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Abstract: The Epstein–Barr virus (EBV) is associated with a variety of human malignancies, including
Burkitt’s lymphoma, Hodgkin’s disease, nasopharyngeal carcinoma and gastric cancers. EBV infec-
tion is crucial for the oncogenesis of its host cells. The prerequisite for the establishment of infection
is the virus entry. Interactions of viral membrane glycoproteins and host membrane receptors play
important roles in the process of virus entry into host cells. Current studies have shown that the main
tropism for EBV are B cells and epithelial cells and that EBV is also found in the tumor cells derived
from NK/T cells and leiomyosarcoma. However, the process of EBV infecting B cells and epithelial
cells significantly differs, relying on heterogenous glycoprotein–receptor interactions. This review
focuses on the tropism and molecular mechanism of EBV infection. We systematically summarize
the key molecular events that mediate EBV cell tropism and its entry into target cells and provide a
comprehensive overview.
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1. Introduction

The Epstein–Barr virus (EBV) was the first identified human oncogenic virus, ubiq-
uitously infecting over 90% of the world population [1,2]. As it is recognized as a class I
oncogenic virus by the World Health Organization, EBV accounts for over 200,000 cases
of cancer and 1.8% of all cancer deaths each year [3–6]. Additionally, EBV infection is
associated with a series of autoimmune diseases, including multiple sclerosis (MS) and
systemic lupus erythematosus (SLE) [7,8].

EBV is an enveloped virus belonging to family Herpesviridae. It contains a linear
double-stranded DNA genome with a length of approximately 172K bp, encoding over
80 viral proteins and multiple noncoding RNAs [9–11]. EBV can infect multiple cell types
but typically features a B cell–epithelial cell dual tropism [12]. The entry machine of the
EBV is highly sophisticated, enabling its infection of different cell types [12,13]. As many
as 13 glycoproteins are encoded by EBV, with eleven of them found on the virion envelope,
and the entry process requires the coordination of multiple glycoproteins [14,15]. The core
fusion apparatus glycoproteins gH/gL and gB are indispensable for viral entry among all
herpes virus, while other glycoproteins play heterogenous roles in the viral tropism fate
and viral entry process [13,16,17].

Hence, understanding how EBV establishes variable host tropisms and the underlying
mechanism for EBV entry into different cell types could be the cornerstone for developing
prophylactic vaccines and therapeutic agents against EBV infection in all kinds of suscepti-
ble cells. This review aims to summarize the present understanding of EBV cellular tropism,
EBV-related diseases, and entry mechanisms to further point out the vital unanswered
questions in this field.
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2. EBV Tropism and Related Diseases

EBV has a characteristic latent-lytic lifecycle, during which EBV generally establishes
latent infection in B cells and lytic infection in epithelial cells to generate progeny virions
for transmission, and under certain stimulation, EBV in B cells could reactivate and enter
lytic replication, with BZLF1 and BRLF1 as switch-driving genes [18–20] (Figure 1).
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Figure 1. Model illustrating the infection of EBV in human. EBV is usually transmitted through saliva
and first comes across oropharynx and tonsils of the new host, where it primarily infects naïve B cells
and possibly memory B cells and epithelial cells as well. EBV establishes latent infection in most naïve
B cells, while a small fraction of them might enter productive lytic infection. The latently infected
naïve B cells are activated and undergo a phase of rapid expansion as a result of EBV latent gene
expression. These activated infected B cells then enter the germinal center (GC), transiting to a more
restricted form of viral latency. Finally, the infected B cells differentiate into resting memory B cells,
where EBV nearly completely stops its gene expression and maintains its lifelong persistence, but the
details of this process are still poorly understood. The EBV-infected resting memory B cells recirculate
in the peripheral blood. Under certain stimulations, these resting memory B cells can differentiate
into plasma cells, reenter a lytic infection state, and produce infectious virions. These virions lack in
gp42 and are more epithelium-tropic. After infecting epithelial cells, the virus replicates lyses the
cells, releasing the B-cell-tropic virions with high levels of gp42 into the saliva and starting a new
round of transmission. Figdraw (www.figdraw.com) was used to generate this figure.

In this section, we would introduce EBV tropism and EBV-related diseases and mainly
focus on the two major tropism cell types, B cells and epithelial cells.

