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Abstract: B.1.617 is becoming a dominant Severe Acute Respiratory Syndrome-Coronavirus-2
(SARS-CoV-2) lineage worldwide with many sublineages, of which B.1.617.2 is designated as a
variant of concern. The pathogenicity of B.1.617.2 (Delta) and B.1.617.3 lineage of SARS-CoV-2 was
evaluated and compared with that of B.1, an early virus isolate with D614G mutation in a Syrian
hamster model. Viral load, antibody response, and lung disease were studied. There was no signifi-
cant difference in the virus shedding pattern among these variants. High levels of SARS-CoV-2 sub
genomic RNA were detected in the respiratory tract of hamsters infected with the Delta variant for
14 days, which warrants further transmission studies. The Delta variant induced lung disease of
moderate severity in about 40% of infected animals, which supports the attributed disease severity
of the variant. Cross neutralizing antibodies were detected in animals infected with B.1, Delta, and
B.1.617.3 variant, but neutralizing capacity was significantly lower with B.1.351 (Beta variant).
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1. Introduction

Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) B.1.617 lineage vari-
ants were first reported in India in October 2020. Among the reported sublineages, B.1.617.1
is designated as a variant of interest and B.1.617.2 as a variant of concern (VOC) by the
World Health Organization [1]. B.1.617.3 is another sublineage in which fewer sequences
have been reported. The rise in COVID-19 cases worldwide during the second wave was
speculated to be due to the high transmission potential of the Delta variant, which replaced
the other variants in circulation [2]. As of 10 August 2021, the Delta variant has been
reported in 142 countries [1]. The characteristic mutations reported in the spike gene of the
B.1.617 lineage are D111D, L452R, D614G, P618R, and ±E484Q [3]. These mutations sug-
gest increased ACE2 binding, transmissibility, and escape of neutralization [3–6]. Available
evidence suggests increased transmissibility, secondary attack rate, hospitalization risk,
and immune escape by the Delta variant [1,7]. The potential impacts of the Delta variant
on vaccine and therapeutic effectiveness are uncertain as limited data are available. Recent
studies have reported neutralization efficiency in vaccinated individuals and resistance to
monoclonal antibody therapy of the Delta variant [8–12].

Animal models have been used to explore various disease aspects of SARS-CoV-2
as well as for establishing the safety and efficacy of many interventional measures [13].
Studies have shown the high binding affinity of SARS-CoV-2 spike protein to hamster
ACE2 receptor [14]. The virus replicates to high titre in the respiratory tract of Syrian
hamsters and causes pneumonia [15]. The model has been utilized for studying SARS-
CoV-2 pathology, immune response, and transmission, as well as many preclinical drug
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and vaccine trials [15–17]. With the emergence of new variants, it is important to generate
information on disease characteristics and replicative fitness in the existing animal models.
In the present study, pathogenicity and virus shedding differences of the Delta and B.1.617.3
variant in a Syrian hamster model were assessed. Cross-neutralization potential of sera
of variant infected hamsters was also investigated. The study parameters were compared
with that of B.1, an early SARS-CoV-2 variant.

2. Materials and Methods
2.1. Virus and Cells

SARS-CoV-2 variants Delta (GISAID identifier: EPI_ISL_2400521), B.1.617.3 (GISAID
identifier: EPI_ISL_2497905), and B.1 (GISAID identifier: EPL_ISL_825084) were used for
the animal study. For in vitro neutralization assay, B.1.351 (Beta variant) [GISAID identifier:
EPI_ISL_2036294] was also used. The isolates were propagated and passaged twice in
VeroCCL81 cells and sequence verified by next generation sequencing. The virus stock was
titrated to determine the 50% tissue culture infective dose (TCID50)/mL.

