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Abstract: Viruses-mediated genome editing in plants is a powerful strategy to develop plant cultivars
with important and novel agricultural traits. Mulberry alba is an important economic tree species that
has been cultivated in China for more than 5000 years. So far, only a few viruses have been identified
from mulberry trees, and their application potential is largely unknown. Therefore, mining more virus
resources from the mulberry tree can pave the way for the establishment of useful engineering tools.
In this study, eight old mulberry plants were gathered in seven geographic areas for virome analysis.
Based on transcriptome analysis, we discovered three viruses associated with mulberries: Citrus
leaf blotch virus isolate mulberry alba 2 (CLBV-ML2), Mulberry-associated virga-like virus (MaVLV),
and Mulberry-associated narna-like virus (MaNLV). The genome of CLBV-ML2 was completely
sequenced and exhibited high homology with Citriviruses, considered to be members of the genus
Citrivirus, while the genomes of MaVLV and MaNLV were nearly completed lacking the 5′ and 3′

termini sequences. We tentatively consider MaVLV to be members of the family Virgaviridae and
MaNLV to be members of the genus Narnavirus based on the results of phylogenetic trees. The
infection experiments showed that CLBV-ML2 could be detected in the inoculated seedlings of both
N. benthamiana and Morus alba, while MaVLV could only be detected in N. benthamiana. All of the
infected seedlings did not show obvious symptoms.

Keywords: virus; mulberry alba; transcriptome; Citrivirus; Virgaviridae; Narnavirus

1. Introduction

Next-generation sequencing (NGS) serves as an unbiased technology for the diagnosis
of plant viral diseases since no prior information about the pathogen is required [1]. Resent
day NGS tools are capable of sequencing any type of nucleic acid and have emerged as the
tool of choice to detect novel viral diseases from very few viral titers [2]. Many novel viruses
were identified by NGS, which before were quite difficult because of either low viral titer or
difficulty of RNA extractions from woody plants or the absence of any symptoms. Recently,
transcriptome sequencing was used in citrus to identify a novel latent viral infection, citrus
yellow vein-associated virus (CYVaV), and analysis showed that it could be an ancestral virus
to the current umbravirus [3,4].

The mulberry (Morus alba) belongs to the genus Morus in the family Moraceae, which
is a deciduous tree that has been grown for thousands of years in China [5] The leaves
of mulberry trees are the only food source for silkworms [6] and also can be converted
into mulberry tea [7] and other beverages [8]. Their fruits are rich in nutrients and can be
used for preparing fruit juice and wine [9,10]. The yield and quality of mulberry leaves can
be seriously affected by a virus infection, causing severe loss to the sericultural industry.
Before the application of NGS, only a few viruses had been identified in mulberry trees,
such as the Mulberry crinkle leaf virus (MCLV) [11] and the Paper mulberry mosaic-associated
virus (PMuMaV) [12]. With the rapid development of NGS technology, much more viruses
have been identified in trees of mulberry recently. Mulberry mosaic dwarf-associated virus
(MMDaV) caused mosaic and dwarfing symptoms in mulberry trees [13], and mulberry
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cryptic virus 1 (MuCV1) exhibited yellow vein symptoms [14]. The symptoms caused by
mulberry badnavirus 1 (MBV-1) include mosaic structure, deformation, vein clearing and
necrosis on the leaves and deformation, crumbling, and scabs on the fruits [15]. Citrus
leaf blotch virus-ML (CLBV-ML) caused symptoms of chlorotic leaf spots and occasionally
witches’ broom [16]. In addition, paper mulberry leaf curl virus 1 and paper mulberry leaf curl
virus 2 (PMLCV-1 and PMLCV-2) were identified in paper mulberry plants affected by a
disease with leaf curl symptoms [17]. However, there are still many viruses that have not
been identified yet, especially those with either low accumulation or weak symptoms in
mulberry trees. Identification of novel viruses in mulberry is meaningful.

Nowadays, plenty of old mulberry trees, which have lived for hundreds and thousands
of years, are mainly distributed in the middle and lower reaches of the Yellow River, southwest,
northwest, and northeast of China. In this study, Transcriptome sequencing technology was
applied to eight old mulberry trees’ leaves from seven provinces in order to uncover novel
viruses that co-existences with their hosts. Three viruses were detected from the sequence
data, one of which is citrus leaf blotch virus (CLBV), a member of the genus Citrivirus. We
named it Citrus leaf blotch virus-Mulberry Alba 2 (CLBV-ML2) since it is homologous to the
previously reported mulberry virus Citrus leaf blotch virus-ML [16]. The other two are new
viruses belonging to the Virgaviridae and Narnavirus, with the names of Mulberry-associated
virga-like virus (MaVLV) and Mulberry-associated Narna-Like virus (MaNLV) proposed.
RT-PCR experiments have also been conducted with specific RdRp primers of these viruses to
verify their existence. Besides, the results of virus infection experiments showed that MaVLV
could infect N. benthamiana, and CLBV-ML2 could be detected in the inoculated seedlings of
both N. benthamiana and Morus alba without obvious symptoms.