2.1. B Cell

EBV was firstly identified in an endemic Burkitt lymphoma (BL) cell culture using
electron microscopy [1]. Afterwards, the strong potential of EBV in transforming B cells
was elucidated [21,22]. EBV established a lifelong latent persistence in B cells [23,24].

EBV is orally transmitted, and the saliva-derived EBV virions have been demonstrated
with a B-cell-tropic glycoprotein composition, suggesting that B cells are the initial targets
of EBV [25–29]. The lifelong persistence of EBV has been established in memory B cells,
and two different models have been proposed to explain this process. The first supposed
that EBV directly infects memory B cells, as was observed in patients with infectious
mononucleosis (IM) [30,31]. The second model proposed that EBV initially infects resting

www.figdraw.com
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naïve B cells residing in oropharyngeal lymphoid tissue and frives the infected B cells
into a rapid expansion phase [32–34]. The infected B cells then enter the germinal center
(GC) and come to a stage that viral genes are moderately expressed with viral latent
membrane proteins LMP1 and LMP2 offering survival signals [35–39]. However, it is still
unclear in this hypothesis how these cells finally differentiate into memory B cells. The
EBV-infected memory B cells manifest the least viral protein expression and circulate in
the peripheral blood [40,41]. Under certain stimulations, these EBV-infected memory B
cells could reactivate, differentiate into plasma cells, and enter lytic replication [20,42,43]
(Figure 1). Additionally, a recent study using single-cell transcriptomics to investigate the
fates of B cells at the early stage of in vitro EBV infection and depict the dynamic host–virus
interplay, as well as the resulting diverse fates of infected B cells. This study puts forward
a model that EBV-infected B cells could differentiate into GC B cells, plasmablasts and
early memory B cells that limitedly undergo GC reaction from the activated precursor state,
dependent on the interplay between host cell and viral gene products [44].

The B-cell tropism accounts for a huge part in the pathogenesis of EBV. While the
primary EBV infection is mostly asymptomatic during childhood, the delayed acquisition
of primary infection in adolescents or young adults can lead to infectious mononucleosis,
which features the EBV-infected B-cell proliferation and active T-cell response [45]. The
occurrence of IM is associated with an increased risk in developing Hodgkin’s lymphoma
(HL) and multiple sclerosis (MS) [46,47]. B-cell lymphomas, including BL, Hodgkin’s
lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), plasma blastic lymphoma, PEL,
and so on, are found to be associated with EBV infection to varying degrees [48,49]. EBV
infection could contribute to oncogenesis in multiple ways, in dependence of EBV-encoding
RNA and viral proteins, such as EBV BART microRNAs promoting BL development
through decreasing apoptosis-inducing protein expression [50–52].

2.2. Epithelial Cell

After the discovery of EBV in the BL cell line, scientists found an increased level of
anti-EBV antibody titer in the plasma of nasopharyngeal carcinoma (NPC) patients [53].
It is an epithelial tumor prevalent in Southern China, Southeast Asia, North Africa, and
the Arctic [54]. With a further study finding of the EBV genome in NPC tumor cells, the
association between EBV infection and epithelial malignancy is gradually recognized and
becomes a focus [55,56].

The current studies support that epithelial cells are a natural reservoir for EBV am-
plification and play important role in EBV transmission [57]. EBV lytic replication has
been found in oropharyngeal cells during IM and in oral hairy leukoplakia, an epithelial
hyperplasia that commonly occurs in patients coinfected with human immunodeficiency
virus (HIV) [58–60]. Moreover, virions from saliva were found to harbor an epithelial
cell-preferred composition of surface glycoproteins, which also gave a clue as to the idea
that EBV from saliva are produced in epithelial cells [25] (Figure 1).

Now, a strong link between undifferentiated NPC and EBV infection has been eluci-
dated, as the EBV genome presents in all NPC cells [61–63]. Additionally, approximately
10% of gastric carcinomas worldwide and certain types of salivary gland carcinomas are
found pathologically associated with EBV infection [64–66]. Dissimilar to B cells, EBV infec-
tion in primary epithelial cells cannot directly induce cell proliferation or immortalization
but results in growth arrest instead [61,67,68]. The current model supposes that pre-existent
aberrant genetic or epigenetic alterations in preinvasive nasopharyngeal epithelium enable
the establishment of EBV latent infection, which then confers survival benefits for the
development of epithelium-origin malignancy [61,69–72].

