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Abstract: The 2022 multi-country monkeypox outbreak in humans has brought new public health
adversity on top of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The disease has
spread to 104 countries throughout six continents of the world, with the highest burden in North
America and Europe. The etiologic agent, monkeypox virus (MPXV), has been known since 1959
after isolation from infected monkeys, and virulence among humans has been reported since the
1970s, mainly in endemic countries in West and Central Africa. However, the disease has re-emerged
in 2022 at an unprecedented pace, with particular concern on its human-to-human transmissibility
and community spread in non-endemic regions. As a mitigation effort, healthcare workers, public
health policymakers, and the general public worldwide need to be well-informed on this relatively
neglected viral disease. Here, we provide a comprehensive and up-to-date overview of monkeypox,
including the following aspects: epidemiology, etiology, pathogenesis, clinical features, diagnosis,
and management. In addition, the current review discusses the preventive and control measures, the
latest vaccine developments, and the future research areas in this re-emerging viral disease that was
declared as a public health emergency of international concern.
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1. Introduction

A multi-country outbreak of human monkeypox was reported by the World Health
Organization (WHO) in May 2022 [1]. Since the start of this outbreak, a cumulative total of
64,290 laboratory-confirmed monkeypox cases have been reported in 106 countries across
the globe, with 20 deaths as a result of the disease as of 21 September 2022 [2]. The swift
pace of the outbreak has brought a new public concern on the rise of another viral pandemic
and public health threat [3].

The causative agent of monkeypox disease, monkeypox virus (MPXV), has been
identified for more than 60 years [4]. In 1959, the first description of monkeypox was
published in a report that described two outbreaks of pox-like disease during the summer
and autumn of 1958, among Macaca fascicularis monkeys housed in Statens Serum Institut in
Copenhagen, Denmark [5]. These outbreaks were attributed to a newly described poxvirus,
which was then named monkeypox. Subsequently, several monkeypox outbreaks have
been identified in laboratories or zoos among captive monkeys [6]. In 1970, human infection
by MPXV was first recognized in a 9-month-old child in the Democratic Republic of the
Congo [7]. Since then, monkeypox has been reported as a zoonosis endemic in Central and
Western Africa [8,9]. Prior to the current 2022 outbreak, human-to-human transmission
of MPXV had been reported in endemic countries in Central Africa [10]. Additionally,
monkeypox outbreaks have also been reported in non-endemic countries, which were
mostly linked to imported animals from the endemic regions, with the 2003 outbreak in the
United States (U.S.) as a notable example [11,12]. The previous experience of monkeypox
outbreaks highlighted the global relevance of this emerging zoonosis [13].

Several factors are linked to the increased frequency of monkeypox outbreaks ob-
served in the past 40 years [13,14]. These factors include the increased susceptibility to
monkeypox infection following the cessation of smallpox vaccination [14]. It has been
shown that vaccination against smallpox confers about 85% effectiveness in the prevention
of monkeypox [15]. An additional possible factor involves the extensive consumption of
animals as a protein source which are potential MPXV reservoirs, particularly in regions
afflicted by poverty and social crises such as civil wars [14]. Other factors linked to the
emergence of monkeypox outbreaks include the increased population density, ease of
travel, and ecological and environmental factors (e.g., clearing of tropical rainforests) with
an increased risk of exposure to reservoir animals [14,16,17].

This review aims to provide a comprehensive and up-to-date overview of monkeypox,
including its epidemiology, etiology and pathogenesis, clinical features, laboratory findings,
complications and sequelae, management and preventive measures, including vaccination.
The latest vaccine development and potential directions are also discussed.

2. An Updated Overview of Confirmed Case Numbers Worldwide

As of 21 September 2022, the total number of confirmed monkeypox cases that were
recorded during the ongoing outbreak was 64,290 across 106 countries worldwide [2]. Of
these cases, 579 were confirmed in seven endemic countries with a previous history of
monkeypox cases [2].

The evolution of monkeypox cases by the end of each month is illustrated in Figure 1,
using data from (OurWorldInData.org, accessed on 9 September 2022) [18].
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Figure 1. The total number of confirmed monkeypox cases per country. Data are based on (Our-
WorldInData.org, accessed on 9 September 2022) as reported by the end of May, June, July, and
August 2022 [18].
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3. Virology and Genomic Classification

The monkeypox virus belongs to the same group as variola, cowpox, and vaccinia
viruses classified within the genus Orthopoxvirus, family Poxviridae. One unique trait of
MPXV among other poxviruses is the broad range of host species tropism—from rope
squirrels to sooty mangabey [19,20]—which may have allowed prolonged zoonotic circula-
tion of MPXV in the wild. The name ‘monkeypox’ was coined after the first isolation in
1958 from infected cynomolgus monkeys [5]. However, this name might be a misnomer
as (1) serological evidence from animal samples seems to point to rodents as the primary
natural reservoirs, while infections in primates are merely spillover events [21,22], and
(2) direct transmission may also occur between spillover hosts other than monkeys, e.g.,
human-to-human, particularly in light of the latest global outbreak in 2022. Indeed, phy-
logenetic analyses from recent cases also indicate genomic separation of the new isolates
from the original monkey-infecting MPXV strains [23]. These reasons are factored into
the current discussion for a new name for MPXV [24]. Nevertheless, inoculation of MPXV
into nonhuman primates has proven to be an ideal animal infection model for poxvirus,
as it causes nearly identical symptoms to smallpox infection in humans, albeit milder and
with a lower transmission rate [25]. Smaller animal models are also being investigated,
including BALB/c mice [26].

Morphologically, MPXV exhibits an ovoid or rectangular brick-shape characteristic
of poxviruses, measuring 200 × 250 nm, decorated with membrane surface tubules or
filaments and a biconcave core component as seen on electron micrograph (Figure 2) [27].