2.2. Animal Experiments

To understand the virus shedding and pathogenicity, 54 female Syrian hamsters
(8–10 weeks old) were divided into three groups of 18 animals each. The respective groups
were challenged with 0.1 mL of 105 TCID50/mL of B.1, Delta, and B.1.617.3 variants
intranasally under isoflurane anesthesia. The animals were monitored for any clinical signs
and body weight loss. Four hamsters were kept as mock control for the study. Throat
swabs (TS), nasal wash (NW), and faecal samples were collected in 1 mL virus transport
media (HiMedia, Mumbai, India) from six hamsters/group on 3, 5, 7, 10, 12, and 14 days
post infection (DPI). To study the pathogenicity of each variant, four hamsters from each
group were euthanized on 3, 5, 7, and 14 DPI by isoflurane anesthesia overdose to collect
blood and organ samples.

2.3. Viral RNA Detection

Tissue samples were weighed and homogenized in 1 mL sterile media (GIBCO,
Thermo Fisher Scientific, Waltham, MA, USA) and TS/NW/faeces samples were collected
in 1 mL media. The same were used for RNA extraction using MagMAX™ Viral/Pathogen
Nucleic Acid Isolation Kit as per the manufacturer’s instructions. Real-time qRT-PCR
was performed for E gene of SARS-CoV-2 to determine the viral genomic RNA (gRNA)
load [18]. To measure the amount of replicating RNA, sub genomic (sg) N gene RNA was
quantitated using published primers [19].

2.4. Anti-SARS-CoV-2 Antibody Detection

The serum samples collected on 3, 5, 7, and 14 DPI were tested for IgG antibodies by a
hamster anti-SARS-CoV-2 IgG ELISA [20]. Plaque reduction neutralization test (PRNT) was
performed to understand the neutralization ability of the sera of variant-infected hamsters
with the Delta, B.1.617.3, B.1, and Beta variants in a biosafety level 3 facility [21]. Briefly,
Vero CCL-81 (1.0 × 105 cells /mL) was added per well in 24-well tissue culture plates.
The cells were incubated for 24 h in a CO2 incubator to obtain a confluent monolayer. A
fourfold serial dilution of heat-inactivated serum samples mixed with an equal volume of
virus suspension containing 50–60 plaque forming units/0.1 mL was incubated at 37 ◦C
for 1 h. The virus–serum mixtures were added onto the cell monolayers and incubated
with intermittent shaking. The mixtures were aspirated from the wells after 1 h and an
overlay medium was added. The plates were further incubated at 37 ◦C with 5% CO2 for
4 days. The overlay medium was decanted and plates were stained with 1% amido black
for 1 h. Plaques were counted and PRNT50 was calculated using a log probit regression
analysis by SPSS software (SPSS 15.0, SPSS Inc., Chicago, IL, USA).
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2.5. Histopathological Examination

The lung samples collected during necropsy were immersion fixed with 10% neutral
buffered formalin. The tissues were processed with routine histopathological techniques
and stained by hematoxylin and eosin. The lesions were graded on a numerical scale from
0 to 4 as no abnormality (0), minimal (1), mild (2), moderate (3), and severe (4) based on its
severity by blinded scoring. Lesions graded include vascular inflammatory changes like
congestion, hemorrhages, perivascular and peribronchial mononuclear cellular infiltration,
bronchial pathological changes, alveolar changes like consolidation, hyaline changes,
oedema, pneumocyte hyperplasia and septal thickening.

2.6. Statistical Analysis

The data collected from the study were analyzed using Graph pad Prism software (Graph-
Pad Prism version 8.4.3, San Diego, CA, USA). For statistical analysis, non-parametric Mann
Whitney test was used and p-values less than 0.05 were considered to be statistically significant.

3. Results
3.1. Clinical Observations and Virus Shedding

The average body weight gain in hamsters was the least in the Delta variant group
compared with B.1 and B.1.617.3 during the first week of infection (Figure 1a). At 7 DPI, the
mean percentage weight gain with standard deviation observed in the B.1, Delta, B.1.617.3,
and mock control group was 6.72 ± 4.1, 0.3 ± 7.2, 2.15 ± 4.3, and 2.79 ± 3.15, respectively.
For the Delta variant, the viral gRNA could be detected in the NW and TS samples until
7 DPI, whereas in a few animals of B.1 and B.1.617.3, it could be detected up to 12 and
14 DPI, respectively (Figure 1b–d). The viral load was higher in the TS and NW samples
compared with faecal samples. The viral gRNA load was higher during the first week post
infection, which decreased further in the B.1 and B.1.617.3 groups. After 5 DPI, sgRNA
could be detected only in 1/6 animals in the B.1 group and 2/6 animals in the B.1.617.3
group and in none of the animals in the Delta variant group (Figure 1e–g).