2.3. NK/T Cell

Besides the typical B cell–epithelial cell dual tropism, EBV can also infect NK cells and
T cells and is associated with the malignancy of these cell types, though in relatively rare
cases [73].



Viruses 2022, 14, 2372 4 of 17

In 1988, Jones et al. firstly identified EBV DNA in T-cell lymphoma [74]. Later, with the
establishment of EBER in situ hybridization and other experimental methods, a variety of
NK and T-cell lymphomas were found to be associated with EBV infection [75]. Moreover,
EBV-positive NK or T-cell lines have been developed using patient specimens or through
in vitro EBV infection of EBV-negative NK or T-cell lines, which further suggests that
NK/T cells could be targets of EBV [76–79]. Studies have also revealed that, in tonsils and
peripheral blood from IM patients, a small portion of EBV-infected T and NK cells was
found. This evidence showed that the infection of NK/T cells could occur in the primary
EBV infection [80].

2.4. Others

In leiomyosarcomas of transplant recipients or HIV-infected patients who have severely
undermined T-cell immunity, the EBV genome could be detected, but EBV cannot be de-
tected in leiomyosarcoma of immune-competent patients, suggesting that smooth mus-
cle cells are an atypical target of EBV under the immune-compromised status of the
host [81–85].

Instead of the direct infection of host cells to induce malignancies, EBV can also cause
remote cytopathic effects. Recently, a large cohort study revealed that EBV infection was
epidemiologically linked to multiple sclerosis (MS), an autoimmune neurodegenerative
disease [86]. Another study found that EBV could contribute to the pathogenesis of
MS through antigen mimicry between the viral protein EBV transcription factor EBV
nuclear antigen 1 (EBNA1) and the host central nervous system protein glial cell adhesion
molecule (GlialCAM) to induce autoimmune demyelination [87]. Besides MS, EBV infection
is linked to a series of autoimmune diseases, including rheumatoid arthritis, Sjögren’s
syndrome, and systemic lupus erythematosus, though the etiological role of EBV remains to
be investigated [7,88–91]. These findings show that EBV could cause not only infected cells
but remote uninfected cell cytopathy, expanding our current knowledge on the mechanism
of EBV pathogenicity in human diseases.

Multiple cell types could be infected by EBV in vivo, and epidemiological and bi-
ological studies have demonstrated a variety of diseases related to EBV infection. It is
now clear that EBV features a B cell–epithelial cell dual tropism, which is important to its
latent-lytic lifecycle. However, it is currently unclear whether the infection of other cell
types plays a role in EBV lifecycle and how EBV enters these cells. Additionally, as more
and more evidence suggests that EBV could contribute to autoimmune diseases through
cross-antigen mimicry, it is also worth investigating how EBV infection impacts uninfected
cells and leads to remote cytopathy. More effort should be paid to elucidating the direct
association between the EBV lifecycle and the transition between habitant cell types. These
works could provide insight into EBV pathogenesis, which benefits the development of
target therapies.

3. EBV Entry into Target Cells

Like other enveloped viruses, EBV adopts a similar viral entry strategy [92]. Surface
viral glycoproteins on virion firstly bind attachment receptors to concentrate virions on the
host cell surface to facilitate secondary receptor binding. Then, glycoproteins recognize
entry receptors to trigger membrane fusion. Finally, the fusion protein adopts conforma-
tional changes to accomplish membrane fusion. However, unlike most enveloped viruses,
such as SARS-CoV-2 relying on only one or two proteins to fulfill the viral infection process,
EBV possesses and adopts a wide range of glycoproteins [13,93]. The function for each
glycoprotein and collaboration of glycoprotein subgroups greatly differs in both entry
processes (attachment, binding, and membrane fusion) and targeting infection cell (B cells,
epithelial cells, etc.). As the entry machine of EBV is much more sophisticated, multiple
receptors have been identified, participating in different infection processes and different
cell type infections [94] (Table 1).
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Table 1. Receptors/binding factors for EBV membrane proteins/glycoproteins.

