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Abstract: Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato
production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together
with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics,
and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with
a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan.
Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates
from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using
Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary
relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity
analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and
a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase
(RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that
STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a
variable distribution pattern of positively and negatively selected sites, negative selection pressure
predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and
evolutionary trends among STV populations across major tomato-producing regions of the world.

Keywords: southern tomato amalgavirus; cryptic pathogen; vertical transmission; viral prevalence;
next-generation sequencing; phylodynamics; genetic variability

1. Introduction

Plant viral diseases are major impediments to the sustainable food production system
across the world [1–5]. In particular, the production of tomatoes (Solanum lycopersicum L.) is
under persistent constraint due to innumerable viruses [6,7]. Southern tomato amalgavirus
(STV) belongs to the genus Amalgavirus in the family Amalgaviridae, consisting of a double-
stranded RNA (dsRNA) genome of 3.5 kb that encodes two proteins from two overlapping
open-reading frames (ORFs): ORF 1 encodes for the putative coat protein (CP) p42 and
ORF 2 encodes for the RNA-dependent RNA-polymerase (RdRp), a fusion protein that
is expressed by a +1 ribosomal frameshift (Figure 1A). STV is a persistent quarantine
pathogen that is transmitted vertically through tomato seeds, while horizontal transmission

Viruses 2022, 14, 2481. https://doi.org/10.3390/v14112481 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14112481
https://doi.org/10.3390/v14112481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-8075-5627
https://orcid.org/0000-0001-7738-7993
https://orcid.org/0000-0001-9691-0698
https://orcid.org/0000-0001-9292-8284
https://doi.org/10.3390/v14112481
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14112481?type=check_update&version=3


Viruses 2022, 14, 2481 2 of 19

has not been reported [8]. STV infects tomato lines and varieties in general because it
accompanies the embryo seed. It is referred to as a “cryptic plant virus”, meaning that it
occurs in plants without showing obvious symptomology under a single infection condition.
However, in association with other viruses, including tomato yellow leaf curl begomovirus
(TYLCV), tomato chlorosis crinivirus (ToCV), tomato infectious chlorosis crinivirus (TICV),
pepino mosaic potexvirus (PepMV), cucumber mosaic cucumovirus (CMV), tomato mosaic
tobamovirus (ToMV), and tomato spotted wilt orthotospovirus (TSWV), STV exhibits
chlorotic, leaf yellowing, stunting, and fruit malformation with the induction of tomato
yellow stunt disease (ToYSD) (Figure 1B,C) [8–13].
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tion. The nucleotide positions of open reading frames (ORFs) were exemplified using the STV Pk 
isolate (MT066231). (B) Infected plants displaying typical chlorotic, leaf yellowing (shown in red 
boxes), stunting, and fruit malformation. (C) Tomato fruit with discoloration and size reduction 
alongside fruit from healthy tomato plants. (D) Agarose gel electrophoresis of RT-PCR products 
indicating amplified STV fragments that covered a conserved region of p42 and RdRp at the position 
of ribosomal frameshifting from infected tomato leaf and seed samples compared with a healthy 
sample. (E) Heatmap columns representing different parameters (E-value, alignment length, and 
percentage identity) associated with contigs mapped to the STV genome. Pink and red colors denote 
the lowest and highest values, respectively. 
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due to the absence of symptoms in single infections. Thus, high-throughput sequencing 
(HTS) technology, such as next-generation sequencing (NGS), has been employed to de-
tect STV in many countries, including the United States of America, Spain, Germany, Italy, 
China, Bangladesh, and Pakistan [10,14–17]. During the infection, STV interacts with the 
host or/and with other associated partner viruses and demonstrates evolutionary dynam-
ics/variability. Transcriptome analysis revealed that STV modifies the expression of en-
dogenous plant micro-RNAs (miRNAs) and virus-derived small interfering RNAs (vsiR-
NAs) in tomato plants [9]. For example, in tomato plants with a singular infection of STV, 

Figure 1. The genomic organization and detection of STV through reverse transcription–polymerase
chain reaction (RT-PCR) from infected tomato leaf and seed samples. (A) Schematic representation of
the genome organization and translation of STV, including the UTR regions and gene distribution.
The nucleotide positions of open reading frames (ORFs) were exemplified using the STV Pk isolate
(MT066231). (B) Infected plants displaying typical chlorotic, leaf yellowing (shown in red boxes),
stunting, and fruit malformation. (C) Tomato fruit with discoloration and size reduction alongside
fruit from healthy tomato plants. (D) Agarose gel electrophoresis of RT-PCR products indicating
amplified STV fragments that covered a conserved region of p42 and RdRp at the position of
ribosomal frameshifting from infected tomato leaf and seed samples compared with a healthy sample.
(E) Heatmap columns representing different parameters (E-value, alignment length, and percentage
identity) associated with contigs mapped to the STV genome. Pink and red colors denote the lowest
and highest values, respectively.

