serum lipid changes are dependent on
preexisting serum hyperlipidemia and stimulated by infection with SARS-CoV-2. Despite
the lack of obesity in these animals, the matching of clinical SARS-CoV-2-associated lipid
patterns and cytokine profile in this model supports its utility in examining lipid and
inflammation dynamics associated immune dysregulation during infection.

Of note, this did not seem to adversely affect the humoral immune response while
viral titers in oropharyngeal swabs and lung tissues suggested delayed clearance in the
HFHS group. This may indicate that other immune pathways were disproportionately
affected, but further investigations would be necessary to draw concrete conclusions.

This study had several limitations. Only male hamsters were used, which have been
shown to show increased pathology upon infection with SARS-CoV-2 [43]. Additionally,
only one age group was evaluated, and further studies are required to determine if there
is an age-related bias with diet and disease severity. Finally, uninfected controls were not
used in this study.

Taking the limitations of the model into account, our data further suggests the possible
suitability of the Syrian hamster model to assess immunomodulatory therapies. While
dietary advice for those suffering from metabolic diseases is proposed to reduce burden
of severe COVID-19 [43], it remains doubtful if any change in diet can impact disease
outcome favorably after infection has occurred. Targeted immunomodulatory therapies,
such as anti-IL-6 therapies, may be more efficient [44]. The Syrian hamster model may also
be applied to further studies of selected aspects of NAFLD, which the model recapitulates.
This model seems to present with an absence or limited amount of liver fibrosis; further
work is needed to demonstrate how faithfully it assesses the direct effect of liver fibrosis on
acute disease. However, it may be useful to assess long term post-COVID-19 NAFLD, to
document further deterioration of liver damage [45] and the relation to infection sequelae.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13122506/s1, Table S1: Liver marker profile in serum of regular diet (RD) and high-fat
high-sugar diet (HFHS) after 16 weeks. Table S2: Up- and downregulated pathways in livers pre-
challenge organized by disease and function, Figure S1: RNA was isolated for gene expression
analyses from liver tissue at 16 weeks and principal component analysis performed, Figure S2: Male
Syrian hamsters were fed either a regular or high-fat high-sugar diet ad libitum for 16 weeks, then
challenged with 8 × 104 TCID50 SARS-CoV-2. Animals were euthanized pre-challenge (0 DPI), at 7,
14 and 21 DPI, Figure S3: Male Syrian hamsters were fed either a regular or high-fat high-sugar diet
ad libitum for 16 weeks, then challenged with 8 × 104 TCID50 SARS-CoV-2. Animals were euthanized
at day 8 and 9 due to increased weight loss, Figure S4: Male Syrian hamsters were fed either a
regular or high-fat high-sugar diet ad libitum for 16 weeks, then challenged with 8 × 104 TCID50
SARS-CoV-2. Lung tissues were collected 14- and 21-days post inoculation, Figure S5: Male Syrian
hamsters were fed either a regular or high-fat high-sugar diet ad libitum for 16 weeks, then challenged
with 8x104 TCID50 SARS-CoV-2. Animals were euthanized pre-challenge (0 DPI), 7- and 14-days post
inoculation. Serial images of lungs.
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