Viral Protein Receptor/Binding
Factor Target Cell Function Structure

Membrane protein

BMRF2 Integrins Epithelial cell Viral attachment None available complex
structure

Glycoproteins

gp350 CD21 B lymphocyte Viral attachment

gp350 ecto-domain
(PDB:2H6O) [95]
CD21 SCR1-SCR2 (PDB:
1LY2) [96]
CD21 (PDB: 2GSX) [97]
None available
complex structure

CD35 B lymphocyte Viral attachment None available
complex structure

gB NRP1 Epithelial cell
Viral binding
and promote
membrane fusion

Post-fusion gB
extracellular domain
(PDB: 3FVC) [98]
None available
pre-gB structure
None available
complex structure

EphA2 Epithelial cell
Viral binding
and promote
membrane fusion

None available
complex structure

BMRF2 Integrins Epithelial cell Viral attachment None available
complex structure

gHgL Integrins Epithelial cell Viral attachment None available
complex structure

NMHC-IIA Epithelial cell
Viral binding
and promote
membrane fusion

None available
complex structure

EphA2 Epithelial cell
Viral binding
and promote
membrane fusion

gHgL-EphA2(Ligand
binding domain) (PDB:
7CZE) [99]

gHgL-gp42 HLAII B lymphocyte
Viral binding
and promote
membrane fusion

gp42 (PDB: 3FD4) [100]
gp42-HLA-DR1 (PDB:
1KG0) [101]
gHgL-CL40-gp42_N-
domain
(PDB: 5W0K) [102]
gHgL-gp42-E1D1 (PDB:
5T1D) [17]

In this section, we summarize the current understandings on EBV entry into B cells
and epithelial cells by systematically introducing the viral glycoproteins and host receptors
involved in each entry process (Figure 2).
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Figure 2. The process of EBV entry into host cells. (A) Entry of EBV into B cells through endocytosis.
Firstly, EBV gp350 attachment with CD21 or CD35, and tethering EBV to B-cell membranes. Then,
gH/gL-gp42 binds to receptor HLA class II. This interaction lets gH/gL-gp42 enable interacting
with the prefusion form of gB. The interaction leads to a series of structural changes in gB and
ultimately fusion of the viral membrane with the cell membrane. Extended rearrangements within
gB (intermediate) enables insertion of the fusion loops into the B-cell membrane and the refolding
of gB forms post-fusion gB, which mediates the merging of the two membranes. (B) The entry of
EBV via direct fusion with epithelial cell membranes. Firstly, gp350/220 interacts with CD21 and/or
BMRF2/gH/gL, with integrins tethering EBV to the epithelial cell membrane. After this, gH/gL binds
to EphA2/NMHC-IIA or gB interacts with NRP1, producing a membrane fusion signal. The signal is
passed to gB and causes a series of changes in its configuration. Extended rearrangements within gB
trigger insertion of the fusion loops into the epithelial cell membrane, followed by the refolding of
gB to post-fusion form and mediates the merging of the two bilayers. The structures are shown as
cartoons: structures of CD21 (2GSX) [97], EBV gp350 (2H6O) [95], the complex of gH/gL (3PHF) [103],
the complex of gp42-HLA-DR1 (1KG0) [101], post-fusion gB (3FVC) [98], and EphA2 (2X10) [104] and
modified using the PyMOL Molecular Graphics System, Version 2.1.0 Schrödinger, LLC. The structure
of integrin alpha5beta1 (3VI4) [105] was used as a representative model of integrins interacting with
EBV membrane proteins. The structure files were retrieved from the PDB database. The structure of
NMHC-IIA, NRP1, and full-length CD35 are generated by AlphaFold Protein Structure Database
(https://alphafold.ebi.ac.uk/).

https://alphafold.ebi.ac.uk/
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3.1. Attachment

Attachment is the process when the virus is concentrated upon the cell surface to
facilitate further receptor binding. For example, a model is proposed that SARS-CoV-2
utilizes heparan sulfate for attaching to the host cell membrane and facilitating the binding
of its entry receptor ACE2 [106]. EBV attachment to the host cell is mediated by several viral
glycoproteins and host cell membrane proteins, tethering the virus to the cell membrane but
not directly triggering viral entry [13,107]. There are differences between the mechanisms
underlying the attachment of EBV to B cells and epithelial cells (Figure 2).