STV may be prevalent all over the world, but its identification remains challenging
due to the absence of symptoms in single infections. Thus, high-throughput sequencing
(HTS) technology, such as next-generation sequencing (NGS), has been employed to detect
STV in many countries, including the United States of America, Spain, Germany, Italy,
China, Bangladesh, and Pakistan [10,14–17]. During the infection, STV interacts with
the host or/and with other associated partner viruses and demonstrates evolutionary
dynamics/variability. Transcriptome analysis revealed that STV modifies the expression
of endogenous plant micro-RNAs (miRNAs) and virus-derived small interfering RNAs
(vsiRNAs) in tomato plants [9]. For example, in tomato plants with a singular infection of
STV, the amount of plant-miRNAs is increased and they are involved in the regulation of
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several complex cellular pathways against pathogens, while the amount of STV-vsiRNAs
are decreased without the induction of symptoms and cellular ultra-structural modification,
but increased in the presence of CMV and PepMV with additional symptomologies [9,18,19].
Furthermore, STV infection was also reported to abrogate the antagonism between CMV
and PepMV, reinstating the CMV titer and viral symptoms [18].

Over the last decade, metagenomic studies through HTS demonstrated that plants
are frequently infected by an unprecedented number of persistent viruses, increasing the
nucleotide datasets for determining the genomic characteristics of these pathogens [20–22].
To investigate STV infection, we conducted disease inspections in China and Pakistan
and detected STV in single and mixed infections with other suspected viruses from symp-
tomatic tomato plants and their seeds through reverse transcription–polymerase chain
reaction (RT-PCR) and NGS. Strikingly, NGS confirmed the presence of STV with some
additional previously reported pathogenic viruses, including ToCV, TYLCV, TICV, and
ToMV in tomato plants, which induce symptoms that are identical to those observed in
collected samples. In addition, the infection of STV was also validated via RT-PCR using
specific pairs of primers and Sanger sequencing [8]. The complete the genome sequences
of STV, isolates from Pakistan and China were obtained. To date, no study has compre-
hensively analyzed the genetic diversity and evolvability among global populations of
STV. Therefore, we also analyzed the genetic diversity and evolutionary dynamics of STV,
which will assist in understanding the genetic complexity and evolution of this virus that
are presumably governing the continual STV global spread and successful adaptation to
different ecosystems. Furthermore, these findings are imperative for understanding the
epidemiology of STV and developing effective detection methods and control strategies.

2. Materials and Methods
2.1. STV Infection Status and Samples Collection

To investigate the STV infections, characteristic symptoms of ToYSD, such as pro-
nounced chlorotic, leaf yellowing, and stunting symptoms were examined on tomato plants
with discoloration, deformed, and reduced fruit size under field, green-, and glass-house
conditions. Symptomatic tomato plants were indexed for the presence of the following
viruses: TYLCV [23], ToCV [24], TICV [25], and STV in single- and mixed-infection condi-
tions [8]. Tomato leaf and seed samples used in this study were collected from multiple
field visits at different localities in Beijing, China, and Punjab, Pakistan, from 2017 to 2020
(Figure 2A,B and Table S1). These samples were subjected to laboratory analyses for the
molecular detection and confirmation of STV infection due to single and multiple viruses.
The rate of STV infection and ToYSD prevalence and incidence were recorded using pre-
viously described formulas [26] (Table S1). In addition, harvested leaf samples were also
stored in sterilized pre-cold 2 mL Eppendorf safe-lock microcentrifuge tubes at −80 ◦C for
total RNA preparation and subsequent experimentations.

2.2. Total RNA Preparation and Virus Detection

Total RNA was extracted from 100 mg of freeze-dried leaf and seed material from each
of the individual samples employed in this study using TRIzol reagent (Invitrogen, Life
Technologies, Carlsbad, CA, USA) following the manufacturer’s instructions. The quality
and quantity of RNA were determined spectrophotometrically at a 280 nm wavelength
with a NanoDrop spectrophotometer (ND-1000, Fisher Thermo, Wilmington, DE, USA).
Subsequently, RNA aliquots of smaller volumes per sample were stored at −80 ◦C until
further analysis.

2.3. Detection Using RT-PCR

To test the infection of STV and its associated viruses, as well as to validate the STV
infection rate across different localities using RT-PCR, these extracted RNAs were reverse-
transcribed into complementary DNAs (cDNAs) with the Moloney murine leukemia virus–
reverse transcriptase (MMuLV-RT) (Sigma Aldrich, St. Louis, MO, USA) in a total volume of
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20 µL per sample. These cDNAs were subjected to PCR with a Taq DNA polymerase (Sigma
Aldrich, USA) using virus-specific pairs of primers (Table S2) [8,27–34]. PCR assays were
performed for the amplification of target fragments of each suspected virus. Amplified PCR
products were analyzed using gel electrophoresis on 1% agarose gels alongside a 1 kb DNA
ladder (Thermo Fisher Scientific, Waltham, MA, USA) prestained with ethidium bromide
(10 mg/mL) in 1× Tris-acetate-EDTA (TAE) buffer, pH 8.0. The gels were visualized with
the help of the Gel Doc XR imaging system (Bio-Rad, Hercules, CA, USA). Positive RT-PCR
products were gel-purified and sequenced directly to confirm the presence of the detected
virus [29,35].
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Figure 2. The geographical studies of STV with its diagnosis and infection dynamics. (A,B) The
geographical locations of disease-symptomatic tomato samples collected from Beijing, China, and
Punjab, Pakistan. Sampled sites are marked on the enlarged abridged maps. (C,D) The infection
dynamics of STV in single- and mixed-infection conditions with multiple combinations of viruses.
(E,F) The confirmed STV disease incidence recorded across Beijing, China (E), and Punjab, Pak-
istan (F).

