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Abstract: The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
facilitates viral entry into host cells and is the key target for neutralizing antibodies. The SARS-CoV-2
lineage B.1.620 carries fifteen mutations in the S protein and is spread in Africa, the US and Europe,
while lineage R.1 harbors four mutations in S and infections were observed in several countries,
particularly Japan and the US. However, the impact of the mutations in B.1.620 and R.1 S proteins on
antibody-mediated neutralization and host cell entry are largely unknown. Here, we report that these
mutations are compatible with robust ACE2 binding and entry into cell lines, and they markedly
reduce neutralization by vaccine-induced antibodies. Our results reveal evasion of neutralizing
antibodies by B.1.620 and R.1, which might have contributed to the spread of these lineages.

Keywords: SARS-CoV-2; spike protein; B.1.620; R.1; cell entry; neutralization; antibody evasion;
ACE2 binding

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible
for the coronavirus disease 2019 (COVID-19) pandemic. Vaccines protect against severe
COVID-19, and vaccine-induced neutralizing antibodies are believed to be important for
protection [1–3]. Furthermore, recombinant, monoclonal neutralizing antibodies are used
for COVID-19 treatment [4,5]. The viral spike (S) protein employs the cellular receptor
ACE2 [6,7] and an S protein-activating cellular protease (TMPRSS2 or cathepsin L) for host
cell entry. Importantly, the S protein interface with ACE2 is a key target for neutralizing
antibodies [8]. Mutations in the S proteins of emerging SARS-CoV-2 lineages can allow
evasion of neutralizing antibodies and may alter virus–host cell interactions during viral
entry, thereby potentially modulating viral transmissibility. However, the S proteins of
several SARS-CoV-2 lineages remain to be analyzed for their capacity to mediate viral entry
and their neutralization sensitivity. Here, we analyzed the S proteins of lineages B.1.620
and R.1.
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2. Materials and Methods
2.1. Cell Culture

HEK-293T (human, female, kidney; ACC-635, DSMZ; RRID: CVCL_0063), Vero
(African green monkey kidney, female, kidney; CRL-1586, ATCC; RRID: CVCL_0574,
kindly provided by Andrea Maisner) and Huh-7 cells (human, male, liver; JCRB Cat#
JCRB0403; RRID: CVCL_0336, kindly provided by Thomas Pietschmann) were maintained
in Dulbecco’s modified Eagle medium (DMEM, PAN-Biotech, Aidenbach, Germany). Calu-
3 (human, male, lung; HTB-55, ATCC; RRID: CVCL_0609, kindly provided by Stephan
Ludwig) and Caco-2 cells (human, male, colon; HTB-37, ATCC, RRID: CVCL_0025) were
maintained in minimum essential medium (Thermo Fisher Scientific, Waltham, MA, USA).
All media were supplemented with 10% fetal bovine serum (Biochrom, Berlin, Germany)
and 100 U/mL penicillin and 0.1 mg/mL streptomycin (PAA Laboratories GmbH, Cölbe,
Germany). Furthermore, Calu-3 and Caco-2 cells received 1× non-essential amino acid
solution (from 100× stock, PAA Laboratories GmbH) and 1 mM sodium pyruvate (Thermo
Fisher Scientific). All cell lines were incubated at 37 ◦C in a humidified atmosphere contain-
ing 5% CO2. Cell lines were validated by STR-typing, amplification and sequencing of a
fragment of the cytochrome c oxidase gene, and/or microscopic examination with respect
to their growth characteristics. In addition, cell lines were regularly tested for mycoplasma
contamination. Transfection of cells was carried out by calcium-phosphate precipitation.

2.2. Plasmids

Plasmids encoding DsRed, VSV-G (vesicular stomatitis virus glycoprotein), SARS-
CoV-2 S B.1 (codon optimized, contains C-terminal truncation of 18 amino acid), SARS-
CoV-2 S B.1.617.2, and soluble human ACE2 (angiotensin-converting enzyme 2) have been
previously described [9–12]. Spike (S) mutations of SARS-CoV-2 lineage B.1.620 (GISAID
Accession ID: EPI_ISL_1540680) and R.1 (GISAID Accession ID: EPI_ISL_3183767) were
introduced into the expression plasmid for the S protein of SARS-CoV-2 B.1 by hybrid PCR
using overlapping primers. PCR products purified from an agarose gel (NucleoSpin Gel
and PCR Clean-up, Macherey-Nagel, Düren, Germany) were mixed and subjected to PCR
with primers corresponding to the 3′ and 5′ ends full-length S protein sequence. Generated
open reading frames were ligated with linearized pCG1 plasmid (kindly provided by
Roberto Cattaneo, Mayo Clinic College of Medicine, Rochester, MN, USA). All S protein
sequences were verified by sequencing (Microsynth SeqLab, Göttingen, Germany).