Viruses 2022, 14, x FOR PEER REVIEW  4  of  26 
 

 

3. Virology and Genomic Classification 

The monkeypox virus belongs to the same group as variola, cowpox, and vaccinia 

viruses classified within the genus Orthopoxvirus, family Poxviridae. One unique trait of 

MPXV among other poxviruses  is  the broad range of host species  tropism—from rope 

squirrels to sooty mangabey [19,20]—which may have allowed prolonged zoonotic circu‐

lation of MPXV in the wild. The name ‘monkeypox’ was coined after the first isolation in 

1958 from infected cynomolgus monkeys [5]. However, this name might be a misnomer 

as (1) serological evidence from animal samples seems to point to rodents as the primary 

natural reservoirs, while infections in primates are merely spillover events [21,22], and (2) 

direct transmission may also occur between spillover hosts other than monkeys, e.g., hu‐

man‐to‐human, particularly in light of the latest global outbreak in 2022. Indeed, phylo‐

genetic analyses from recent cases also indicate genomic separation of the new isolates 

from the original monkey‐infecting MPXV strains [23]. These reasons are factored into the 

current discussion for a new name for MPXV [24]. Nevertheless, inoculation of MPXV into 

nonhuman primates has proven to be an ideal animal infection model for poxvirus, as it 

causes nearly identical symptoms to smallpox infection in humans, albeit milder and with 

a lower transmission rate [25]. Smaller animal models are also being investigated, includ‐

ing BALB/c mice [26]. 

Morphologically, MPXV exhibits an ovoid or rectangular brick‐shape characteristic 

of poxviruses, measuring 200 × 250 nm, decorated with membrane surface tubules or fil‐

aments and a biconcave core component as seen on electron micrograph (Figure 2) [27]. 

 

Figure 2. Negative‐stained  transmission electron micrograph of M‐type MPXV particle  (A). Thin 

section of viral particles on skin sample, showing ovoid mature virions on the  left and spherical 

immature virions on  the right. Micrographs are courtesy of  the Centers  for Disease Control and 

Figure 2. Negative-stained transmission electron micrograph of M-type MPXV particle (A). Thin
section of viral particles on skin sample, showing ovoid mature virions on the left and spherical
immature virions on the right. Micrographs are courtesy of the Centers for Disease Control and
Prevention (CDC) Public Health Image Library (PHIL) [28] (B). Schematic representation of MPXV
virion structure (C).
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Immature virion can be discerned by its more spherical shapes, while mature virion
can be seen in negative staining in two forms: mulberry (M), which is smaller with short
(10 nm) surface tubules; or capsular (C), which is slightly larger and penetrated by staining,
thus showing multiple laminated zones. The life cycle of poxviruses is unique among
DNA viruses: viral replication is exclusively restricted in the cytoplasm without interfer-
ing with the host genome. The MPXV genome is a linear double-stranded DNA with a
massive length of over 197 kb consisting of around 200 genes, which presents a consider-
able challenge during de novo whole-genome assembly [29]. All proteins necessary for
replication and structural assembly are encoded within the viral genome, covalently closed
at both ends by two inverted terminal repeats (ITRs) of around 10 kb each. Typical of
orthopoxviruses, sequence conservation is high in the central region of the MPXV genome
but decreases toward the terminal ITRs. Here, the genes responsible for housekeeping
are located in the central region and thus are highly conserved among orthopoxviruses,
while genes encoding proteins that interact with host factors have lower sequence identity
and are located further toward the termini regions [30,31]. The latter coding genes are
aptly named virulence factors, as most seem to be dispensable for in vitro replication in
cell culture, but their absence attenuates in vivo pathogenesis [32].

Based on the sequence identity of all strains isolated from the African continent,
MPXV can be differentiated into two clades: strains isolated from West Africa and from
the Congo Basin (or Central Africa), where inter-clade sequence homology is at most ~95%
while intra-clade homology approaches 99% [33]. Besides geographic distribution, these
two clades vary in clinical presentation, severity, and transmission [4]. The West African
clade appeared milder, without reported mortalities until the 2017–2018 Nigeria outbreak,
whereas the case–fatality ratio for the Congo Basin clade was reported to be approximately
10% [9,34]. The preliminary phylogenetic investigation revealed that the current 2022
outbreak is mainly related to the West Africa clade [35].

A change in the nomenclature system of MPXV clades has been considered to avoid discrim-
inatory geographical identification. A fitting example was established by Happi et al. [24,36],
where the isolates sourced from the Congo Basin are noted as MPXV Clade 1, and those
rooted in West Africa are noted as Clade 2 and 3. Here, we adopt this three-clade classifica-
tion (Figure 3). Notably, virulence differs between the clades: Clade 2 and 3 are less virulent
and less transmissible in humans and non-human primates (NHPs) than Clade 1. Such
findings may explain the zero-case fatality in the 2003 outbreak in the U.S. [12]. In addition,
90% of reported cases hailed from the Congo Basin rather than outside it, despite similar
nonvaccinated seroprevalence between both regions [37]. However, the 2022 outbreak
shows signs of separation from the original two clades, particularly in the transmission
efficiency between humans; this subclade branched from Clade 2 and is currently noted as
Clade 3 or ‘human MPXV’ (hMPXV).

The highest diversity between Clade 1 and 2 (and 3) seems to be clustered in the termi-
nal regions toward the ITRs, which contain genes encoding host-response modifier (HRM)
proteins. One of these is the monkeypox ortholog of the poxviral inhibitors of complement
enzymes (PICEs) or the MOPICE protein, which was once thought of as the differential
virulence factor between Clade 1 and 2, i.e., lack of MOPICE in Clade 2 contributes to
its lesser pathogenicity [33,38]. However, a robust study in rhesus macaques showed the
opposite: MOPICE deletion increased in vivo replication and weakened adaptive immune
response [39]. Virulence determinants differentiating the two clades seem to be more likely
influenced by many genetic factors within the massive genome of MPXV, including the
open reading frames of D10L, B10R, B14R, and B19R [40]. Another consideration is whether
MPXV virulence correlates with genetic variability across MPXV clades or is independent
from these viral factors. The recent 2022 outbreak, however, might indicate that the former
is true; all global isolates are phylogenetically derived from Clade 2, and to date, only
20 deaths has been reported among over 60,000 laboratory-confirmed cases [2,41].
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Figure 3. Unrooted phylogenetic tree of MPXV genomes from 219 isolates sampled from 1970–2022
using iqtree2, aligned to reference (NC_063383) at the 3′ inverted terminal repeat (ITR) region using
Geneious Prime. The tree shows the recently proposed three-clade classifications, consisting of
Clade 1 (previously known as Congo Basin/Central Africa), Clade 2 (Western Africa), and Clade 3
(strong evidence of human-to-human transmission of MPXV (hMPXV)).