2.4. Detection Using NGS

Samples from high-STV-incident regions were subjected to NGS for detection in single
and or mixed infections with a range of plant viruses. Total extracted RNA was purified by
adding 0.1 volume of NH4OAc (Sigma Aldrich, USA) and 2.5 volumes of 100% pre-cold
EtOH (Sigma Aldrich, USA) and the RNA was directly incubated at −80 ◦C for 30 min.
After that, the RNA was incubated at room temperature for 5 min and centrifuged for
20 min at 12,000 RPM. Subsequently, the pellet was washed with 75% pre-cold EtOH (Sigma
Aldrich, USA) and re-suspended in RNase-free H2O [36,37]. The purity and concentration
of the RNA were determined with a NanoDrop spectrophotometer. Furthermore, to test
the quality and integrity of the purified total RNA using gel electrophoresis, an aliquot
of RNA (500–1000 ng) alongside a 5 kb DNA ladder (Thermo Fisher Scientific) was run
on 1% agarose gel stained with ethidium bromide for ~30–60 min. The RNA bands of
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28/23S rRNA and 18/16S rRNA were clearly visualized, and the brightness of 28/23S
rRNA was greater than that of 18/16S rRNA. RNA integrity number (RIN) values ≥ 8.0,
OD260/280 ≥ 1.9, and OD260/230 ≥ 1.5 were established. This intact RNA was subjected
to the Illumina Hiseq sequencing platform to complete small-RNA sequencing, and the
Illumina SE library was constructed for HTS. HTS followed by the de novo assembly
resulted in sequence contigs. The data were analyzed using the Basic Local Alignment
Search Tool (BLAST) from the National Center of Biotechnology Information (NCBI) and
bioinformatics methods for the identification of suspected viruses and mapping their
genomic sequences [38–41]. The NGS results were also validated using RT-PCR.

2.5. Amplification and Molecular Cloning of the STV Genome

The STV dsRNA genome (3.5 kb) was amplified into two fragments, namely, STV-A
(1880 bp) and STV-B (1681 bp), via high-fidelity PCR with Phusion high-fidelity polymerase
(NEB, Ipswich, MA, USA) using two pairs of overlapping primers (STV-F1/STV-R1 and
STV-F2/STV-R2) (Table S2), which were homologous to vector plasmid pCB301-2µ-HDV.
The plasmid pCB301-2µ-HDV (7838 bp) was linearized between the CaMV 35S promoter
and the HDRz sequence with high-fidelity PCR and amplified using a specific pair of
primer (pCB301 backbone-F and pCB301 backbone-R) (Table S2), which was homologous to
STV (Figure 3A,B). Yeast homologous recombination cloning was applied to assemble these
purified DNA fragments of the viral genome in the yeast Saccharomyces cerevisiae through
the pCB301-HDV-Rz vector to construct the full-length genome of the virus (Figure 3C) [42].
This strategy was adopted to amplify the full-length genome of STV from all other STV-
positive samples, including tomato seed samples, and their genomes were submitted to
GenBank® (NCBI, Bethesda, MD, USA).
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Figure 3. The schematic representation of the STV full-length genome and molecular cloning. (A) The
STV full-length genome was amplified into two parts with overlapping pairs of primers (overlapping
24 nt from the 3′- and 5′-UTR of STV to the vector plasmid pCB301-2µ-HDV) with high-fidelity PCR.
(B) The pCB301-HDV-Rz was linearized between the CaMV 35S promoter and the HDRz sequence
using high-fidelity PCR. (C) Amplified STV parts A and B were assembled via yeast homologous
recombination cloning and the full-length genome was constructed.
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2.6. Multiple Sequence Alignment and Phylogenetics

The sequences of globally reported STV isolates were retrieved from the GenBank®

(NCBI, MD, USA) (Table S3). Multiple sequence alignments (MSAs) were executed based
on the complete genome sequences of STV using the MUSCLE tool in the software Geneious
Prime version 9.0.2. Likewise, alignments of the individual STV genes (p42 and RdRp)
among the corresponding genes of the globally reported STV isolates were performed.
All alignments were manually analyzed and adjusted (when necessary) before proceed-
ing to the subsequent analysis. Phylogenetic analysis was performed with the molecular
evolutionary genetics analysis computing platform using MEGA X [43,44]. The phylo-
genetic model was constructed with MEGA X employing the maximum likelihood (ML)
method with 1000 bootstrap replicates [43]. The model was visualized and annotated using
iToL [45]. Finally, the distribution and matrix of the pairwise identities among all STV
isolates were determined using Sequence Demarcation Tool (SDT) v1.2 [46].

2.7. Estimation of the Nucleotide Diversity and Haplotype Variability Indices

The nucleotide diversity π (represented by the average pairwise number of nucleotide
differences per site) was calculated using DnaSP V.5 [47]. The significant differences in
the average nucleotide diversity among all STV sequences were estimated by calculating
their 95% bootstrap confidence intervals. A 100 nt sliding window with a step size of
10 nt across the full-length sequences of STV was considered to calculate π. Additional
population-genetics-related parameters, including the number of haplotypes (H), the hap-
lotype diversity (Hd), the nucleotide diversity (π), the number of polymorphic sites (S),
Watterson’s theta (θw), the total number of mutations (Eta), and Tajima’s D, were also
estimated for STV genomes and individual coding sequences (p42 and RdRp) using DnaSP
V.5 [48].