3.2. Viral Load in the Respiratory Organs

In the nasal turbinates, trachea, and lung samples, viral gRNA could be detected
until day 14 (Figure 2a–c). Nasal turbinate showed a higher viral load compared with
other organs in all of the groups. The SARS-CoV-2 viral RNA detected in the lungs,
nasal turbinates, and trachea of hamsters infected with different variants did not show
any statistical difference when compared among the groups on days 3, 5, and 7 post
infection. By day 14, viral gRNA clearance was observed in 3/4 animals in the B.1 variant-
infected group, whereas gRNA could be detected in all animals in the Delta and B.1.617.3
groups. The lung viral gRNA was significantly higher (p = 0.0286) in the samples of the
B.1.617.3 variant on day 14 in comparison with B.1. The sgRNA could be detected in
the lung and nasal turbinate samples until 7 DPI in all the groups. On 14 DPI, all the
hamsters of the Delta variant-infected group showed significantly high sgRNA copies
in nasal turbinates (mean = 2.1 × 107/mL, p = 0.0286) and lungs (mean = 2.1 × 106/mL,
p = 0.0286), respectively, whereas in the B.1 and B.1.617.3 group, only 1/4 hamsters showed
the presence of sgRNA (Figure 2d–f).

3.3. Anti-SARS-CoV-2 Immune Response

Anti-SARS-CoV-2 IgG antibodies were detected in all the groups from 3 DPI, show-
ing an increasing optical density value in ELISA on further time points (Figure 3a).
B.1 variant-infected hamsters showed about 1.7-fold geometric mean titre (GMT) reduc-
tion in neutralization titre against the Delta and B.1.617.3 variants, and 2.3-fold reduction
against the Beta variant (p = 0.0286), on 14 DPI. In the case of Delta and B.1.617.3 variant
infection, a significant reduction (p = 0.0286) in GMT against the Beta variant i.e., about
2.5- and 2.9-fold reduction, was also seen on 14 DPI. The GMT in the case of Delta variant-
infected hamster sera was 1.8-fold reduced against the B.1 and B.1.617.3 variants, whereas
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the titre of B.1.617.3 infected sera was found to be 1.1-fold reduced against the Delta variant
and 1.3-fold reduced against the B.1 variant on 14 DPI.

