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Abstract: Historically the therapeutic potential of polyclonal passive immunotherapies in viral
diseases has been related to antiviral neutralizing antibodies, but there is also considerable evidence
that non-neutralizing antibodies can translate into clinical benefit as well. In the setting of SARS-
CoV-2 infection, we review here in vitro and in vivo evidence supporting a contributing role for
anti-nucleocapsid antibodies. Retrospective investigation of anti-nucleocapsid antibody levels in
randomized clinical trials of COVID-19 convalescent plasma is warranted to better understand
whether there is an association with efficacy or lack thereof.
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Many patients with infectious diseases cannot tolerate the side effect of small chemical
antimicrobials, making antibody a safer prophylactic and therapeutic alternative. This is
case for immunocompromised individuals with COVID-19 where the ritonavir component
of the Paxlovid antiviral formulation can interfere with other drugs needed to treat their
underlying condition. When matching viruses and therapeutic antibodies, most attention
has focused so far on neutralizing antibodies (nAb), i.e., antibodies of different isotypes
(IgG1, IgG3, IgM, and IgA) that reduce viral infection of replication-competent cells in
in vitro viral neutralization tests (VNT) [1]. With regards to SARS-CoV-2, the causative
agent of COVID-19, this in vitro neutralization reflects largely the presence of antibodies to
the region of the Spike protein that interacts with the ACE2 receptor on human cells. Hence,
for COVID-19, nAbs consist mostly of antibodies to the Spike protein. B-cells making these
antibodies recovered from convalescent donors have been used to make the therapeutic
monoclonal antibodies. Furthermore, the titer of nAbs has been the major correlate of
protection after Spike-based vaccination used to assess vaccine efficacy [2]. For COVID19
convalescent plasma (CCP), the therapeutic potential has been generally correlated with the
nAb titer. This assumption has been validated on both mechanistic studies that established
its antiviral activity [3], and clinical studies that show dose-response relationships between
the nAb titer and efficacy [4–6]. However, the undoubted importance of nAbs does not
exclude the possibility that more antiviral antibodies could be associated with additional
clinical benefits. This principle was illustrated in studies with vesicular stomatitis virus
where in vitro neutralization titer correlated with avidity and neutralization rate constant,
but in vivo efficacy was independent of in vitro neutralizing activity (PMID: 9197261).

In contrast to the SARS-CoV-2 Spike protein, the structural nucleocapsid (N) phos-
phoprotein is highly conserved among human coronaviruses, where it is essential for
linking the viral genome to the viral membrane [7]. N is classically considered an inter-
nal protein of SARS-CoV-2, and, as such, to be only useful for eliciting T-cell mediated
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immune responses [8,9]. Orthologous N protein from influenza A [10], measles [11], respi-
ratory syncytial [12], lymphocytic choriomeningitis [13], and human immunodeficiency
viruses [14] are expressed on the surface of infected cells, where they can be the target
for antibody dependent cellular cytotoxicity mechanism (ADCC). Not surprisingly, about
104–105 SARS-CoV-2 N proteins occur on the surface of a range of different SARS-CoV-2-
infected cell types, either natural (Vero, Caco-2, Calu-3) or humanized (BHK-21_hACE2
or CHOK1_hACE2, and HEK293-FT_hACE2) [15]. SARS-CoV-2 N is likely placed on the
cell surface and secreted through a non-canonical pathway that bypasses insertion into
the endoplasmic reticulum [16]. N released by SARS-CoV-2 infected cells or N-expressing
transfected cells binds to heparan sulfate, which promotes Spike-ACE2 interaction [17] and
heparin on neighboring cells, which may contribute to coagulopathy, and also neutralizes
the biological activity of many different chemokines, blocking chemotaxis of immune
effector cells [15]. Freely circulating N protein can also activate the complement cascade
via the alternative pathway, thus potentially contributing to the inflammatory changes that
are associated with severe COVID-19 [18,19]. Hence, there is considerable direct and cir-
cumstantial evidence that the N protein contributes to the pathogenesis of COVID-19, and
if that is the case, it is reasonable to posit that N-binding antibodies can contribute to host
defense through ADCC, and by interfering with its deleterious effects on immune function.

Antibodies to the N protein are elicited after immunization with experimental N-
based vaccines [8,9,20,21] and after natural SARS-CoV-2 infection. In the pre-vaccine era,
the occurrence of antibodies to N following natural infection was almost universal and
levels remained detectable for more than 6 months [22–24]. The finding that each 1-log
increase in SARS-CoV-2 viral copies at diagnosis was associated with 90% higher odds
of seroconversion for N antibodies [25] suggests that high levels of circulating N, which
are also associated with the severity of pulmonary illness and clinically important patient
outcomes [26], are required to elicit this response.