2.8. Recombination Analysis of STV Populations

The occurrence of recombination events across full-length STV sequences was investi-
gated by using several methods, including Rdp, SisterScan, Bootscan, Chimaera, GeneConv,
MaxChi, and 3Seq. The recombination analysis was implemented in the recombination
detection program (RDP) V.4 [49]. For all methods, alignments were performed with
default settings. The p-values less than the Bonferroni-corrected cutoff (0.05) were used
to infer the statistically significant results. The recombination events detected by one,
two, or three methods were regarded as events with low, moderate, or high levels of
confidence, respectively.

2.9. Analysis of Positive and Negative Selection

The identification of potential positively and negatively selected sites in the coding se-
quences of p42 and RdRp was performed by using four distinct methods: single-likelihood
ancestor counting (SLAC), partitioning for robust inference of selection, fixed-effects likeli-
hood, and random-effects likelihood [50]. All these methods were employed in the adap-
tive evolutionary tool “Datamonkey”, which is available online at www.datamonkey.org
(accessed on 27 April 2022) [51]. To exclude the possibility of misleading results, the
recombination breakpoints among all STV sequences (p42 and RdRp) were searched by
implementing the Genetic Algorithm Recombination Detection (GARD) method [52].

3. Results
3.1. STV Diagnosis and Infection Dynamics

STV diagnosis and infection rates were studied in all locations in Beijing, China,
and Punjab, Pakistan, where tomato leaf and seed samples were collected based on the
characteristic symptomology of ToYSD (Table S1 and Figure 2A,B). The most common
symptoms were observed in tomato production fields, including pronounced chlorotic,
leaf yellowing, and stunting symptoms on tomato plants with discoloration, deformed,
and reduced fruit size under field, green-, and glass-house conditions. Interestingly, STV

www.datamonkey.org
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was detected in all tomato production regions and localities with ToYSD symptomology
in both single- and mixed-infection conditions with a variable rate of infection (Table S1).
Thus, ToYSD was most prevalent in the south of Beijing, such as Tongzhou (83.33%),
Fangshan (80.00%), and Daxing (75.00%), whereas tomato production fields in the north
of Beijing, including Miyun (60.00%), Yanqing (66.66%), and Shunyi (66.66%), except
Changping (75.00%), as well as east of Beijing, namely, Pinggu (60.00%), which showed
mild prevalence. Similarly, the east of Punjab, including Faisalabad (87.50%) and Lahore
(80.00%), showed higher ToYSD prevalences compared with the south of Punjab, such as
Bahawalpur (60.00%) and Multan (75.00%) (Table 1). Based on the laboratory diagnosis
(PCR and sequencing analysis), STV incidence also varied from region to region, ranging
from 28.57% in Yanqing (northwest of Beijing, China) to 58.33% in Fangshan (southwest
of Beijing, China), and 30.00% in Bahawalpur (south of Punjab, Pakistan) to 50.00% in
Faisalabad (east of Punjab, Pakistan), with an overall mean incidence of 43.19% for all eight
districts of Beijing, China, and 40.08% for the four districts of Punjab, Pakistan, respectively
(Table 1). Moreover, using RT-PCR, STV was detected in symptomatic tomato plants and
their seed samples in single and mixed infections with other suspected viruses, such as
TYLCV, ToCV, TICV, TSWV, and ToMV, in diverse combinations with different rates of
infection (Figure 2C,D). NGS technology was also employed to detect STV and validate
its infection dynamics under different combinations of viruses from the highest disease
incidence regions, namely, Fangshan, Tongzhou, and Faisalabad. Together with RT-PCR,
Sanger sequencing, and NGS studies, in Beijing, China, an infection rate of 19.26% STV was
recorded in a single infection and 26.60% in mixed infections collectively with multiple viral
infection combinations. Similarly, in Punjab, Pakistan, an incidence of 11.36% STV in single
infections and 34.09% in mixed infections was observed (Figure 2C,D). Generally, STV
causes severe infection in association with other viruses. In Beijing, severe infection was
reported in Fangshan (58.33%), Changping (57.14%), and Tongzhou (53.33%), followed by
Daxing (41.66%), Shunyi (37.50), Pinggu (35.71%), Miyun (33.33%), and Yanqing (28.57%).
However, in Punjab, Faisalabad (50.00%) and Lahore (42.85%) had higher STV incidences
than Multan (37.50%) and Bahawalpur (30.00%) (Figure 2E,F).
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Table 1. STV infection dynamics under field conditions and confirmation through laboratory analysis and high-throughput sequencing technology (HTS).

Sample Locality
GPS (Latitude,

Longitude)
Type of Sample

(Production)

Rate of ToYSD
Infection (%) 1

Rate of STV Infection
(%) Multiple-Virus Infections

ToYSD
Prevalence a

ToYSD
Incidence b RT-PCR Sanger RT-PCR Sanger HTS

Beijing, China

Fangshan 39◦44′4.67′′ N,
116◦11′30.7′′ E Leaf (greenhouse) 80.00 75.00 58.33

√ STV, TYLCV, ToCV,
TSWV, ToMV

√ √

Changping 40◦10′39.36′′ N,
116◦23′59.17′′ E Leaf (greenhouse) 75.00 71.42 57.14

√ STV, TYLCV, ToCV,
TSWV

√
//

Tongzhou 39◦54′35.87′′ N,
116◦39′23.17′′ E Leaf/seed (greenhouse) 83.33 76.66 53.33