2.3. Production of Pseudotype Particles

Production of rhabdoviral pseudotypes bearing SARS-CoV-2 spike protein has been
previously described [13]. In brief, 293T cells were transfected with expression plasmid for
SARS-CoV-2 S protein, VSV-G or control plasmid by calcium-phosphate precipitation. At
24 h posttransfection, cells were inoculated with VSV*∆G-FLuc [14], a replication-deficient
vesicular stomatitis virus that lacks the genetic information for VSV-G and instead codes
for two reporter proteins, enhanced green fluorescent protein (eGFP) and firefly luciferase
(FLuc) (kindly provided by Gert Zimmer) at a multiplicity of infection of 3. Following 1 h
incubation, the inoculum was removed, and cells were washed with phosphate-buffered
saline (PBS). Subsequently, cells received culture medium containing anti-VSV-G antibody
(culture supernatant from I1-hybridoma cells; ATCC no. CRL-2700; except for cells express-
ing VSV-G, which received only medium) to neutralize residual input virus. After 16–18 h,
the culture supernatant was harvested, separated from cellular debris by centrifugation
for 10 min at 4000× g at room temperature, and the clarified supernatants were stored
at −80 ◦C.

2.4. Analysis of Spike Protein-Mediated Cell Entry

For cell entry study, target cells were seeded in 96-well plates. At 20 h post seeding, the
cells were inoculated with equal volumes of pseudotype particles. At 18 h postinoculation,
pseudotype entry efficiency was quantified by measuring the activity of virus-encoded
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luciferase. For this, cells were lysed using PBS containing 0.5% triton X-100 (Carl Roth,
Karlsruhe, Germany) for 30 min at RT. Afterwards, cell lysates were transferred into white
96-well plates and mixed with luciferase substrate (Beetle-Juice, PJK, Kleinblittersdorf,
Germany) before luminescence was measured using a Hidex Sense Plate luminometer
(Hidex, Turku, Finland).

2.5. Production of Soluble ACE2

The production of soluble human ACE2 equipped with the Fc-portion of human
immunoglobulin G at the C-terminus (solACE2-Fc) has been described in detail previ-
ously [15]. Briefly, 293T cells were seeded and transfected with expression plasmid for
soluble hACE2. After overnight incubation, the medium was replaced, and the cells further
incubated for 38 h before the supernatant was collected and centrifuged. The clarified
supernatant was concentrated (100×) using a Vivaspin protein concentrator column (molec-
ular weight cut-off of 30 kDa; Sartorius, Göttingen, Germany). The concentrated soluble
ACE2 was stored at −80 ◦C.

2.6. Analysis of ACE2 Binding by Flow Cytometry

In order to test the binding of the different S proteins to ACE2, 293T cells were seeded
in 6-well plates and transfected with expression plasmid for the respective SARS-CoV-2 S
protein by calcium-phosphate precipitation. Cells transfected with empty plasmid served
as a negative control. At 24 h posttransfection, the medium was replaced. At 48 h post-
transfection, the culture medium was removed, cells were resuspended in PBS, transferred
into 1.5 mL reaction tubes and pelleted by centrifugation. All centrifugation steps were
carried out at room temperature at 600× g for 5 min. Subsequently, the supernatant was
aspirated and the cells were washed with PBS containing 1% bovine serum albumin (BSA,
PBS-B) and pelleted by centrifugation. Next, cell pellets were resuspended in 250 µL PBS-B
containing soluble hACE2-Fc (1:200) and rotated at 4 ◦C for 60 min using a Rotospin rotator
disk (IKA). Then, cells were pelleted, washed and resuspended in 250 µL PBS-B containing
anti-human AlexaFlour-488-conjugated antibody (1:200; Thermo Fisher Scientific) and
rotated again for 60 min at 4 ◦C. Finally, the cells were washed with PBS-B, resuspended
in 100 µL PBS-B and subjected to flow cytometric analysis using an ID7000 Spectral Cell
Analyzer (Sony Biotechnology, San Jose, CA, USA). Median channel fluorescence data were
further analyzed using the ID7000 software.