4. Pathophysiology and Immune Evasion

The MPXV uses several entry routes to enter the human body, such as oropharyngeal,
nasopharyngeal, or intradermal routes [42]. Interestingly, it has also been found that MPXV
could gain entry into the body through sexual transmission [43,44]. Transmission occurring
among humans can go through direct contact with an infected skin lesion or mucosa, or
droplets from breathing [43–45]. Moreover, direct contact with materials contaminated
with the virus, such as clothes, utensils, and furniture, is also considered [43,44].

Following entry, the virus replicates at the inoculation site and spreads directly to
the local lymph nodes [42]. After its incubation period (1–3 weeks), several symptoms
appear, e.g., backache, sore throat, shortness of breath, fever, chills, malaise, headache, and
enlarged lymph nodes [46,47]. Approximately 1–3 days after the appearance of fever and
lymphadenopathy, the patient enters the infectious stage represented by the development
of a rash that often appears first in the facial area and then spreads to other parts of the
body [46,48].

Like other viruses, the genus of Orthopoxvirus has developed various mechanisms
to evade the host’s defense systems. This ability facilitates the entry of the virus without
being detected or recognized by the systems. Some of those mechanisms are described
briefly below.

It has been demonstrated that orthopoxviruses can disturb the pattern recognition
receptors (PRRs) expressed by the innate immune cells. These proteins consist of several
subfamilies, including the Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-1-like
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receptors (RLR), and C-type lectin receptors (CLRs). They are responsible for recognizing
various microbe-related molecules or molecules released by impaired cells [49]. Once the
PRRs bind to the microbial ligands, the subsequent cascades occur, including activation
of inflammation-related transcription factors such as nuclear factor kappa B (NF-κB),
interferon regulatory factors (IRFs), and activating protein-1 (AP-1) [50]. It has been
known that signal transduction of TLRs involves several types of intracellular adaptors
proteins such as MyD88, MAL, TRAM, TRIF, and SARM, which are pivotal for triggering
intracellular immunologic reactions [49,51]. Any disruption in those adaptor proteins
may cause problems in exerting adequate immunologic response towards viral infections.
At this point, orthopoxviruses contain genes encoding proteins that could interact and
damage the functionalities of those adaptor proteins. For example, MPXV could produce
a protein called A47R, which can interact with MyD88, TRIF, and TRAM [50] (Figure 4).
Consequently, these adaptor proteins’ physiological functions are disturbed, followed by
the inhibition of the transcription factors associated with inflammation, i.e., NF-κB [50].
Ultimately, this condition leads to the failure of the innate immune systems to recognize
the viruses.
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which is critical in modulating the innate immune system. It has been found that this mechanism can
be impaired by the action of a MPXV protein called A47R. This viral protein can interact with the
adaptor proteins leading to the impairment of viral recognition by the immune system. TLR (Toll-like
receptor); TIR (Toll/interleukin-1 receptor); MyD88 (myeloid differentiation primary-response gene
88); TRIF (TIR-domain-containing adaptor protein inducing IFNβ); TRAM (TRIF-related adaptor
molecule); NF-κB (nuclear factor kappa B). The figure was created by Biorender.

The development of viral proteins showing properties as apoptosis inhibitors becomes
another strategy utilized by orthopoxviruses, including MPXV, to evade the host’s defense
systems [50]. Apoptosis is a common and essential mechanism found in multicellular
organisms to prevent viral proliferation and diminish the spread of infection to the other
cells by killing the infected cells. As mentioned above, the ability of MPXV to inhibit NF-κB
activity results in the failure of the immune system to recognize the virus. It has been clearly
documented that NF-κB also plays a fundamental role in regulating apoptosis [52,53].
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In addition to the disruption of NF-κB regulation, other specific mechanisms are also
proposed to explain the ability of Orthopoxviruses to inhibit cellular apoptosis. It has been
reported that orthopoxviruses, including MPXV, might hinder the activities of caspase-1,
caspase-8, and caspase-9, which are essential in executing apoptosis [50,54]. In MPXV strain
Zaire-I-96, this inhibitory action might be mediated by several viral proteins (e.g., B12R
and C7L) [50].

Furthermore, like other orthopoxviruses, MPXV also has a gene that encodes protein
mimicking activity of Bcl-2 proteins, which have been known to play a critical role in
regulating apoptosis [50,55]. The viral protein P1L has been revealed to have activity similar
to B-cell lymphoma-2 (Bcl-2)-like proteins in MPXV strain Zaire-I-96 [50]. Molecularly, this
viral protein interacts with the IκB kinase (IKK) complex, which is vital for facilitating
the activation of NF-κB [50,56,57]. This action also leads to the failure to induce cellular
apoptosis. It has also been demonstrated that MPVX and other orthopoxviruses could
produce proteins acting as an inhibitor of interferon, which is pivotal in tackling viral
infection. This activity is mediated by the ability of MPVX to block the production of
interferon regulatory factors (IFRs), which are known as the initial cascade in interferon
production [50].

In addition to the mechanisms mentioned above, orthopoxviruses have other mul-
tiple genes encoding proteins used to perturb various stages of the host’s inflammatory
cascade. They could disturb the production of cytokines and chemokines, the activity of
the complement system, the activity of the ubiquitin–proteasome pathway, and several
other targets [50,58].