B cell. CD21/CD35, also known as the complement receptor type 2, complement
receptor type 1 (CR2/CR1), which are mainly expressed on lymphocytes [108–110]. The
interaction between EBV envelope glycoprotein, gp350/220 with the host CD21/CD35
is responsible for EBV attachment to B cells. As the most abundant glycoprotein on the
envelope of EBV virions, gp350/220 binds CD21 and mediates the capping of CD21 and
endocytosis of virions into B cells [109]. Soluble derivatives of gp350/220, as well as
the soluble recombinants of CD21 were found able to inhibit the EBV infection of B cells
when they were incubated with B cells or the viruses [111,112]. Although the binding of
gp350/220 with CD21 is not strictly required for the EBV infection of B cells, gp350/220
absence reduced the B-cell infection efficiency [113].

Studies show that gp350/220 binds CD21 through its N-terminal 1-470aa, a glycan-free
patch on its surface [95,112]. The predicted interaction region of gp350 and CD21 displays
almost the opposite electronic potential, rendering a highly negatively charged surface
on the glycol-free gp350 surface and positively charged area of the SCR1-SCR2 domain of
CD21 ready for potential electrostatic interactions [112]. The surfaces of these two regions
are also morphologically complementary. However, direct structural information of the
protein complex is yet to come out to verify the exact interaction pattern.

For its crucial role in mediating B-cell attachment and its abundance on the virion
surface, gp350/220 has been recognized as an ideal target for preventing EBV infection and
EBV-related diseases [114–116]. Several monoclonal antibodies (mAb) targeting gp350/220
have been developed and identified to neutralize the EBV infection of B cells, and the
well-characterized mouse origin mAb 72A1 has been further redesigned into a humanized
form [117–120]. However, as the EBV vaccine antigen candidate that has received most
attention before, gp350 immunization was shown to only confer partial protection against
IM and no protection against asymptomatic EBV infection in a phase II clinical trial in
young adults [113,121].

Epithelial cell. Unlike B cells, epithelial cells do not constitutively express CD21 or
CD35 [122]. In a microdissection study of oropharyngeal epithelium, CD21 mRNA could
only be detected in tonsils, suggesting that EBV may adopt different mechanisms in most
epithelial cells to attach to the cell membrane during infection [123]. Moreover, the finding
that antibodies targeting gp350/220 or CD21 failed to inhibit EBV virion attachment to
cultured polarized oropharyngeal epithelial cells also supports this ratiocination [124].

BMRF2, an EBV glycoprotein with a RGD motif, was found to facilitate EBV attachment
to epithelial cells through binding with β1, α5, and α3 integrins [124,125]. The RGD motif in
the host extracellular matrix proteins interacts with cellular integrins to facilitate adhesion,
and this motif is also found in other viral proteins and mediates viral attachment and
entry [126]. Some studies found that antibodies against BMRF-2 and β1 integrin suppressed
attachment and entry into epithelial cells but not B cells, and a lack of BMRF2 hindered
EBV virions attachment to epithelial cells instead of B cells [124,125,127].

Otherwise, BMRF2 is found on the cell membrane of various EBV-infected cells,
including lymphoblastoids, polarized oral epithelial cells, and hairy leukoplakia (HL)
epithelium. Further, subcellular research revealed that BMRF2 was transported to the
basolateral membrane of oral epithelial cells and colocalized with β1 integrins [125,128]. It
further suggested that BMRF2 may also function in the cell-to-cell transmission of EBV. The
EBV glycoprotein BDLF2 can interact with BMRF2 and function in cellular actin network
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rearrangement, through which BDLF2 coordinates with BMRF2 to facilitate cell-to-cell EBV
infection by increasing cell membrane contacts via cytoskeleton manipulation [129].

EBV gH/gL was also found with a KGD motif, indicating a potential capability
of the integrin-binding motif, while studies have found it could bind αvβ5, αvβ6, and
αvβ8 integrin [130,131]. The interaction between EBV gH/gL and integrins is primarily
considered to be a fusion-triggering event in epithelial cells, but a later study found that
knocking out integrin αv did not influence the EBV fusion activity [132]. This result
suggested that αvβ5, αvβ6, and αvβ8 integrins could be more likely attachment receptors
rather than entry receptors.

3.2. Binding and Entry

Binding is a process of viral glycoproteins interacting with entry receptors, activating
signaling cascades and triggering membrane fusion, which, finally, results in viral entry.
Herpes virus binding and entry are generally mediated by multiple proteins. Among the
glycoproteins, gH/gL takes the lead as the most critical apparatus inducing membrane
fusion, while gB is the key molecule executing fusion process with the presence of gH/gL
and other glycoproteins [13] (Figure 2).