2.7. Collection of Serum and Plasma Samples

Healthcare professionals vaccinated with either two doses of the mRNA vaccine
BNT162b2 (BNT) or a first dose of the vectored vaccine AZD1222 (AZ) followed by a sec-
ond dose of BNT were recruited as part of prospective studies investigating seroconversion
within the healthcare system (e.g., CoCo (COVID-19 Contact) study,
https://www.cocostudie.de/, accessed on 1 October 2022). Specific details on the samples
can be found in Table S1. Serum samples were heat-inactivated at 56 ◦C for 30 min prior to
neutralization experiments.

2.8. Neutralization Assay

For neutralization assay, S protein bearing pseudotype particles were pre-incubated at
37 ◦C for 30 min in the presence of different concentrations of monoclonal antibody (Casiriv-
imab, Imdevimab, Bamlanivimab, Etesevimab, Sotrovimab or an unrelated human control
IgG) (concentration spectrum: from 10 to 10–5 µg/mL). Alternatively, pseudotype particles
were pre-incubated in the presence of different concentrations of plasma or serum from
vaccinated individuals (diluted from 1:25 to 1:6400). Following incubation, mixtures were
inoculated onto Vero cells. Pseudotype particles incubated with medium served as controls.
Transduction efficiency was determined at 16–18 h postinoculation as described above.

https://www.cocostudie.de/
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2.9. Data Analysis

Data analysis was carried out using Microsoft Excel (as part of Microsoft Office
Professional Plus, version 2016, Microsoft Corporation) and GraphPad Prism version 8.3.0
(GraphPad Software). Statistical significance was assessed using either one-way ANOVA
with Dunnett’s post hoc test (data on S protein particle incorporation and cleavage, ACE2
binding, and S protein-driven cell entry) or the Friedman test with Dunn’s comparisons test
(neutralization data). Only p-values of 0.05 or lower were considered statistically significant
(p > 0.05, not significant (ns); p ≤ 0.05, *; p ≤ 0.01, **; p ≤ 0.001, ***). In order to calculate
the serum/plasma dilutions that result in half-maximal inhibition of S protein-driven cell
entry (neutralizing titer 50, NT50), a non-linear regression model was used.

3. Results
3.1. The Spike Proteins of SARS-CoV-2 Lineages B.1.620 and R.1 Differ Greatly with Respect to
the Number of Mutations

The SARS-CoV-2 lineage B.1.620 was first observed in western and central Africa (earli-
est sequences in the GISAID (Global Initiative on Sharing All Influenza Data) database were
reported from Senegal, Cameroon and the Central African Republic) and dispersed into
neighboring countries, Asia, Europe, and North and Central America in early to mid-2021
(Figure S1A). It carries a unique combination of mutations in the S protein [16] (Figure 1A),
some of which have also been observed in the variants of concern (VOC) B.1.1.7 (Alpha),
B.1.351 (Beta), P.1 (Gamma) and B.1.1.529 (Omicron). The N-terminal domain (NTD) of
the S protein, which contains an antigenic supersite [17–20], is heavily mutated in the
B.1.620 lineage, and the mutations may reduce binding of neutralizing antibodies. Fur-
thermore, mutations S477N and E484K, which are located in the receptor binding domain
(RBD) (Figure 1A), might modulate ACE2 interactions [21,22] and reduce neutralization
sensitivity to RBD-specific antibodies [23–26]. Finally the B.1.620 spike protein contains
mutation D614G, which is associated with increased transmissibility [27,28], and mutation
P681H, which is located at the N-terminus of the S1/S2 cleavage site but does not increase
spike protein cleavage by furin [29,30]. In the first half of 2021, the SARS-CoV-2 lineage R.1
(sublineage of B.1.1.316) spread to at least 30 countries, with the majority of cases observed
in Japan and the US [31,32] (Figure S1A). In Japan, its prevalence reached 40% [33], but
after a short period of expansion, infections declined and R.1 was replaced by the B.1.1.7
and B.1.617.2 lineages [31,32,34]. In contrast to the B.1.620 S protein, its counterpart in R.1
is not heavily mutated. It harbors the E484K and D614G mutations described above, as
well as one mutation in the NTD (W152L), which is believed to be associated with eva-
sion of neutralizing antibodies [35,36], and one mutation in the in the S2 subunit (G769V)
(Figure 1A).