√ STV, TSWV, TYLCV,
ToCV, ToMV, TICV

√ √

Shunyi 40◦7′49.25′′ N,
116◦39′16.74′′ E

Leaf (greenhouse/open
field) 66.66 62.50 37.50

√
STV, TYLCV

√
//

Miyun 40◦22′36.95′′ N,
116◦50′35.04′′ E Leaf (greenhouse) 60.00 58.33 33.33

√
STV, TYLCV, ToCV

√
//

Pinggu 40◦7′34.61′′ N,
117◦15′31.86′′ E Leaf (greenhouse) 60.00 57.14 35.71

√ STV, TSWV, TYLCV,
ToCV

√
//

Daxing 39◦47′29.3′′ N,
116◦29′48.44′′ E Leaf (greenhouse) 75.00 66.66 41.66

√ TYLCV, STV, TICV,
ToMV

√
//

Yanqing 40◦31′4.33′′ N,
115◦54′47.89′′ E Leaf (greenhouse) 66.66 57.14 28.57

√
STV, TYLCV, ToCV

√
//

Overall STV incidence 43.19

Punjab, Pakistan

Faisalabad 31◦27′1.32′′ N,
73◦8′5.86′′ E

Leaf/seed
(Greenhouse/open field) 87.50 83.33 50.00

√ STV, ToCV, TYLCV,
ToMV

√ √

Multan 30◦9′26.85′′ N,
71◦31′29.69′′ E Leaf/seed (open field) 75.00 62.50 37.50

√
TYLCV, STV, ToCV

√
//

Bahawalpur 29◦21′15.66′′ N,
71◦41′27.84′′ E Leaf/seed (open field) 60.00 50.00 30.00

√
STV, TYLCV, ToCV

√
//

Lahore 31◦31′13.33′′ N,
74◦21′31.49′′ E Leaf/seed (open field) 80.00 71.42 42.85

√
STV, TYLCV, ToCV

√
//

Overall STV incidence 40.08

Abbreviations: GPS, global positioning system; STV, southern tomato amalgavirus; ToCV, tomato chlorosis crinivirus; TICV, tomato infectious chlorosis crinivirus; ToMV, tomato mosaic
tobamovirus, TSWV, tomato spotted wilt orthotospovirus; TYLCV, tomato yellow leaf curl begomovirus; ToYSD, tomato yellow stunt disease. The symbol “

√
” denotes confirmed viral

infection through sequencing (Sanger/HTS), while “//” indicates that NGS was not applied. 1 The rate of ToYSD infection (prevalence and incidence) was calculated using the following
equations: a ToYSD prevalence = X

Y × 100, where X is the number of sample production localities (greenhouses/fields) with visible ToYSD symptoms and Y is the total number of

sample production localities observed in a region [26]. b ToYSD incidence = (N−n)
N × 100, where N is the total number of samples under observation and n is the total number of healthy

samples without ToYSD symptoms and viral infections [26].
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3.2. Amplification of the STV Genome and Molecular Cloning

STV encompasses a dsRNA (3.5 kb) genome with two dynamically functioning ORFs
that overlap and encode two distinct proteins, such as ORF 1 encoding p42 (CP) and
ORF 2 encoding RdRp via +1 ribosomal frameshifting. In order to perform STV genomic
characterization and phylogenetic analysis, full-length genomes were constructed from the
three highest virus incidence regions, namely, Fangshan, Tongzhou, and Faisalabad. The
STV dsRNA genome, having two overlapping ORFs, was amplified into two fragments,
namely, STV-A (1880 bp) and STV-B (1681 bp), through high-fidelity PCR using two pairs
of primers (STV-F1/STV-R1 and STV-F2/STV-R2) (Supplementary Table S2), which were
homologous to vector plasmid pCB301-2µ-HDV (Figure 3A). The plasmid pCB301-2µ-
HDV (7838 bp) was linearized between the CaMV 35S promoter and the HDRz sequence
with high-fidelity PCR using a specific pair of primers (pCB301 backbone-F and pCB301
backbone-R) (Supplementary Table S2) that was homologous to STV (Figure 3B). These STV-
amplified fragments were assembled and cloned in the pCB301-HDV-Rz vector to construct
the full-length genome of the virus through yeast homologous recombination cloning
(Figure 3C) [42]. The whole genome was sequenced using Sanger sequencing technology. To
have more genomic data for the execution of molecular characterization and phylogenetics
from geographically different regions, STV full-length genomes were constructed from
Fangshan, Tongzhou, and Faisalabad, and sequenced and deposited in GenBank® (NCBI,
USA) under the accession numbers OP548653, OP548652, and MT066231, respectively.

3.3. Multiple Sequence Alignment and Molecular Phylogenetics

The sequences of STV isolates were retrieved from GenBank® (NCBI, USA)
(Supplementary Table S3). The MSA of these isolates, based on complete genome se-
quences, indicated that STV isolates (OP548653, OP548652, and MT066231) had more than
98% sequence homology between them and other STV isolates with small numbers of muta-
tions at different sites in the genome. Molecular phylogenetic analysis was performed and
a tree was constructed on the bases of complete genome sequences using MEGA X, which
revealed that STV isolates (OP548653, OP548652, and MT066231) had a close evolutionary
relationship with Asiatic, European, and American isolates that infect S. lycopersicum and
Capsicum annuum under greenhouse and field conditions. The highest similarity (100%)
was observed between MN095716 and EF442780 isolates reported from Colombia and
Mexico, respectively, and the lowest similarity (98.48%) was observed in OL471993, which
is an isolate that originated from Slovenia. However, the average percentage homology of
aligned sequences of all these clade isolates was >98% (Figure 4 and Table S4).