B cell. After the initial attachment to the host membrane through gp350, EBV glyco-
protein gp42 takes over to fulfill the next role in viral binding and entry. gp42 directly binds
gH with its N-terminal region and, together with gL, forms gH/gL/gp42 heterotrimer. The
gp42 in the heterotrimer could bind to the HLA class II molecule (HLA-II), a subtype of the
histocompatibility complex mainly distributed on antigen-presenting cells (APC) such as B
cells [133,134]. The interaction between gp42 and HLA-II results in the the conformational
change of gp42 and is suspected to secondarily impact the conformation of gH/gL to
triggers the pre- to post-conformational change of gB and achieve membrane fusion [100].
Studies found that virions in lack of gp42 can attach to B cells but fail to infect them, and
host cell expressing CD21 but lacking HLA-II are resistant to EBV infection, which could
be reversed by the rescue introduction of HLA-II [135,136]. Additionally, interrupting the
interaction between gp42 and HLA-II with a soluble of form gp42, anti-gp42 mAb, or anti
HLA-DR mAb could all inhibit the EBV infection of B cells [133]. This evidence all supports
the vital role of gp42 in B-cell infection, and further structural studies provided us with
more information.

In a study reporting the crystal structure of the gH/gL/gp42 heterodimer, the N-terminal
of gp42 comprehensively binds gH domains II (D-II), III (D-III), and IV (D-IV), whereas its C-
terminal shows limited binding with gH through the hydrophobic pocket (HP) interacting
with the gH D-II domain [17]. Another structural investigation using negative staining
electronic microscopy revealed that the complex had two different conformations: “open”
and “close”, and the angle between HLA-DQ2 and gH/gL differed in the two statuses [137].
The number of the two conformation statuses was approximately even. Specifically, in the
“close” status, two arms (gH/gL and HLA-DQ2) were closer to each other, which led to a
shortened distance between their proximal membrane ends. This could play an important
role in triggering the subsequent membrane fusion.

The characteristics of gp42 binding to HLA-II even displayed more influence on
the viral tropism than its original function in binding and entry [135]. Due to HLA-II
mainly expressing on B cells, the production of virion with the surface expression of virus
glycoproteins, including gp42, could lead to in situ interactions of gp42 with HLA-II on
the same cell membrane. A study found that B-cell-derived EBV displayed lower gp42
in comparison to epithelial cell-derived EBV and that a higher gp42 copy number on the
virions could contribute to a higher infection efficiency in B cells and lower in epithelial
cells, which further supported the in situ membrane interaction hypothesis and implied
the potential switch role for gp42 in determining the viral tropism for EBV [138]. Based on
this observation, EBV virions in saliva containing a high level of gp42 were supposed to be
produced in epithelial cells [25].
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Epithelial cells. In contrast to B-cell infection, the mechanism of EBV entry into the
epithelial cells is more mysterious, and not until recent years did a series of research shed
light on this field [14]. It is found that various receptors are involved in the binding and
entry of EBV virions through variable binding to EBV gH/gL or gB.

Neuropilin-1 (NRP1) is a multifunctional protein and acts as a cofactor for cell entry in
a variety of viruses [139]. It has been reported that NRP1 mainly interacts with proteins
containing the carboxy (C)-terminal basic sequence motif (CendR motif), which contains a
sequence of R/K/XXR/K such as SARS-CoV-2 spike [140]. Meanwhile, EBV gB possesses
a highly similar and conserved R-X-K/R-R motif as a furin-cleavage site. Hence, it is
hypothesized that NRP1 may interact with EBV gB through the CendR motif and play a
role in EBV infection. A study demonstrated that gB could bind to NRP1 in vitro and the
CendR motif deficiency would lead to an almost absent binding [141]. Further investigation
showed that NRP1 knocked-out or soluble NRP1 pretreatment in the supernatant could
inhibit the EBV infection of epithelial cells [141].

Non-muscle myosin heavy-chain IIA (NMHC-IIA) is an actin-binding protein, with
properties of actin crosslinked and contractile regulated by phosphorylation [142]. Research
identified the interaction between NMHC-IIA and gH/gL through the pull-down assay and
mass spectrometry [143]. Although NMHC-IIA is normally located in the cytoplasm, there
is evidence that NMHC-IIA is densely clustered on the surface of SLCs (sphere-like cells).
A functional assay further suggested that the downregulation or blocking of NMHC-IIA
reduced EBV infection in epithelial cells. NMHC-IIA interacted directly with EBV gH/gL
in vitro. However, only cell surface NMHC-IIA was reported to enhance the EBV infection
efficiency, whereas cytoplasmic NMHC-IIA did not, and the redistribution mechanism of
NMHC-IIA was still unclear.