3.4. Lung Pathology in Infected Hamsters

Grossly, 2/16 of B.1, 6/16 of B.1.617.2, and 3/ 16 of B.1.617.3 infected hamsters showed
congestion and hemorrhages. A slightly higher mean lung weight to body weight ratio was
observed on day 5 and 7 in the B.1.617.2 infected hamsters (Figure 4a). The cumulative lung
histopathological score also showed Delta variant-infected animals with a higher average
score during the first week of infection (Figure 4b). Three/twelve of the Delta and 1/12 of
the B.1.617.3 infected hamsters sacrificed during the first week of infection showed diffuse
areas of consolidation, hemorrhages, pneumocyte hyperplasia, septal thickening, and
perivascular and peribronchial inflammatory cell infiltration of moderate severity, and one
hamster in the B.1.617.2 group showed severe lesions (Figure 4c–f). Lung tissues showed
minimal to mild pathological changes in the case of all the B.1 variant-infected hamsters.
The lesions observed were mostly focal on all days of sacrifice, except in 2/4 hamsters
sacrificed on both day 5 and 7, which showed multifocal areas of consolidation and
mononuclear cell infiltration (Figure 4g,h).
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Figure 1. Bodyweight and virus shed by hamsters post challenge with SARS-CoV-2 variants. (a) Percent body weight
changes in hamsters post virus infection at days 3 (n = 18); 5 (n = 14); 7 (n = 10); and 10, 12, and 14 (n = 6), as well as in mock
control hamsters (n = 4). Viral genomic RNA load (log10 viral genomic RNA copy numbers/mL) in (b) throat swab, (c) nasal
wash, and (d) faeces samples collected on 3, 5, 7, 10, 12, and 14 days post infection (DPI). Viral sub genomic mRNA load
(log10 viral subgenomic RNA copy numbers/mL) in (e) throat swab, (f) nasal wash, and (g) faeces in hamsters post virus
challenge on 3, 5, 7, 10, 12, and 14 DPI. The mean along with standard deviation is depicted in the scatter plot. The statistical
significance was assessed using the non-parametric Mann–Whitney tests and p-values less than 0.05 were considered to be
statistically significant. The dotted line indicates the limit of detection of the assay.
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Figure 2. Viral load in respiratory tract samples of hamsters post infection. Viral genomic RNA load (log10 viral genomic
RNA copies/mL) in (a) nasal turbinates, (b) trachea, and (c) lung samples collected on 3, 5, 7, and 14 DPI, represented as
mean with standard deviation in a scatter plot. Viral sub genomic RNA load (log10 viral subgenomic RNA copies/mL) in
(d) nasal turbinates, (e) trachea, and (f) lung samples collected on 3, 5, 7, and 14 DPI, represented as mean with standard
deviation in a scatter plot. The statistical significance was assessed using the non-parametric Mann–Whitney tests, and p-values
less than 0.05 were considered to be statistically significant. The dotted line indicates the limit of detection of the assay.
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Figure 3. Antibody response in hamsters post challenge with SARS-CoV-2 variants. (a) Anti-SARS-CoV-2 IgG response in
hamsters post virus infection by ELISA. Neutralizing antibody response in hamsters infected with the (b) B.1, (c) B.1.617.2
(Delta), and (d) B.1.617.3 variants against B.1, Delta, B.1.617.3, and B.1.351 (Beta). The dotted line indicates the limit of detection
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using the non-parametric Mann–Whitney tests, and p-values less than 0.05 were considered to be statistically significant.
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Figure 4. Pathological changes in lungs observed at necropsy in hamsters post infection with the B.1, Delta, and B.1.617.3
variants. (a) Proportion of lung weight to body weight of hamsters at necropsy represented as mean with standard deviation.
(b) Cumulative lung histopathology score in hamsters infected with SARS-CoV-2 variants represented as mean with
standard deviation. Lungs of Delta variant-infected hamsters showing (c) diffuse alveolar damage with congestion and
hemorrhages in the lung parenchyma, as well as (d) diffuse mononuclear infiltration, pneumocyte hyperplasia and septal
thickening with mild congestion. Lungs of B.1.617.3 infected hamsters showing (e) alveolar septal thickening, exudation
and hyaline changes in the alveoli, as well as (f) congestion and alveolar septal thickening. Lungs of B.1 infected hamster
showing (g) few small foci of mononuclear cell infiltration and (h) congestion and perivascular inflammatory cell infiltration.

4. Discussion

The Delta variant possesses SARS-CoV-2 spike protein mutations that are known to
affect virus transmissibility and neutralization. The secondary attack rate of the variant is
also higher compared with the Alpha variant [7]. The variant is spreading faster across the
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globe to become a dominant variant in many countries [1]. We observed viral replication in
the respiratory tract of hamsters post infection with the B.1.617 variant with minimal or
no weight loss. Higher viral load in the throat and nasal swab samples was observed in
the first week compared with faecal samples, indicating respiratory tract tropism. Earlier
studies on various SARS-CoV-2 isolates of different lineages have also reported high viral
loads in the initial week of infection in humans [22]. Viral sgRNA is considered to be
an indicator of active infection [22]. We observed gRNA and sgRNA in the respiratory
organs until 14 days. However, prolonged shedding of the virus could not be observed
with any of the variants studied here, as reported in human cases [23]. The sensitivity
of detection of viral sgRNA by nasal wash sampling post 1 week when viral gRNA load
declines is less as per our observations in earlier studies in Syrian hamsters [16,24–26].
The prolonged detection of sgRNA in the nasal turbinates and lungs of B.1.617.2 could be
a contributing factor to support the increased transmissibility attributed to this variant.
Transmission experiments should be further performed to understand the significance
of this finding. In human COVID-19 cases, where the presence of sgRNA is studied, it
is found that it is rarely detectable post 8 days of illness [27,28]. A study from England
has shown increased household transmission associated with the Delta variant compared
with the Alpha variant, which was previously reported to be highly transmissible [29].
Increased transmissibility and immune escape have led to the sudden rise in COVID-19
cases due to the Delta variant [30].