Following its success in avoiding the host’s immune system, MPXV is capable of
attacking many sites within the human body. In this case, clinical manifestations of mon-
keypox are remarkably similar to those of smallpox. However, although these infectious
diseases share many uniformities in their signs and symptoms, several manifestations
are used to differentiate smallpox and monkeypox. For example, lymphadenopathy is
closely associated with monkeypox but is not a characteristic of smallpox [43]. The en-
largement could occur in lymph nodes located at various sites. Nevertheless, the nodes in
submandibular, cervical, or inguinal areas seem to be the primary sites of MPXV-related
lymphadenopathy [47].

The enlargement of lymph nodes may indicate that the immune response activated
by the host following MPXV infection is more effective than the infection caused by the
other orthopoxviruses [43]. To date, no clear explanation for this phenomenon has been
reported. However, this might be caused by different viral proteins produced among the
orthopoxviruses, and this could be seen in the case of a viral protein called the vaccinia
complement control protein (VCP) produced by orthopoxviruses [50]. The VCP consists
of four short consensus repeats (SCRs); each consists of approximately 60 amino acids,
resembling a regulator of complement activation. VCP can bind to several complement
components (e.g., C3b and C4b), followed by disturbance of the subsequent complement
cascades [50]. Ultimately, VCP suppresses inflammatory response [59,60].

The intact structure of VCP protein is found in other orthopoxviruses (viruses of
variola, cowpox, and vaccinia). In contrast, in MPXV, the structure of VCP is either
truncated (Clade 1 or Congo Basin/Central Africa Clade) or deleted (Clade 2 or Western
African Clade) [50]. The unique structure of VCP in MPXV causes the functional activity
of VCP in repressing the host’s inflammatory response to be inadequate. Consequently,
in MPXV infection, the immune response generated by the host is more intense, and this
possibly causes the event of lymphadenitis [50].
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5. Clinical Characteristics and Laboratory Findings

While the clinical features of monkeypox are similar to those of smallpox infection,
the presence of the symptom might vary depending on the virus clades and endemic or
non-endemic setting (Table 1).

Table 1. Clinical symptoms reported in monkeypox infection.

Publication Huhn et al. [61] Pittman et al. [62] Adler et al. [63] Yinka-Ogunleye
et al. [64]

Country U.S. Democratic Republic
of the Congo U.K. Nigeria

Number of
patients 37 216 7 122

Fever 87% 18.5% 42% 79%
Rash 97% 99.5% 100% 88%

Malaise - 85.2% - 50%
Myalgia 56% 6.9% - 58%

Chill 71% 44.9% - 65%
Adenopathy 71% 57.4% 71% 69%

Headache 65% 23.6% - 79%
Sore throat 60% 78.2% - 58%

One large study of serology testing during the monkeypox outbreak in Cameroon
demonstrated that many individuals who did not show any symptoms had a high titer of
Orthopoxvirus IgG and IgM antibodies detected by ELISA [65], suggesting that the infection
might be asymptomatic in some populations [66].

The incubation period is reported to be around 5 to 21 days [67]. The infection
can be divided into two phases: the invasion period and the skin eruption period. The
invasion period mainly occurs from day 1 to day 5, characterized chiefly by chills, fever,
sore throat, headache, myalgia, and lymphadenopathy [62,63,68,69]. Lymphadenopathy
is a hallmark of monkeypox and is essential to distinguish it from other orthopoxviral
infections, including smallpox, measles, or chickenpox. It usually occurs 1–3 days after the
onset of fever and is rarely concurrent with the onset of the rash. Lymphadenopathy can
occur in submandibular glands and neck, axilla, or groin. It might appear on both sides or
only one side of the body and sometimes can be painful.

The skin eruption period usually occurs within 1–3 days of fever. It evolves in 1 to
2 days following the macular, popular, vesicular, and pustular phases [69]. An overlap
appearance of the lesion might occur during the course. Initial lesion might start from the
mouth, followed by centrifugally concentrated lesion of the face and extremities, and is
characterized by 2–10 mm in size, hard, thick lesions.

Several symptoms were reported to be linked with hospitalization, such as >100 lesions,
adenopathy, mouth sores, dysphagia, nausea, and vomiting. In addition, nausea and vom-
iting were independently associated with a longer duration of hospitalization [61].

Previous studies demonstrated that elevation of transaminase level, low blood urea
nitrogen level, hypoalbuminemia, leukocytosis, and thrombocytopenia were the most com-
mon alterations in laboratory parameters among monkeypox-infected patients [61,62,64].
Elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were re-
ported as predictors of poor prognosis [62]. A summary of common clinical and laboratory
findings of monkeypox is illustrated in (Figure 5).
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6. Diagnosis

The evaluation of monkeypox should include specific medical history taking and
clinical appearance assessment. A history of traveling to an endemic area, interacting with
a wild animal from infected areas, or taking care of an infected patient should always be
considered to help establish the diagnosis. However, the final diagnosis should be justified
by laboratory findings. This comes in light of the long list of differential diagnoses for
acute rash as the presenting complain accompanied by nonspecific symptoms (e.g., fever,
headache, myalgia, asthenia, etc.) [70].

Therefore, the following conditions should be considered: varicella (chickenpox),
measles, molluscum contagiosum, cutaneous bacterial infections, scabies, syphilis, and drug
allergies [70,71]. One feature that can help in differentiating monkeypox from varicella and
variola is lymphadenopathy during the prodromal phase [71]. In view of frequent sexual
transmission observed during the 2022 outbreak, other sexually transmitted infections (STIs)
should be considered as well, including herpes simplex virus infections (including eczema
herpeticum and disseminated herpes virus infections in immunocompromised patients),
Haemophilus ducreyi chancroid, Chlamydia trachomatis lymphogranuloma venereum (LGV),
and Klebsiella granulomatis granuloma inguinale [70]. Other non-infectious conditions in the
differential diagnoses include: Behçet’s disease, squamous cell carcinoma, and recurrent
aphthous stomatitis [70].