Ephrin type-A receptor 2 (EphA2) belongs to the largest receptor tyrosine kinase
family and plays important roles in cell migration, proliferation, differentiation, and axonal
guidance [144]. EphA2 has been found as a receptor for several other pathogens, such
as Kaposi’s sarcoma herpesvirus (KSHV), a member of gamma-herpes virus [145,146].
Research found that it also plays an important role in EBV infection of epithelial cells
through binding with EBV gH/gL [132,147]. It was further revealed that the overexpres-
sion of EphA2 promotes EBV infection in epithelial cells, while knocking out EphA2, or
pretreatment with the soluble EphA2 protein, EphA2-blocking antibody, or EphA1 (natural
ligand of EphA2), could significantly reduce epithelial cell infection. Moreover, previous
studies found that EphA2 mediates KSHV endocytosis dependent on kinase activity, which
was not required in EBV infection [146].

The recent structural analysis of EphA2 and EBV or KSHV gH/gL complexes showed
that EBV gH/gL or KSHV gH/gL bound to the EphA2 channel and the surrounding region,
and the N-terminal of EBV gL was inserted into the EphA2 channel. Compared with KSHV
gH/gL, EBV gH/gL has a lower affinity to the receptor [99].

3.3. Membrane Fusion

The process of viral membrane fusion is unique to enveloped viruses. During virus
entry, the viral and host cell membrane or intracellular endosome membrane approach
contact and fuse with each other under the mediation of the membrane components,
forming fusion pores and releasing viral nucleocapsid [148].

Different from other enveloped viruses, herpes virus membrane fusion is generally
mediated by multiple glycoproteins and, finally, fulfilled by core fusion protein gB [94].
EBV gB is a type III fusion protein, featured by the coil-coil hairpin structure in post-
fusion conformation [98]. With the previous studies of structurally homologous VSV
fusion protein G and recently revealed prefusion structures of HSV-1 and HCMV gB, it
is now commonly believed that the prefusion status of gB exists and may take major
responsibility in triggering viral–host membrane fusion through structural arrangement
for not only EBV but all herpes viruses [94,149]. However, plenty of research found that gB
itself cannot initiate membrane fusion, and the minimal components for EBV to start up
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membrane fusion were gH/gL and gB, leading to a general hypothesis that gH/gL triggers
the prefusion gB to initiate viral membrane fusion [13,150]. So that gH/gL could act as
harbor for gp42 to bind HLA-II on B cells and main target binding to integrins, NMHC-IIA
and EphA2 on epithelial cells, membrane fusion initiation could differ in either cell type
(Figure 2).

B cell. The gH/gL/gp42 complex of EBV binds specifically to HLA-II, the B-cell
receptor, promoting expansion of the hydrophobic pocket in the gp42 C-terminal region.
This change decreases the angle between HLA-II and gH/gL, leading to closer transmem-
brane structures to each other, and is suspected to be critical for the follow-up membrane
fusion [17,137]. The structure change induced by receptor binding may contribute to pre-
fusion gB conformation change, prompt its metastable fusion status, and facilitate the
completion of membrane fusion executed by gB [13].

Epithelial cell. Compared to B-cell infection, the binding and entry process are more
versatile in the interaction pattern between the viral and host membrane during epithe-
lial cell infection, leading to an even more complicated fusion machine [14]. As gH/gL
could bind variable receptors on the epithelium, including EphA2 and NMHC-IIA, it
may also act as a trigger for inducing gB-mediated membrane fusion during the receptor
binding [94,132,143,147]. Studies have shown that EphA2 could significantly impact the
membrane fusion induced by gH/gL and gB using the cell–cell fusion model. Moreover,
the rescue of EphA2 could significantly retrieve the infection efficiency of EBV to epithelial
cells, which indicates that EphA2 binding to gH/gL may be a start-up signal for membrane
fusion. Moreover, instead of receiving external molecular stimulation from gH/gL, gB
could also be directly influenced by receptor binding [132,147]. As mentioned above, gB
could bind to NRP1 with its CendR motif. Further evidence also showed that the over-
expression of NRP1 could elevate the fusion activity of gH/gL and gB, indicating the
potential role of NRP1 in the direct triggering of gB for membrane fusion [141]. However,
due to that, the absence of gH/gL could completely invalidate the fusion activity of gB,
whether the direct signal from gB binding to the receptor is critical for gB-mediated fusion
remains unknown.