Lung disease with severe lesions could be observed in the case of 4/8 Delta variant-
infected hamsters sacrificed on day 5 and 7, indicating the potential of the variant to cause
severe disease. The histopathological lesions observed were similar to the earlier reports in
hamsters with an onset of inflammatory changes by 3 DPI, which progress to interstitial
pneumonia and a complete recovery by 14 DPI [31]. Even though high levels of sgRNA
and pneumonic changes could be detected in the lungs of B.1.617.2 infected hamsters
compared with other variants, we could not observe any significant body weight loss post
infection in hamsters as reported earlier, probably owing to the dose of inoculum. The
minimal lesions observed with other variants could be also because of the same reason, as
we have observed severe lesions and body weight loss in hamsters infected with a dose
of 106.5 TCID50/mL of the B.1 variant in our earlier studies [24]. The Delta variant has
shown increased replication and enhanced entry efficiency in in vitro experiments [28]. An
increased fitness advantage of the variant has been observed in the respiratory organoid
system compared with wild type SARS-CoV-2 [28]. Reports from England and Scotland
have shown an increased risk of hospitalization in the case of the B.1.617.2 variant cases [7].
Our earlier studies on pathogenicity of B.1.617.1, a variant of the same lineage in the
hamster model, have shown severe lung disease [24].

The initiation of IgG response was observed as early as on 3 DPI. This finding was
in contrast to our earlier studies in hamsters, where no IgG response could be observed
on 3 DPI. This could probably be because of the difference in the virus inoculum dose
and age of hamsters used [16,32]. The sample size of the study was also limited [16,32].
Day 3 sera were found to be non-neutralizing by the live virus neutralization assay. In
neutralization studies, a significant reduction was observed in case of the Beta variant
among all the variants studied. The Beta variant is known for reduced neutralization
by many monoclonal antibodies and convalescent sera from patients infected with early
SARS-CoV-2 isolates [30,33]. Although not significant, a reduction was also seen in the
case of B.1 infected hamster sera with the Delta variant. Mlcochova et al., 2021 reported
20 to 55% immune evasion by the Delta variant in the case of prior infections with non-
B.1.617.2 lineages [34]. B.1.617.3 possesses the E484Q mutation, which is a known site in
RBD, which can impact the serum neutralization efficiency [6]. Even though we observed
a reduced IgG antibody response in the case of B.1.617.3 compared with the other two
variants at 14 DPI, we found the B.1.617.3 infected animal sera showing comparable
neutralizing titres with the B.1 and Delta variants. Few recent studies reported reduced
neutralization of the Delta variant by the BNT162b2 mRNA vaccine [8,9]. Another study
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reported only modest differences in the protective antibody titres against the Delta variant
following two doses of the BNT162b2 or ChAdOx1 vaccine [10]. B.1.617 was found to
be resistant to certain monoclonal antibodies approved for COVID-19 treatment such as
Bamlanivimab and REGN10933 [11,12]. In India, sera neutralization studies on Covishield
and Covaxin vaccine recipients showed neutralization potential against B.1.617.1 and
B.1.617.2, respectively [32,35].

In the present study, we observed no significant difference in viral RNA shedding
among the different variants studied. Higher sgRNA levels could be detected in the
respiratory tract of Delta variant-infected hamsters for a prolonged period, which should
be investigated further for its transmission potential. The Delta variant induced the least
body weight gain and lung disease of severity in about 40% of infected animals, indicating
its pathogenic potential. Cross neutralizing antibodies were observed in variant-infected
hamsters. The neutralizing response was considerably lower with the B.1.351 variant. The
evidence from the present study shows that Delta variant infection generates a broader
neutralizing response and is not as immune-evasive as B.1.351.
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