Real-time polymerase chain reaction (PCR) is the modality of choice for laboratory
tests and has been widely used to detect MPXV [48]. PCR testing is highly efficient and
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sensitive for detecting the presence of viral DNA from patient specimens. The specimens
for the examination can be taken from the lesion exudate or scabs [72]. Other methods such
as virus isolation, immunohistochemistry, IgG and IgM enzyme-linked immunosorbent
assay (ELISA), and electron microscopy can also be performed, although they certainly
require more sophisticated tools and specialized facilities, such as a proper biosafety level
for virus handling [69].

7. Treatment

Monkeypox infection can be self-limiting, and supportive care is generally recom-
mended. Individuals who have no risk of severe symptoms can remain isolated at home.
Healthcare personnel should evaluate on a case-by-case basis if the infection prevention
and control conditions within the home environment are met.

7.1. Management of Mild or Uncomplicated Monkeypox

Symptomatic relievers can be prescribed according to the patient’s condition, for ex-
ample, antipyretics, analgesics, or antiemetic medication. Adequate hydration, vaccination
review, and nutritional assessment should be performed, especially in pediatric patients.
Supplementing vitamin A, which has demonstrated an essential role in wound healing,
may benefit deficient patients [73].

Mild skin rashes can be given supportive treatment to quell irritation and promote
healing. Antimicrobial agents to eradicate Streptococcus pyogenes or Staphylococcus au-
reus are recommended if a secondary bacterial infection is suspected. Complications
such as cellulitis, necrotizing soft tissue infection, or abscess should be monitored and
treated appropriately.

Mental health should also be followed up in patients with monkeypox. Long-term
isolation can cause anxiety and depression, which should be helped with psychological
support [74].

7.2. Management of High-Risk Patients and Severe or Complicated Monkeypox

The prognosis for monkeypox is determined by several factors, including age, previ-
ous vaccine history, current health status, and comorbidities. Patients with high risk for
severe disease, i.e., children (especially those under eight years old, who have the highest
mortality rate [16]), pregnant women [75,76], the immunocompromised, and individuals
who have poor skin integrity (e.g., atopic dermatitis or exfoliative skin conditions), should
be hospitalized for monitoring and considered for antiviral treatment. Confluent rashes or
skin lesions of more than a hundred, based on the studies conducted on smallpox, indicate
severe disease [77].

Monkeypox infection with progressive illness or complications should be treated
as well as high-risk patients. Severe dehydration from gastrointestinal loss, pneumonia,
encephalitis, sight-threatening ocular lesions, and sepsis can potentially occur, requiring
antiviral agents and specific treatment.

7.3. Antiviral Agents

To date, there is no specific treatment for monkeypox. Several antiviral drugs ap-
proved for treating smallpox or other orthopoxviruses have been repurposed to manage
monkeypox infection.

7.3.1. Tecovirimat

Tecovirimat (ST-246 or TPOXX®) inhibits orthopoxviruses spreading in vitro by block-
ing p37 envelope protein, which plays a critical role in virus wrapping [78,79]. Specifically,
tecovirimat prevents the formation of the cell-associated enveloped virion (CEV) and extra-
cellular enveloped virion (EEV), which are two virion forms that are responsible for virus
egress and dissemination (Figure 6) [80].
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Figure 6. Schematic overview of the monkeypox virus life cycle and the mechanism of action of
anti-poxvirus drugs. Like all poxviruses, monkeypox replicates in the cytoplasm of infected cells.
Cidofovir and brincidofovir inhibit viral DNA polymerase; tecovirimat and NIOCH-14 prevents the
formation of the cell-associated enveloped virion (CEV) and extracellular enveloped virion (EEV);
and VIG prevents virion to infect new cells. The figure was created by Biorender.

The antiviral potency of tecovirimat against monkeypox virus was evaluated in vitro
and in various animal models. A submicromolar concentration of tecovirimat was shown to
inhibit plaque formation of broad-spectrum orthopoxviruses, including monkeypox virus
in cell culture assays [80–82]. The efficacy of oral administration of tecovirimat against
monkeypox virus was shown in multiple animal models, including ground squirrels, prairie
dogs, and nonhuman primates [78,83–85]. Non-human primates infected with a lethal dose
of monkeypox indicated that a dose of 10 mg/kg initiated on day 4 or 5 post-infection for
at least 7 consecutive days was sufficient to provide maximum survival rate and decrease
in viral load [78]. Because smallpox was eradicated, the development and approval of
tecovirimat were conducted under the under FDA Animal Rule 21 CFR 314 Subpart I [86].
Thus, the effective doses of tecovirimat in nonhuman primates that protect the animals from
a lethal dose of orthopoxvirus infections were extrapolated and used for clinical trials [87].
A phase III clinical trial (NCT02474589) further validated the safety and pharmacokinetics
of an oral regimen 600 mg twice daily for 14 days to a large group of human volunteers [78].

Tecovirimat is available as an oral (approved by FDA on 13 July 2018) and intravenous
formulation (approved on 18 May 2022) to treat human smallpox diseases [88]. Oral
formulation of tecovirimat (200 mg capsule) is approved for the treatment of smallpox,
monkeypox, cowpox, and complications from vaccinia in adults and children weighing
13 kg and above by the European Medicines Agency (EMA) and FDA [89]. An injection
formula was also licensed for smallpox disease in humans with a body weight of at least
3 kg [88]. Prior to receiving FDA approval, tecovirimat was used in combination with VIG
and brincidofovir (CMX001) to treat severe eczema vaccinatum and progressive vaccinia
under Emergency Investigational New Drug (EIND) application [90–92]. Treatment of
tecovirimat in combination with VIG was given to a laboratory-acquired vaccinia virus
infection patient [93] and generalized cowpox virus infection in an immunosuppressed
patient [94]. Recently, tecovirimat has been used to treat monkeypox virus infection in
the UK and the US [63,95]. There were no adverse events identified during the course of
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treatment, and notably, the patients in the UK had a shorter duration of symptoms and
viral shedding compared to the other patients that had not received tecovirimat.