Due to the complexity of the viral membrane component, the entry process of EBV
into host cells manifests a heterogenous behavior on both the tropism level and receptor
level. Despite shared entry procedures, including attachment, binding, and membrane
fusion, EBV adopts almost divergent sets of glycoprotein–host receptor interactions to
accomplish the viral infection, which brings challenges for depicting the detailed molec-
ular mechanism for EBV infection and difficulties for precise vaccine or viral inhibitor
development. Compared to the clearer tropism of EBV, the exact process for how EBV
completes these processes in single-protein resolution remains to be revealed. Further effort
for EBV study in identifying new receptors, resolving the prefusion status of gB, finding the
exact molecular interaction between gH/gL and gB, and elucidating the gB conformational
change mechanism would be significant for accurate drug and vaccine development for
broadly inhibiting EBV infection in all cell types.

4. Discussion

EBV is one of the most widely transmitted viruses in the world, infecting more than
90% of the population and being associated with a variety of autoimmune diseases and
malignancies [6]. Despite huge healthcare burdens caused, there is currently no effective
antiviral agent or vaccine for EBV to inhibit its infection [14]. EBV can establish variable host
tropisms, leading to a heterogenous virus cycle and viral gene expression pattern [18]. In
the meantime, the molecular machine of viral glycoproteins recognized different receptors
on different host cell types, further complicating the investigation of the exact mechanism of
host selection and detailed process of viral infection. Hence, deeper knowledge of tropism
establishment and the viral entry process are significant for the generation of a potent
inhibitor or prophylactic vaccine for EBV.



Viruses 2022, 14, 2372 11 of 17

The discovery of the EBV genome or related expressed genes in different malignancies
shaped the early awareness of EBV infection in different cell types. Through in-depth in-
vestigation of the association between lymphoid malignancies such as Burkitt’s lymphoma
(BL) or epithelial malignancies such as nasopharyngeal carcinoma (NPC) and EBV, more
information was obtained to gradually reveal the connection between the viral habitant
after primary infection, virus lifecycle for latency and lytic amplification, and tropism tran-
sition between cell types, leading to the conclusion that integrative protection is required
for establishing a sterile immunity against EBV infection due to the B cell–epithelial cell
cycle and preference of the latency status in B cells of EBV. The recent findings on the
EBV EBNA1-derived peptide inducing multiple sclerosis (MS) through the mimicry of
GlialCAM further suggest that EBV tropism did not limit its capability of causing cytopathy
in remote uninfected cells [87]. However, how EBV tropism is decided and what molecular
machine realizes the tropism switch would be the underlying question for the accurate
development of antiviral agents for EBV.

The advancement of biological and structural approaches in studying viral infection
behavior provides more chances for investigating EBV infection at a single-protein resolu-
tion. In similar strategies, researchers found the entry process of EBV into host cells could
also be divided into attachment, binding, entry, and membrane fusion, during which more
and more evidence showed a strong connection between distinct glycoprotein–receptor
interaction pattern and host cell type [13]. This phenomenon suggests an underlying logic
for the molecular machine of viral glycoproteins mediating viral infection preference and
behavior in the confrontation of host cells, especially B cells and epithelial cells. EBV gp350
or gp42 is found mainly participating in B-cell attachment or binding. In comparison,
gH/gL and gB are found broadly acting during attachment, binding, and membrane fusion
for both B cells and epithelial cells, making them currently more immune-focused for
neutralizing antibody or vaccine development. Moreover, the gp42 level on EBV virion is
found connected with the host cell preference due to the role in B-cell binding and potential
in situ neutralization of HLA-II during B-cell lytic replication [135]. All these findings
indicate that the host tropism could be significantly influenced by both the host cell receptor
expression pattern and viral glycoproteins assigned during infection and support the idea
that deeper investigation of the complete fusion machine composition, acting process, and
their structural information would be fundamental for both understanding the detailed
molecular mechanism of viral infection and the accurate design of vaccines and drugs
against broad EBV infection.
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