3.4. Comparison of Genetic Variability between STV Populations

Further, we analyzed the standing molecular diversity among 44 sequences of STV
and compared the genetic variations between the p42 and RdRp genes. The genetic
diversity of STV, determined at the whole genome level, revealed that 33 haplotypes were
detected with the gene (haplotype) diversity (Hd) being 0.977. The number of segregating
(polymorphic) sites for STV populations was 136, with 141 mutations (Eta). The standing
nucleotide diversity (π) was estimated to be 0.00404. A statistically significant (p < 0.05)
and highly negative value of Tajima’s D (−2.14304) among the STV sequences indicated the
presence of excessive polymorphic sites (Figure 5 and Table 2). Similarly, a genetic diversity
analysis was performed for p42 and RdRp coding sequences, which demonstrated that
the values of the aforementioned parameters were higher for RdRp compared with p42,
except for Tajima’s D value, which was significantly slightly more negative (−2.2335) for
p42 sequences than for RdRP (−2.1371) (Figure 5F and Table 2).
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Figure 4. Molecular phylogenetics of STV demonstrated the evolutionary relatedness between
the species of the genus Amalgavirus in the family Amalgaviridae. A phylogenetic radial tree was
constructed on the basis of the complete genome sequence STV. The isolates are represented in
the radial tree with accession numbers of the sequences and reported regions. All 44 STV isolates
deposited in GenBank were used to analyze the phylogenetic relationships of isolates found in Beijing,
China (OP548653 and OP548652), and Punjab, Pakistan (MT066231). They had close relationships
with Asiatic, American, and European isolates.
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Table 2. Estimation of molecular genetic diversity among full genomes and individual genes (p42
and RdRp) of STV isolates.

Dataset.
No. of Se-
quences

No. of Analyzed
Sites S H Hd π

θw
Eta

Neutrality Test

Per Site Per Sequence Tajima’s D

STV 44 3305 136 33 0.977 0.00404 0.00946 31.264 141 −2.14304 *

p42 44 1134 44 23 0.893 0.00329 0.00892 10.115 45 −2.23347 **
RdRp 44 3190 135 33 0.977 0.00417 0.00973 31.034 140 −2.13714 *

S, number of segregating (polymorphic) sites; H, number of haplotypes; Eta, the total number of mutations;
Hd, haplotype diversity; θw, Watterson’s theta; π, nucleotide diversity. *, statistically significant (p ≤ 0.05);
**, statistically significant (p ≤ 0.01).

3.5. Possible Recombination Events Involved in the Genetic Diversity of STV

To investigate the role of recombination in the standing genetic diversity existing
among STV populations, we performed a recombination test using RDP, which revealed
a total of three putative recombination events among 44 STV sequences. The first event
was detected among 24 sequences with only one method (MaxChi, p-value 3.579 × 10−3).
In this event, OK309713 (Turkish isolate) was designated as a recombinant sequence with
a major parent OK309721 and an unknown minor parent (Figure 6 and Table 3). The
second recombination event was found in 38 sequences with KY228384 (Chinese isolate)
being recombinant with OK309710 and MF422617 as major and minor parents, respectively.
The recombination signals were detected using two methods (Bootscan and 3Seq), with a
significant p-value of 3.277 × 10−2 (Figure S1 and Table 3). Finally, the third recombination
event was found only in three sequences and the recombinant sequence was KT438549
(Chinese isolate) with the major parent OK309708 and an unknown minor parent. This
event was also supported using two methods (3Seq and SisterScan), with a significant
p-value of 2.625 × 10−2 (Figure S2 and Table 3). Taken together, a lower-to-moderately
significant impact of recombination was observed to be associated with existing genomic
variation among the STV populations.
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Table 3. Description of recombination events detected using RDP in the full-length genome and
RdRp region of globally reported STV populations.

Recombination
Event

Sequences
Detected

with Recomb.
Event

Recombinant
Sequence

Recombination
Breakpoints

without (with) Gaps
Parental Sequences Detection

Methods 1 p-Value 2

Isolate Country Begin End Major Minor

STV
1 24 OK309713 Turkey 2347 (2444) 3089 (3186) OK309721 KT438549 M 3.579 × 10−03

2 38 KY228384 China 1078 (1082) 1284 (1288) OK309710 MF522617 B3 3.227 × 10−02

3 3 KT438549 China 2440 (2444) 3182 (3186) OK309708 OK309721 S3 2.625 × 10−02

RdRp
1 26 OK309713 Turkey 2308 (2308) 2994 (2994) OK309721 Unknown M 1.758 × 10−02

2 2 OK309710 Turkey 945 (945) 1188 (1188) KY228384 Unknown 3 3.277 × 10−02

1 R, RDP; G, GeneConv; B, Bootscan; M, MaxChi; C, CHIMAERA; S, SisScan; 3, 3SEQ. 2 The described p-value
corresponds to the calculated p-value for the event in question, which was detected using the program in bold
and underlined.