7.3.2. Brincidofovir and Cidofovir

Cidofovir (CDV) is permitted for use as emergency investigational treatment in the
case of a smallpox outbreak [96]. Intravenous-form Cidofovir (under the trade name Vis-
tide) has been a licensed drug since 1996 for treating cytomegalovirus rhinitis in AIDS
patients [97]. Cidofovir is a cytidine nucleotide analog that can interfere the viral DNA syn-
thesis (Figure 6) [98]. However, there are limitations of cidofovir that may impede the use of
cidofovir for poxvirus treatment. These include safety concerns due to nephrotoxicity [99],
lack of oral bioavailability [100], and the compromised effect of cidofovir when given in
combination with the smallpox vaccine [101].

Brincidofovir (BCV, CMX001, HDP-CDV, TEMBEXA®), a lipid-conjugated nucleotide
analogue of cidofovir, has superior cellular uptake and conversion to the active form than
cidofovir (Figure 6). The lipid moiety facilitates the cellular uptake of brincidofovir. Inside
cells, cidofovir is released by cleavage activity of intracellular phospholipase enzymes and
is converted into cidofovir diphosphate by kinases [102]. Brincidofovir counters two major
limitations of cidofovir, in that brincidofovir is available in the form of an oral regimen
and shows no evidence of nephrotoxicity [103]. The efficacy and safety of brincidofovir
to treat orthopoxviruses are evaluated under the FDA Animal Rule [104]. Since the non-
human primate model is not ideal for studying the efficacy of brincidofovir due to the
rapid metabolism of brincidofovir into its inactive form [104], the efficacy of brincidofovir
has been studied in other surrogate animal models for orthopoxviruses: mice infected
with ectromelia virus, rabbits infected with rabbitpox virus, and prairie dogs infected with
monkeypox virus [105–107]. Safety data of brincidofovir were also leveraged from the ran-
domized phase 2 and phase 3 clinical trials against various DNA virus infections [108,109].
The notable mild adverse events of brincidofovir include gastrointestinal reactions, hepa-
totoxicity, elevations of liver enzymes ALT and AST, and elevation of total bilirubin. The
proposed dosing regimen of oral brincidofovir is two doses of 200 mg once a week (two
100 mg tablets or 20 mL of suspension) to meet the acceptable safety profile for smallpox
therapy [104].

On 4 June 2021, brincidofovir obtained approval from FDA for the treatment of small-
pox in adults and pediatric patients, including neonates [110,111]. Brincidovofir (CMX001)
was used in combination with VIG and tecovirimat to treat severe eczema vaccinatum and
progressive vaccinia [90–92]. During the outbreak of monkeypox virus infection in the UK,
three out of seven patients who had been treated with brincidofovir experienced elevations
of liver enzymes (ALT and AST), and the treatment showed poor efficacy [63]. Considering
the synergic effect of brincidofovir with tecovirimat [112] and approval to be used for
treating pediatric patients, brincidofovir would complement tecovirimat in order to ensure
a robust availability of therapeutics particularly in the presence of the tecovirimat-resistant
virus or in case of a smallpox emergency.

7.3.3. NIOCH-14

NIOCH-14 is a newly developed compound of tecovirimat analogue synthesized by
the State Research Center of Virology and Biotechnology, Russia. This orally bioavailable
compound demonstrated comparable results with tecovirimat studies in vitro, thus provid-
ing a promising candidate for the newer generation of anti-orthopoxvirus drugs [113].

7.3.4. Vaccinia Immunoglobulin (VIG)

VIG is developed from pooled plasma collected from healthy donors who received
a vaccinia vaccine and developed high titers of anti-vaccinia antibodies. The antibodies
can bind to poxvirus virion and prevent the virus from infecting new cells (Figure 6).
Two passive-immunization VIG intravenous (VIGIV) formulations have been approved by
the FDA for the treatment of complications due to vaccinia vaccination (VIGIV Cangene
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and VIGIV Dynport; VIGIV product insert). The use of VIG for the treatment of severe
infections with vaccinia was first introduced in 1960 [114]. Three clinical trials involv-
ing a total of 142 healthy male and female volunteers were conducted to evaluate the
pharmacokinetic, pharmacodynamic, and safety profiles of VIGIV [115]. The VIGIV was
shown to elicit mild adverse events when administered as single infusions of 6000 U/kg,
9000 U/kg, or 24,000 U/kg to healthy subjects. There was a lower incidence of adverse
events when VIGIV was administered intravenously with the rate of infusion of 2 mL/min
than 4 mL/min. A post-marketing clinical trial is underway to verify the clinical benefits of
VIGIV for the treatment of complications due to vaccinia vaccination or vaccinia infections
(NCT01374984). Coadministration of VIG and antiviral drugs have been used to treat
severe eczema vaccinatum and progressive vaccinia [90–92,116] and other vaccinia vaccine
complications [115]. The Centers for Disease Control and Prevention (CDC) has suggested
that clinicians may consider VIG in severe cases of monkeypox. Prophylaxis in an exposed
person who is contraindicated for smallpox vaccination is not yet officially indicated but
may be offered [117].

8. Complications and Sequalae

Most monkeypox cases are entirely resolved within 2–4 weeks. However, some
complications might occur following the infection. Encephalopathy and retropharyngeal
abscess have been reported as severe complications [61]. Other complications have also
been reported, including secondary skin infection, sepsis, bronchopneumonia, encephalitis,
corneal infection, and deep abscess [63,118]. Pitted scarring was the most reported sequelae.
Vision loss due to orbital infection was also reported in some cases. Severe complications
and sequelae were more evident in nonvaccinated compared to vaccinated patients [43].