2. Materials and Methods
2.1. Plant Material

The present study examined eight different species of ancient mulberry trees from
Chinese provinces (Heilongjiang, Henan, Shandong, Anhui, Beijing, Xinjiang, and Xizang).
The samples were leaves of ancient mulberry trees, which were asymptomatic at the time of
collection. They were stored in sterile 50 mL conical tubes at −80 ◦C until further analysis.

2.2. Sequence Analyses

The obtained samples were sent to Majorbio (Shanghai, China) for total RNA isolation
and transcriptome sequencing and analysis. Raw data were trimmed using Trimmomatic
(Version 3.90) [18] and trinity (Version 2.8.5) with the default parameters used for contig
assembly [19]. Then, blastx from the BLAST suite was used to search for conserved viral
proteins in the assembled contigs [20]. Finally, open reading frames (ORFs) were predicted
using the ORFfinder web tool (https://www.ncbi.nlm.nih.gov/orffinder/, accessed on
15 January 2022). A conserved domain search was performed using the CDD/SPARCLE
tool (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/, accessed on 15 January
2022) of NCBI [21]. TBtools v0.67 software was used to display the pairwise identity of the
sequences aligned by the ClustalW program and prepare a correlation heatmap.

2.3. Phylogenetic Analyses

The amino acid sequences of the predicted RNA-dependent RNA polymerase (RdRp)
regions from MaVLV and MaNLV were used for phylogenetic analyses in this study. The
sequences were obtained from National Center for Biotechnology Information (NCBI, https:
//www.ncbi.nlm.nih.gov/, accessed on 15 January 2022), compared with the related viral
sequences using ClustalW and analyzed using the Maximum likelihood (ML) algorithm
with the LG and WAG substitution model to construct phylogenetic trees in MEGA X with
1000 bootstrap replications, respectively [22]. The whole sequence of CLBV-ML2 was used
for phylogenetic analyses. The sequences obtained from NCBI and subject to ClustalW
multiple sequence alignments. Then, the maximum likelihood method based on the TN93
matrix-based models with 1000 bootstrap replications was separately conducted.

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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2.4. Completion of Genomes of Viruses

The full genome sequence of the candidate CLBV-ML2 was obtained by rapid amplifi-
cation of cDNA ends (RACE) using a SMARTer® RACE 5′/3′ kit (Takara, Beijing, China).
The 5′ RACE CDS Primer A and the 3′ RACE CDS Primer A was used to synthesize the
cDNAs, which could include specific amplification of 5′ and 3′ end sequences, respectively.
The universal primer mix and the gene-specific primers (GSP, Table S1) were used to com-
plete the 5′-terminal and 3′-terminal sequences with 2×Hieff Canace® Plus PCR Master
Mix (Yeasen, Shanghai, China). The purified PCR product was cloned into a pESI-T vector
(Yeasen, Shanghai, China), and the M13-F/R primer was used for positive clone detection
and sequenced commercially (Youkang, Hangzhou, China). Finally, the whole sequence
was assembled with DNAMAN software (version 9.0), and observed that an additional
66 nt at the 5′ terminus and 528 nt at the 3′ terminus was identified.

2.5. Mechanical Inoculation and Virus Detection by RT-PCR

Mechanical inoculation was used for virus infection. The basic procedure was to grind
up the samples from ancient mulberry trees and add the appropriate amount of phosphate
buffer (250 mL 0.2 mol/L KH2PO4, 118 ml 0.2 mol/L NaOH, add H2O to 1000 ml, pH 6.8),
then rub the extracted sap onto the leaves of 5 N. benthamiana and 5 Morus alba. Total RNA
was extracted from system leaves after 10 days. RT-PCR was used for the RdRp sequence
detection from the samples’ total RNA and inoculated plants’ total RNA. Following the
manufacturer’s instructions, the RT reaction was performed with Hifair® III 1st Strand
cDNA Synthesis Kit (Yeasen, Shanghai, China) with Oligo (dT)18 primer. One microliter
of cDNA was used as a template for the PCR reaction in the presence of primers of RdRp
detection. The reaction procedure was 94 ◦C for 3 min; 94 ◦C for 30 s; 55 ◦C for 30 s; 72 ◦C
for 1 min (30 s/kb); 72 ◦C for 5 min, and end of 4 ◦C, which produced 1295 bp, 729 bp, and
1298 bp fragments, respectively.

3. Results
3.1. Discovery of Viruses and Sequencing Results

The present virome analysis was performed on the transcriptome sequencing sam-
ples of eight libraries from mulberry leaves, which led to the discovery of three viruses
(Table 1). The heatmap shows the distribution of MaVLV, CLBV-ML2, and MaNLV in the
transcriptome sequences (Figure 1).

Table 1. Mulberry leaf sample information.