3.6. Analysis of Positive and Negative Selection

In order to gain a comprehensive understanding of the possible role of selection
pressure in the evolution of STV, we analyzed the role of non-synonymous to synony-
mous substitutions (dN/dS) in shaping the genomic variations between STV popula-
tions. We compared the overall dN/dS for the p42 and RdRp regions. The results
based on the DataMonkey analysis showed that p42 was mainly evolving under neg-
ative or purifying selection pressure, as it contained a higher number (13) of codons with
dN/dS <1 compared with only three sites under positive selection pressure (dN/dS >1). No
codons within p42 sequences were detected to be evolving under neutral selection pressure
(dN/dS = 1 (Figure 7A). Further analysis revealed that the 5’ half of p42 exhibited more
negatively selected sites (61.5%) compared with the 3’ half (38.5%) (Figure 7B). On the
other hand, RdRp was observed to contain 45, 13, and 3 sites under negative, positive,
and neutral selection pressure, respectively (Figure 7C). Interestingly, in contrast to p42,
the distribution of negatively selected sites was lower (40%) in the 5′ half compared with
the 3’ half (60%) of RdRp. Notably, all three positively selected sites were detected in the
3’ half of RdRp (Figure 7D). Results of the selection pressure analysis demonstrated that
although negative selection pressure was the major factor acting upon p42 and RdRp, the
distribution pattern of negatively and positively selected sites remained variable among
both proteins.
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4. Discussion

All kinds of cellular life forms are vulnerable to being parasitized by several diverse
viruses, leading to multifaceted intra-host virus–virus interactions and evolution. STV is
a persistent quarantine pathogen that spreads vertically through tomato seeds, infecting
tomato plants without exhibiting obvious symptoms under a single infection condition, but
in association with TYLCV, ToCV, TICV, TSWV, and ToMV, provokes ToYSD, exacerbating
chlorotic, leaf yellowing, stunting, and fruit deformation symptoms (Figure 1B,C) [8–13].
In this study, for the first time, we conducted large-scale STV infection diagnosis and
global evolutionary dynamics with its genetic characterization. An agile cryptic agent,
namely, STV, in the aggression of ToYSD was identified in diseased greenhouse and field-
grown tomatoes from various geographical localities with yellowing, stunting, and fruit size
reduction symptomologies (Table S1). STV was detected in both single and mixed infections
with the combination of different viruses across Beijing, China, and Punjab, Pakistan, with
a variable rate of infections (Table 1). A high rate of STV infection was recorded under
mixed-infection conditions with TYLCV, ToCV, TICV, TSWV, and ToMV in Beijing, China,
and Punjab, Pakistan (Figure 2C,D). Remarkably, STV in a single infection did not produce
obvious symptoms via regulating complex cellular pathways in tomato plants against
pathogens through the capricious expression of endogenous plant miRNAs and vsiRNAs.
However, in mixed infection, it most frequently interacts with other viruses, such as TYLCV,
ToCV, CMV, and PepMV, and triggers ultra-structural modification in the host plant with
severe disease induction and overt symptomologies [9,15,18,19,53]. Several studies revealed
that multiple viral infections may lead to a great variety of multilayered intra-host virus–
virus interactions involved in the virus recombination for evolution, suppression of host
defense mechanisms, and synergism of viral pathogenicity [54–57]. The synergistically
intricate interaction of TYLCV with ToCV and TICV drastically subverts the host defense
mechanism and aggravates tomato leaf curl disease (TLCD) [54,58,59]. Sweet potato
chlorotic stunt crinivirus (SPCSV) interacts with sweet potato feathery mottle potyvirus
(SPFMV) and sweet potato mild mottle ipomovirus and triggers sweet potato viral disease
(SPVD) and sweet potato severe mosaic disease (SPSMD) epidemics, respectively [55,60].
Similarly, mixed-infection African cassava mosaic begomovirus (ACMV), cassava mosaic
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Madagascar begomovirus (CMMGV), East African cassava mosaic begomovirus (EACMV),
East African cassava mosaic Kenya begomovirus (EACMKV), East African cassava mosaic
Malawi begomovirus (EACMMV), East African cassava mosaic Zanzibar begomovirus
(EACMZV), and South African cassava mosaic begomovirus (SACMV) resulted in a global
cassava mosaic disease (CMD) pandemic [61,62].

The genomic organization of STV indicates that it consists of a single dsRNA molecule
with two partially overlapping ORFs, encoding p42 (CP) from ORF1 and RdRp from ORF2
through +1 ribosomal frameshifting as a fused product. The presence of putative slippery
sites followed by a pseudoknot configuration in the STV genome was considered to be sig-
nificantly involved in +1 ribosomal frameshifting [8]. STV is an exclusive virus, its genomic
characteristics are the amalgam of two families, namely, Partitiviridae and Totiviridiae. The
family Partitiviridae includes dsRNA viruses, which infect fungi and plants and possess a di-
vided dsRNA genome comprised of dsRNA1 (encoding RdRp) and dsRNA2 (encoding viral
CP). However, the family Totiviridiae contains dsRNA viruses that infect protozoal and fun-
gal hosts and have an undivided dsRNA genome with two partially overlapping ORFs that
encode viral CP and RdRp expressed via ribosomal frameshifting [8,63–65]. For genomic
characterization and phylogenetic analysis, full-length STV genomes were constructed
from high-disease-incidence regions (Fangshan, Tongzhou, and Faisalabad) through yeast
homologous recombination cloning and submitted to NCBI GenBank (OP548653, OP548652,
and MT066231) to expand the virus genomic data and to support the scientific community
in further biological annotation and evolutionary dynamics.