9. Prevention

Direct contact with the secretions of an infected person or animal, undercooked meat,
or a contaminated object is the primary mode of viral transmission. The secretions can
be respiratory droplets, skin or mucus membrane lesions, blood, or bodily fluid. As the
recent outbreak in Europe and North America in 2022 has shown, which mainly affected
men who have sex with men (MSM), there is a suggestion that monkeypox can be sexually
transmitted, a fact that was previously unknown [119]. A recent study in Italy found
viral DNA in the semen of infected patients persisting at least nine days after the onset
of symptoms, although the proof of infectivity remains unclear [120]. Mother-to-child
transmission via placenta or acquisition during or after birth has also been reported [76].

9.1. Prevention for Individual, Household, and Community

Hand hygiene is encouraged during the outbreak of monkeypox. The individual
should avoid sharing personal items that may potentially harbor virus particles. For
caretakers, maintaining the distance of at least one meter from the suspected or confirmed
patient, wearing a mask that fits properly, and wearing disposable gloves are advised.
Infected patients should remain in isolation and avoid close contact with any person or pet
mammal until all skin lesions have crusted, scabs have come off, and a new layer of skin has
formed underneath. However, MPXV may persist in bodily fluid even after all lesions have
healed. Quarantine may be extended for up to 6 weeks after the last exposure to an infected
person or animal [69]. For sexually active patients, the World Health Organization suggests
using condoms for receptive or insertive sexual activity for 12 weeks after recovery [74].

A patient with monkeypox infection should be isolated at home in a well-ventilated
space separate from other uninfected household members. If the patient needs assistance
with self-care, the appointed person should be in good health without a high risk for severe
monkeypox disease and should be vaccinated with smallpox. The caregiver should receive
guidance regarding disease transmission and self-prevention.

Poxviruses can persist on household items, especially in dark, cool, and dry environ-
ments. Live viruses can be found retained in a patient’s residence for 15 days. Disinfectants
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should be applied to all areas that the infected patient occupies. A porous surface may
contain live viruses for a longer duration than a nonporous one [121]. The patient’s clothing
and bedding must be washed with soap and preferably at least 60 ◦C hot water. Shaking,
dry dusting, sweeping, or vacuuming when cleaning home furnishings should be avoided
to prevent the aerosolization of virus particles. The patient’s waste should be placed in a
secured bag. Chlorine addition can also reduce contamination [74].

There is no evidence regarding the mode of delivery in infected pregnancy to prevent
mother-to-child transmission. The indication for a cesarean section should conform to
the general guideline. However, cesarean birth is recommended if any genital lesion is
identified [122]. The baby born to an infected mother should be observed for symptoms
and tested for viral DNA.

There is currently no evidence regarding the risk of viral transmission to the newborn
during breastfeeding or the presence of viral antibodies in breastmilk. The practice should
be assessed on a case-by-case basis weighing a risk and benefit calculation, taking into
account the maternal status and severity of monkeypox disease.

9.2. Prevention and Control in Healthcare Settings

Contact and droplet precautions are implemented in confirmed cases. In addition to
practicing hand hygiene, healthcare workers should wear personal protective equipment
(PPE). Respirators are recommended as the evidence of airborne transmission of monkey-
pox is uncertain. Airborne precaution is recommended if aerosol-generating procedures
are performed.

Instead of being quarantined, healthcare professionals exposed to monkeypox patients
without adequate protection should undertake active surveillance for symptoms and have
their temperature checked at least twice daily for 21 days after exposure [117].

The patient should wear a well-fitting medical mask, cover lesions, and be restricted in
a well-ventilated isolation area. The confirmed case should maintain a minimum distance
of at least one meter between patients. Severe cases or immunocompromised patients may
have viral shedding prolonged in the respiratory secretion even after all the scabs have
fallen off. A case-by-case evaluation may be required [74].

Previous and current evidence show unsatisfactory monkeypox knowledge among
healthcare workers and students in health schools [123–126]. In addition, low levels of
confidence to diagnose and manage monkeypox were shown in various settings [127,128].
This highlights the urgent need for educational and training intervention measures to help
in the prevention and proper control of the ongoing outbreak.

In a recent review by Di Gennaro et al., the implementation of proper public health
responses to contain the MPXV spread was delineated comprehensively [70]. Specifically,
the specific actions at both the community and healthcare settings included: (1) vigilant
surveillance for early detection and isolation of cases [70]; (2) training of healthcare workers
to enable accurate and timely clinical diagnosis considering the current evidence of low self-
reported confidence in the ability to diagnose and manage the disease among physicians
and nurses [123,127,128]; (3) availability of accurate laboratory diagnostic kits cannot be
overlooked, in light of the long list of differential diagnoses for patients presenting with un-
explained acute rash with other nonspecific symptoms [70,71]; and (4) adherence to proper
infection control measures, including the use of PPE and disinfection procedures [70].

10. Vaccines and Vaccination

The eradication of smallpox was one of the significant accomplishments of modern
medicine and was accomplished through an effective vaccination program [129]. Following
the eradication of smallpox in 1980, vaccination of the general population was discontinued
after carefully considering the risks and benefits [130]. With nearly all children and most of
the world population having little to no protection against orthopoxviruses, most people
are vulnerable to the current monkeypox virus threat. Considering the escalating number
of MPXV infection cases worldwide, the Advisory Committee on Immunization Practices
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(ACIP) recommended pre-exposure prophylaxis for health workers, laboratory personnel,
clinical laboratory staff, and others who may be at risk of contracting the MPXV [131].
Here, we review the efficacy and safety of the ACIP-recommended vaccine against MPXV
infections, including ACAM2000 and JYNNEOS.

Currently, the U.S. SNS contains more than 100 million doses of ACAM2000 and over
1000 doses of the JYNNEOS vaccine. Globally, the Smallpox Vaccine Emergency Stockpile
(EVES) consists of approximately 2.4 million doses held by the WHO in Switzerland and
more than 30 million doses pledged by several donor countries in case of international
need [132].