3.2. The Spike Proteins of SARS-CoV-2 Lineages B.1.620 and R.1 Differ Regarding Cleavability,
Particle Incorporation and ACE2 Binding Compared to the Spike Protein of the SARS-CoV-2
B.1 Lineage

We investigated host cell entry of B.1.620 and R.1 and its inhibition using rhabdoviral
reporter particles pseudotyped with the respective S proteins, which are an adequate and
well-established model for SARS-CoV-2 entry into cells and is inhibition by neutralizing
antibodies [37]. The S proteins of B.1 (identical to the S protein of the Wuhan-Hu-1 isolate,
except for the presence of mutation D614G), which circulated early in the pandemic, and
B.1.617.2 (Delta variant) served as controls. Immunoblot analyses revealed that the S
proteins of B.1.620 and R.1 were robustly incorporated into particles (Figure 1B), although
incorporation of R.1 S protein was reduced as compared to the other S proteins studied.
All S proteins were cleaved at the S1/S2 site, as expected. Cleavage efficiency of B.1.6120
and particularly R.1 S proteins was reduced, while cleavage of B.1.617.2 S protein was
augmented (although this effect was not statistically significant) relative to B.1. spike
(Figure 1B), in keeping with the published data [11]. Further, the S2 band of B.1.620
migrated slightly faster as compared to the other S2 bands (Figure 1B) and the underlying
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reasons are at present unclear. Binding of S protein expressing cells to ACE2 fused to the
Fc portion of human immunoglobulin G revealed strong ACE2 binding to R.1 S protein,
while binding to B.1.620 and B.1.617.2 S proteins was reduced as compared to B.1 S protein
(Figure 1C). Next, we analyzed host cell entry mediated by the B.1.620 and R.1 S proteins.
For this, we employed the human cell lines 293T (kidney), Huh-7 (liver), Caco-2 (colon) and
Calu-3 (lung) and the African green monkey cell line Vero (kidney) as targets. The B.1.620
and R.1 S proteins mediated entry into 293T, Huh-7, Caco-2 and Calu-3 cells with similar
efficiency as the B.1 S protein, while entry into Vero cells was significantly less efficient
(Figure 1D and Figure S1B). Further, Calu-3 cell entry driven by the B.1.617.2 S protein was
enhanced relative to B.1 S protein, in agreement with published data [11,38,39] (Figure 1D).
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Figure 1. Spike proteins of SARS-CoV-2 lineages B.1.620 and R.1 differ regarding cleavability, particle
incorporation and ACE2 binding compared to the spike protein of the SARS-CoV-2 B.1 lineage.
(A) Schematic overview of the S protein domain organization of SARS-CoV-2 lineages B.1, B.1.620,
R.1 and B.1.617.2. The location of mutations compared to the S protein of the original virus (Wuhan-
Hu-01 isolate) is shown. RBD, receptor-binding domain; TD, transmembrane domain; S1/S2 and S2′,
cleavage sites for host cell proteases. (B) Particle incorporation of SARS-CoV-2 S proteins. The incor-
poration of S proteins into VSV (vesicular stomatitis virus) pseudotypes was analyzed by immunoblot
using an antibody against a C-terminal hemagglutinin (HA) tag (left panel). Bands corresponding to
uncleaved precursor SARS-CoV-2 S protein (S0) and S2 subunit are labeled. Detection of VSV-M was
used as loading control. A representative blot is shown, and similar results were obtained in four
independent experiments. Total (mean) levels of SARS-CoV-2 S protein in particles were quantified
with respect to the corresponding VSV-M signals and subsequently normalized (B.1 = 1, middle
panel). Further, cleavage efficiency for each S protein was quantified (right panel). For this, total S
protein signals were set as 100% and the relative percentage of S0 and S2 signals was determined. The
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mean from four independent experiments is shown. Error bars indicate the standard error of the
mean (SEM). Statistical significance of differences between WT and variant S proteins was analyzed
by one-way analysis of variance (ANOVA) with Dunnett’s post hoc test (p > 0.05, not significant
(ns); p ≤ 0.05, *; p ≤ 0.01, **). (C) Strong ACE2 binding of R.1 S protein. Transfected 293T cells
expressing the indicated S proteins were incubated with soluble ACE2 containing a C-terminal Fc-tag.
Subsequently, the cells were stained with anti-human AlexaFlour-488-conjugated secondary antibody
and subjected to flow cytometric analysis. Cells transfected with empty plasmid served as negative
control and ACE2 binding was normalized against B.1 (=1). The mean data of three biological
replicates is shown, error bars represent the SEM. The statistical significance of differences between
WT and variant S proteins was analyzed by one-way ANOVA with Dunnett’s post hoc test (p > 0.05,
ns; p ≤ 0.001, ***). (D) B.1.620 and R.1 S proteins drive efficient entry into human cell lines. Particles
pseudotyped with the indicated S proteins were inoculated onto four different human cell lines (293T,
Huh-7, Caco-2, Calu-3) and one African green monkey cell line (Vero). Transduction efficiency was
quantified by measuring virus-encoded luciferase activity in cell lysates at 16–18 h post transduction.
Presented are the mean data from three to six biological replicates (each conducted with technical
quadruplicates) for which transduction was normalized against B.1 (=1). Error bars indicate the SEM.
Statistical significance of differences between was analyzed by one-way ANOVA with Dunnett’s post
hoc test (p > 0.05, ns; p ≤ 0.05, *; p ≤ 0.01, **; p ≤ 0.001, ***; please see also Figure S1B).