To acquire a better understanding of evolutionary genomics and to attain deeper
insights into the evolution rate of STV, we analyzed full-length genome sequences of 44 STV
isolates by using wide-ranging computational tools and inferred the molecular evolutionary
genomics. Molecular phylogenetic analysis and sequence alignments indicated that all STV
isolates, including those from Asia, Europe, and America, had close (>98%) phylogenetic
relationships with lower genetic variability (Figure 4). Moreover, the analysis of genetic
variability showed that the genetic variability for RdRp was higher compared with p42
(Figure 5). The apparently higher genetic variability observed for the RdRp region might be
correlated with its larger coding sequence compared with that of p42. Further, it would be
interesting to investigate how ORFs correlate and/or govern the genetic diversity among
STV populations. The number of recent studies on molecular evolutionary analysis has been
increasing, including those on phylodynamics and temporal evolutionary characteristics
of various plant viruses based on one or few gene sequences, including the VPg gene of
potato potyvirus Y (PVY) [66]; the NABP and CP genes of potato potyvirus M (PVM) [67];
and the P3, CI, and Nib genes of PVY [68]. To mitigate any ambiguity in extrapolating the
evolutionary dynamics of a virus based on a single or a few genes to an entire virus species,
NGS-based sequencing followed by de novo assembly would provide nearly complete
genomic sequences, which could be employed to actually develop a far more standardized
portrayal of the genetic diversity of virus populations [69,70].

Evolution and genetic diversity are considered to be driven by recombination
events [71–75]. No study has been reported regarding the genetic diversity of STV that
combines its global population. In our results, a total of three recombination events were
detected among 44 STV sequences (population). The first recombination event was found
among 24 sequences with a Turkish isolate (OK309713), which was recombinant with
OK309721 as a major parent and an unknown minor parent (Figure 6 and Table 3). The sec-
ond event was detected among 38 sequences with a Chinese isolate (KY228384), which was
designated as a recombinant sequence with OK309710 as the major parent and MF422617
as the minor parent (Figure S1 and Table 3). Finally, the third event was detected only
in three sequences with the recombinant sequence, namely, a Chinese isolate (KT438549),
which was recombinant with OK309708 as a major parent and an unknown minor parent
(Figure S2 and Table 3). Thus, recombinant events in RNA viruses are most common due to
assortments of the RNA-segmented viral genomes [76–78]. Both intraspecific homologous
and interspecific non-homologous recombination are considered to be the most frequent
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and significant in the evolution of poleroviruses, such as sugarcane yellow leaf polerovirus
(ScYLV) [79,80], cotton leaf dwarf polerovirus (CLRDV) [81], brassica yellows polerovirus
(BrYV) [82], faba bean polerovirus 1 (FBPV-1) [83], and cucurbit aphid-borne yellows
polerovirus (CABYV) [76,84]. Several factors, such as increased viral replication, mixed
infections, expanded host range, and vector, are known to greatly regulate recombina-
tion [85]. Recombination could play a substantial role in the evolution of STV populations,
as most genes involved in certain compatible interactions may be evolving under selection
pressure from their hosts and have a tendency to accumulate variations faster than other
parts of the genome. Notably, gene mutations or recombination can influence the biological
functions regulated by viral proteins. However, how recombination affects the biological
functions related to these genes is a matter of consideration that should be investigated
more in the future.

Furthermore, our findings showed that STV populations are mostly evolving under
negative/purifying selection pressure. To gain an in-depth understanding of this selection
factor at the gene level, we opted to estimate dN/dS for the p42 and RdRp genes. Our
results demonstrated that the majority of codons remained under negative selection for
each gene, with an average dN/dS ratio of <1 (Figure 7), indicating that while negative
selection pressure was the main factor acting upon p42 and RdRp, the distribution pattern
of negatively and positively selected sites remained variable among both proteins. This
is in accordance with previous studies, which concluded that genes of turnip yellows
polerovirus (TuYV) and cotton leaf curl Multan begomovirus (CLCuMuV) evolved under
negative selection pressure [86–88].

The present study illustrated how the analysis of genetic diversity and the structure of
plant virus populations is essential for understanding the evolutionary biology of plant
viruses related to the dynamics of virus populations and associated disease epidemiol-
ogy. Meanwhile, evolutionary forces (mutation, recombination, and persistent selection
pressure), virus–host interactions, and enhanced host immunity may favor rapid virus
evolution and reshape its pathogenicity and disease epidemiology. However, these evo-
lutionary dynamics affecting virus pathogenicity and disease epidemiology are worth
mentioning in modern plant virology.

5. Conclusions

The present study demonstrates the infection status and evolutionary dynamics of
STV, which is the most prevalent in all tomato production regions of the world, affecting
sustainable food production in association with other plant viruses. This virus was trans-
mitted vertically and widely distributed, showing high disease incidence in major tomato
production fields in Beijing, China, and Punjab, Pakistan. STV had a close evolutionary
relationship with its other isolates, but the genetic variability observed for RdRp was higher
than that of p42. Consequently, it evolved under a strong purifying selection process. These
findings provide solid foundations for the development and implementation of novel
approaches for the timely diagnosis and long-term management of STV.
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