Whether antibodies to the N protein exert any protective role has been the subject of
sporadic investigations. mAbs targeting SARS-CoV-2 N protein can inhibit free N-induced
MASP-2 activation in vitro [18], and mAbs to the related alphacoronavirus mouse hepatitis
virus (MHV) N protein exert anti-viral activity in vitro in the presence of complement and
in vivo [27,28]. A very interesting animal model showed that C57BL/6 mice prime-boosted
with an adenovirus serotype five vector expressing N developed anti-N antibodies 2 weeks
later, which were unable to neutralize live authentic SARS-CoV-2. However, when their sera
was transfused to naïve K18-hACE2 mice, followed by intranasal challenge with 103 PFU
SARS-CoV-2 USA-WA1/2020, the animals experienced lung viral loads 14-fold lower than
in controls at day 4 [29]. Very few clinical studies have investigated the correlation between
antibody levels to N protein in CCP and clinical outcome. In a retrospective observational
study in 96 hospitalized patients, Cain et al. found no statistically significant difference
in neither mortality nor time from transfusion to death between patients receiving CCP
with low vs. high antibody levels to N protein. Unfortunately no multivariate analysis
was conducted to account for antibody levels to spike protein in the plasma [30]. When it
comes to randomized controlled trials (RCT), the gold standard of evidence-based medicine,
only a single RCT assessed antibody to N protein in CCP. A reanalysis of the Penn2CCP
RCT data showed that the clinical benefit of CCP was related to a shift towards reduced
inflammatory S responses and enhanced N humoral responses [31]. Furthermore, CCP
induced immunomodulatory changes to recipient humoral profiles (including more anti-
inflammatory S-specific Fc glycans) persisted for at least 2 months, marked by the selective
evolution of anti-inflammatory Fc-glycan profiles and persistently expanded N-specific
humoral immunity following CCP therapy [32].

Many different ingredients in CCP can lead to clinical benefit [33] and there is now
suggestive evidence for adding antibodies to N protein to the list of potential antiviral
ingredients. Mechanisms of action other than neutralization are needed to explain the
potential clinical benefit in vivo of antibodies to N protein. In this regard, antibodies to
the SARS-CoV-2 N protein, once bound to the surface of N-expressing cells, activate Fc
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receptors (FcR)-expressing cells [15]. In murine influenzavirus models, IgG to N protein
specifically promoted virus clearance by using a mechanism involving both FcRs and
CD8+ T lymphocytes [34]. Accordingly, antibodies to SARS-CoV-2 N protein exert relevant
antibody-dependent NK cell activation (ADNKA) after infection, driving high levels of
pro-inflammatory cytokine production for more than 6 months [35].

Of interest and in contrast to the highly variable Spike protein, N protein has been
mostly conserved so far in SARS-CoV-2 evolution, with antibodies to N showing cross-
reactivity across sublineages [36]. Hence, if any, the therapeutic benefit from old CCP units
could be preserved against the most recent SARS-CoV-2 variants of concern. However,
there is great cross-reactivity for antibodies to N proteins among coronaviruses, and N
protein epitopes are shared between SARS-CoV-2 and alphacoronaviruses. Hence, one
cannot be certain whether any correlation between antibody to N protein and protection
was a result from previous endemic coronavirus infection(s), which are highly prevalent in
the human populations worldwide, or from the recent SARS-CoV-2 infection. Nevertheless,
the amino acid sequences of the entire N protein of common coronaviruses are sufficiently
dissimilar to that of SARS-CoV-2, with only the conserved residues at the N-terminal
domain of NP showing a high degree of similarity. Consequently, usage of an N-terminally
truncated nucleocapsid protein (∆N-NP) could provide better specificity for discriminating
among coronaviruses [37], with epitope mapping unveiling the 155–171 epitope [38] and
255–346 [39] as highly immunogenic and specific. High titer responses against N of alpha-
coronaviruses have been detected during early COVID-19 stages, raising the possibility
that SARS-CoV-2 infection boosted pre-existing immunity [40], without clear correlations
with disease severity [41]. That said, it is likely that not all anti-N antibodies are equally
beneficial: e.g., occurrence of antibodies to a 21-residue epitope from N (termed Ep9) [42],
lack of antibodies against the seasonal betacoronavirus OC43 N [43], or occurrence of IgG to
-alphacoronaviruses (NL-63 and 229E) N protein [40] have all been associated with severe
COVID-19. Notably, in individuals with severe COVID-19 (such as those admitted to ICU),
N-specific antibody titers prevail over anti-Spike titer [40,44,45].

There is unfortunately an unpredictable conundrum between the increased potency
of CCP from vaccinated donors (so-called VaxPlasma or “hybrid plasma” or VaxCCP)
and anti-N antibodies. The superiority of VaxCCP over CCP is due to the 10–100-fold
higher anti-Spike nAb titers seen in VaxCCP compared to CCP, and their heterologous
nature neutralizing most, if not all, SARS-CoV-2 variants of concern. Nevertheless, it
has been shown that after vaccine breakthrough infection the occurrence of antibody
to N protein, compared to unvaccinated subjects, is dramatically decreased from 93%
to just 50% at day 54 post-infection [22,25]. The few individuals that mount antibody
responses to N protein after vaccine breakthrough infection make lower titers [46], and
substantial seroreversion of N total immunoglobulin has also been found shortly after
vaccine breakthrough infections [47]. As such, VaxCCP has much lower content of anti-N,
which will be an unlikely contributor to clinical benefit in the future usages.

The available evidence provides a compelling case for analyzing the antibody content
to N protein on stored samples from the dozens of RCTs completed studying CCP efficacy
against COVID-19. There are thousands of such CCP remnant samples available that could
be studied for antibodies to N and correlated to clinical outcome data. Although the results
of such a study will likely have no immediate implications for the current pandemic, it has
the potential to inform future pandemics from related coronaviruses or different viruses
expressing orthologous protein N’s. At the very least, we should miss this opportunity
to further dissect the contribution of humoral immunity to N protein in COVID-19. In
particular, under the upcoming “mutations wave” dominated by Spike R346X- and K444X-
harboring Omicron sublineages, CCP will remain a fundamental weapon against COVID19
in immunocompromised patients [48], who are at higher risk for more severe presentation
and are not protected by vaccine boosts.
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