10.1. ACAM2000

ACAM2000 is a replication-competent vaccinia virus vaccine used to generate the
Dryvax vaccine, one of the earlier generations of vaccines used to eradicate smallpox [133].
The FDA licensed ACAM2000 in August 2007, and it was the only orthopoxvirus vaccine
approved by FDA to prevent smallpox. ACAM2000 has been used for prophylaxis for those
persons at high risk of exposure, including military personnel and research laboratory
workers [134]. ACAM2000 is administered in a single dose percutaneously over the deltoid
muscle through 15 jabs with a bifurcated needle, and a contagious lesion will develop at
the site of this inoculation following successful vaccination [135].

Since human testing with either variola virus or MPXV is unethical, the efficacy of
ACAM2000 was evaluated under the FDA Animal Rule in preclinical trials and by com-
paring the cutaneous/immunologic responses of ACAM2000 relative to Dryvax in clinical
trial settings. The use of ACAM2000 in animal models (mice and cynomolgus macaques)
showed that ACAM2000 is safer than Dryvax while still eliciting comparable cellular and
humoral immunity [133]. ACAM2000 has demonstrated high levels of protection against
monkeypox in cynomolgus macaques and prairie dog models [136–138]. Furthermore, the
efficacy and safety of ACAM2000 have been evaluated in phase I, II, and III human clinical
trials. More than 95% of vaccinia naïve subjects developed neutralizing antibody responses
corresponding to the cutaneous responses [133,135,139].

The safety of the ACAM2000 was assessed in six clinical trials involving 2893 subjects
who received ACAM2000 [134]. ACAM2000 vaccination can cause mild and severe adverse
events, including progressive vaccinia, eczema vaccinatum, generalized vaccinia, inad-
vertent inoculation, encephalitis, myocarditis, and pericarditis [134,140,141]. Improved
pre-vaccination screening for contraindications (e.g., individuals with immunocompro-
mised states, atopic dermatitis, HIV infection, and allergies to the vaccine) could reduce
the frequency and severity of serious adverse events [142]. Alternatively, persons with
contraindications can be offered a vaccine with a more robust safety profile, such as an
attenuated vaccinia virus vaccine.

10.2. JYNNEOS

JYNNEOS (also known as Imvamune or Imvanex) is a live attenuated vaccine derived
from a replication-deficient modified vaccinia virus Ankara (MVA) [143] JYNNEOS was
approved by the FDA in September 2019 for smallpox and monkeypox prevention in
adults aged >18 [96]. JYNNEOS is administered in two doses of 0.5 mL four weeks apart
through subcutaneous injection, with vaccine protection not conferred until two weeks
after completion of the second dose [144]. Since JYNNEOS is a live attenuated virus that
has lost the ability to replicate, there is no visible cutaneous response after vaccination and
thereby no risk of spreading to other parts of the body or other people [131]. Therefore, it
can be used for individuals with contraindications for a live replication-competent vaccine
such as ACAM2000.

The efficacy of JYNNEOS against monkeypox has been assessed in animal model
studies [136,138,143,145,146]. A phase III clinical trial is underway to assess its efficacy
and safety against monkeypox in adult healthcare workers in the Republic of the Congo
(NCT02977715) [15]. Phase II and Phase III clinical trials involving 22 studies with over
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7000 subjects (healthy participants, HIV-positive volunteers, and people with atopic der-
matitis or a history of atopic dermatitis) evaluated the efficacy and safety of the JYNNEOS
vaccine [147–153]. JYNNEOS is considered to have a better cardiac safety profile, with no
myocarditis or pericarditis being reported [152].

Considering overall improved safety profiles and efficacy of JYNNEOS have led
ACIP to recommend the JYNNEOS vaccine as an alternative to ACAM2000 [131]. The
JYNNEOS booster is recommended by ACIP every two years and ten years for those
who work with virulent orthopoxviruses (smallpox and monkeypox) and less virulent
orthopoxviruses (cowpox viruses), respectively [131]. Furthermore, ACIP recommends
JYNNEOS boosters as an alternative to ACAM2000 for those who received ACAM2000 as
the primary vaccine [131]. Currently, no data are available regarding the safety and efficacy
of the JYNNEOS on special populations (e.g., children, pregnant women, and breastfeeding
women). In the case of high-risk exposure, special populations may receive JYNNEOS in
consultation with their health care provider after carefully weighing the risks and benefits.

11. Future Perspectives

The current monkeypox outbreak necessitated extensive epidemiological investiga-
tions, which pointed to a general lack of established travel links to endemic areas among
the reported cases [1]. The available preliminary data showed that the ongoing 2022 mon-
keypox outbreak mainly involved MSM; however, the clustering of cases was not exclusive
to this group [1,154,155]. Interpreting these preliminary epidemiologic investigation results
requires special attention to avoid the potential attachment of stigma towards MSM [156].

The hope remains that the ongoing monkeypox outbreak can be contained [157].
However, such an objective requires vigilant surveillance, contact tracing, and raising the
levels of knowledge and awareness, especially among health professionals [1,158,159]. This
approach can help to improve the early detection of cases with subsequent termination
of chains of transmission [160]. Previous and recent studies have shown that gaps in
knowledge regarding monkeypox and the low confidence levels to diagnose, manage,
and prevent the disease were widely prevalent among healthcare workers and university
students in medical schools [124,127]. Therefore, this research area should be highlighted to
help design strategies to properly control the ongoing outbreak and enhance preparedness
for future anticipated epidemics.

In extreme situations, the investigative use of medicines that have shown to be ben-
eficial against orthopoxviruses in animal trials and severe vaccinia vaccination effects
may be something that should be examined. There is insufficient evidence to determine
whether oral brincidofovir (DNA polymerase inhibitor), oral tecovirimat (intracellular viral
release inhibitor), or the intravenous vaccinia immune globulin are effective against the
MPXV [43]. Various preclinical studies have been conducted to find a potential treatment
to cure monkeypox, and data on the safety and efficacy of these drugs are critical.

To produce a possible therapeutic antiviral agent, it is necessary to perform more
in-depth studies on the genomic level and molecular analysis to shed light on host–viral
interaction. Finally, clinical trials on potential treatment agents and vaccines are of utmost
importance to control and prevent the current MPXV transmission.
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