3.3. The Spike Proteins of SARS-CoV-2 Lineages B.1.620 and R.1 Display Reduced Sensitivity to
Neutralization by Antibodies Induced upon Vaccination and Clinically-Used
Monoclonal Antibodies

We next studied susceptibility of the B.1.620 and R.1 S proteins to antibody-mediated
neutralization, employing plasma and/or serum from individuals who had either received
two immunizations with the mRNA vaccine BNT162b2 (BNT), or a first dose of the vectored
vaccine AZD1222 (AZ) followed by a second dose of BNT (Table S1), which represented
widely used vaccination regimens in Germany at the time when B.1.620 and R.1 circulated.
Neutralization of particles bearing the B.1.620 and R.1 S proteins was 3.1- and 2.1-fold,
respectively, less efficient than that of particles bearing the B.1 S protein, and was compara-
ble to that measured for particles bearing the B.1.617.2 S protein (Figure 2A). Finally, we
analyzed inhibition of the B.1.620 and R.1 S proteins by monoclonal antibodies used for
COVID-19 therapy (Figure 2B). Four out of five antibodies inhibited all S proteins tested
efficiently and to roughly comparable levels. In contrast, all S proteins with the exception
of the B.1 S protein were largely fully resistant against Bamlanivimab (Figure 2B), which
is line with previous reports on B.1.617.2 [40,41] or the presence of mutation E484K in the
case of B.1.620 and R.1 [42].
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Figure 2. SARS-CoV-2 lineages B.1.620 and R.1 evade antibody-mediated neutralization. (A,B) The S
proteins of SARS-CoV-2 B.1.620 and R.1 evade neutralization by antibodies induced by vaccination
or employed for COVID-19 therapy. S protein-bearing particles were incubated at 37 ◦C for 30 min in
the presence of the indicated plasma samples from BNT/BNT or AZ/BNT vaccinated individuals
(panel (A)) or therapeutic monoclonal antibodies (panel (B)) before being inoculated onto Vero cells.
Transduction efficiency was quantified as stated for Figure 1D and used to calculate the plasma
dilution factor that leads to a 50% reduction in transduction (NT50, panel (A)). Data for ten serum
samples from vaccinated donors are presented. Black lines indicate the median and numbers on
the right represent the fold change in NT50 compared to B.1. Statistical significance of differences
between individual groups was analyzed by Friedman test with Dunn’s multiple comparisons test
(panel (A); p > 0.05, ns; p ≤ 0.05, *; p ≤ 0.001, ***; please see also Figure S1C).

4. Discussion

We observed that the S proteins of B.1.620 and R.1 drive robust cell entry into various
cell lines and evade antibody-mediated neutralization with similar efficiency as the B.1.617.2
S protein. Some of our observations are noteworthy:

Cleavage of the B.1.620 and particularly R.1 S proteins was less efficient, while cleavage
of the B.1.617.2 S protein was slightly more efficient (not statistically significant) than
the B.1. S protein. The latter phenotype might result from the presence of the P681R
mutation in the B.1.617.2 S protein, which is located within the S1/S2 site and increases
cleavability, transmissibility and pathogenicity [38,39]. Why the S2 band of B.1.620 S
protein migrated faster during gel electrophoresis is at present unclear. However, the faster
migration might reflect cleavage at a site different from the canonical S1/S2 site or altered
posttranslational modifications.

The finding that binding of B.1.620 S protein to soluble ACE2 was less efficient as
compared to B.1 S protein is somewhat surprising as it has been previously reported that
RBD mutation S477N strengthens ACE2 binding [21], whereas RBD mutation E484K slightly
reduces ACE2 interaction [43]. However, in the context of the Omicron S protein, it has also
been shown that the combination of several RBD mutations that reduce ACE2 interaction
with some RBD mutations that strengthen ACE2 interaction can result in an overall increase
of ACE2 binding [44], and the opposite trend might be true for the combination of RBD
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mutations S477N and E484K. The R.1 S protein bound to ACE2 with higher efficiency as
compared to the B.1 S protein, despite harboring RBD mutation E484K that is associated
with a subtle reduction in ACE2 interaction efficiency [43]. Here, one can speculate that
the reduced cleavage phenotype of the R.1 S protein compared to the B.1 S protein might
restrict the conformational flexibility of the R.1 S protein and thus may favor a conformation
required for efficient ACE2 binding. While we did not specifically test this hypothesis,
it should be noted that Zhang and colleagues made a similar observation when they
compared ACE2 binding of the S protein of an early SARS-CoV-2 isolate (without D614G
mutation) and a mutant version thereof that contained an altered S1/S2 cleavage site
and therefore was not cleaved by furin [45]. In addition, we note that ACE2 binding to
B.1.617.2 S protein was less efficient than the B.1 S protein, although in a previous study
we detected comparable binding [11]; subtle differences in experimental conditions might
be responsible. Finally, it should be stated that staining with the neutralizing antibody
Imdevimab and subsequent FACS analysis revealed robust expression of all S proteins at
the cell surface (Figure S2), indicating that differences in ACE2 binding were not due to
differences in S protein surface expression.

Regarding host cell entry, B.1.620 and R.1 S proteins did not mediate increased entry
into any of the cell lines tested as compared to B.1 spike. In contrast, the B.1.617.2 S protein
facilitated entry into Calu-3 lung cells with higher efficiency than the B.1 S protein, in
keeping with our published data [11], and this phenotype was most likely due to mutation
P681R. Thus, P681R increases S protein cleavage at the S1/S2 site [38,39], which is a
prerequisite for S protein activation by TMPRSS2 and Calu-3 cell entry [46].

The observation that the S proteins of B.1.620 and R.1 were resistant against the
therapeutic antibody Bamlanivimab is not surprising given that mutation E484K, which is
present in the RBDs of both S proteins, is located in the Bamlanivimab epitope and confers
Bamlanivimab resistance [47]. Further, the evasion of vaccination-induced neutralizing
antibodies by B.1.620 does not come as a surprise, considering that this lineage harbors
several mutations in the NTD and RBD, some of which are known to reduce antibody-
mediated neutralization. In contrast, the observation that R.1 S protein evaded antibody-
mediated neutralization with similar efficiency as B.1.617.2 S protein was surprising since
R.1 S harbors only two additional mutations in the S1 subunit of the S protein, W152L
and E484K, compared to B.1 S. The role of E484K in evasion of neutralizing antibodies
is well established [26]. However, the robust evasion of neutralization by antibodies
induced by BNT/BNT or AZ/BNT vaccination suggests a substantial contribution of
W152L, which has also been suggested by other studies [35,36], although functional data
are so far missing. Collection of serum/plasma from BNT/BNT-vaccinated individuals was
carried out within one month after the second vaccination, while samples from AZ/BNT-
vaccinated individuals were taken within two to four months after the second vaccination.
While the discrepancy in sampling time between BNT/BNT- and AZ/BNT-vaccinated
groups constitutes a limitation of this study, we did not observe differences in the extent of
immune evasion by B.1.617.2, B.1.620 and R.1 for the two vaccination groups.

Collectively, our results, which await confirmation with authentic virus, suggest that
B.1.620 and R.1 evade neutralizing antibodies with similar efficiency as B.1.617.2, and
should thus be able to spread in an immunologically non-naïve target population.
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