Number Name Province Years Latitude and
Longitude CLBV-ML2 MaVLV MaNLV

G001 G-HEBBS2H Heilongjiang 600 126◦54′ N 45◦80′ E - - -
G023 G-QXGGZXZ Henan 500 114◦68′ N 34◦58′ E - - -
G026 G-NYXYSYZ Henan 1800 112◦46′ N 32◦61′ E - + -
G028 G-XJTL Shandong 1200 116◦01′ N 36◦98′ E - - -
G039 G-HSSX Anhui 800 118◦42′ N 29◦86′ E + - -
G040 G-BJDX1 Beijing 145 116◦34′ N 39◦73′ E - - -
G045 G-NBQZ3 Xinjiang 425 121◦55′ N 29◦82′ E - - -
G047 G-SXXC2 Xizang 1600 120◦91′ N 29◦50′ E - - +

The virus, MaVLV, was a contig of 11207 nt, excluding the sequences of the 5′ and 3′

UTRs. Its sequence shares 72.76% and 73.68% nt similarity with the Hubei virga-like virus
18 (HVLV18) strain fly97447 (KX883767) and Broome virga-like virus 1 (BVLV1) isolate
BVGL1/pool-2 (MT498833), which are unclassified virgaviruses found in invertebrates,
respectively. Four ORFs were found using the ORFfinder web tool. ORF1 is positioned
at 98-7372 nt in the genome, predicted to encode a 2424 aa polyprotein including a viral
methyltransferase (MT, pfam01660, nt 371–1411, 365 aa), an FtsJ-like methyltransferase
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(FtsJ, pfam01728, nt 2627–3148, 174 aa), a viral RNA helicase (HEL, pfam01443, nt 4826–
5606, 260 aa), and an RNA-dependent RNA polymerase 2 domain (RdRp_2, pfam00978,
nt 6023–7318, 432 aa). ORF2 is positioned at 8256–9257 nt in the genome, which encodes
unknown proteins. ORF3 and ORF4 are positioned at 9291–10061 nt and 10081–10614 nt in
the genome, predicted to encode 154 and 151 aa SP24, respectively (Figure 2A).
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Figure 1. The heatmap shows the distribution of MaVLV, CLBV-ML2, and MaNLV in samples.

CLBV-ML2 has an 8794 nt genome with 66 nt UTR at its 5′ terminus and 528 nt
UTR at its 3′ terminus. The 5′-UTR with a length of 66 nt shares 98.48% nt identity with
that of CLBV-PY2 (MW713063), and the 3′-UTR with a length of 528 nt shares 95.83% nt
identity with CLBV-ML (MT767171). The complete genomic sequence shares 83.08% and
81.87% identity with CLBV-PY2 and CLBV-ML, respectively. Similar to other citriviruses,
CLBV-ML2 has three ORFs. ORF1 is positioned at 67–6024 nt in the genome and encodes
a 1986 aa polyprotein, including a viral methyltransferase (MT, pfam01660, nt 196–1008,
271 aa); a 2OG-FeII oxygenase (2OG-F, pfam13532, nt 2669–3016, 116 aa); a peptidase
(Pep, pfam05379, nt 3071–3331, 87 aa), and an RNA-dependent RNA polymerase 2 domain
(RdRp_2, pfam00978, nt 5015–5743, 243 aa). ORF2 is positioned at 6022–7110 nt in the
genome, and ORF3 is positioned at 7171–8264 nt in the genome, encoding a movement
protein and a coat protein, respectively (Figure 2B).

MaNLV has a 4097 nt genome, excluding the 5′ and 3′ UTR sequences. Its sequence
shares 79.21% nt similarity with the Narnaviridae sp. isolate 174-k141_105200 (MZ680060),
which was found in pond sediment. Two ORFs were found by the ORFfinder web tool.
ORF1 is positioned at 73–789 nt in the genome, and ORF2 is positioned at 725–3991 nt in the
genome and possibly encodes RdRp protein. However, no conserved domain was found
by the CDD/SPARCLE search (Figure 2C).



Viruses 2022, 14, 2564 5 of 14

Viruses 2022, 14, 2564 5 of 14 
 

 

3991 nt in the genome and possibly encodes RdRp protein. However, no conserved do-
main was found by the CDD/SPARCLE search (Figure 2C). 

 
Figure 2. Predicted open reading frames (ORFs, with boxes), conserved motifs, domains, and viral 
proteins (different colors). (A) MaVLV, (B) CLBV-ML2, and (C) MaNTL. Viral methyltransferase 
(MT, pfam01660), viral helicase (HEL, pfam01443), and RNA-dependent RNA polymerase_2 (RdRp, 
pfam00978), 2OG-FeII Oxy superfamily (2OG-F, cl21496), peptidase C23 superfamily (Pep, cl05111), 
SP24 (pfam16504), coat protein (CP) and movement protein (MP). The unknown sequences of 5′ and 
3′ UTRs are shown by black lines at both extremities, An: poly A tail. 

3.2. Phylogenetic Placement of Identified Viruses 
The phylogenetic tree is based on the RNA-dependent RNA polymerase (RdRp) 

amino acid sequences of representative members of the Virgaviridae family. The phyloge-
netic analysis result shows that MaVLV falls in the clade with Grapevine-associated virga-
like virus (QXN75450) and belongs to the unclassified Virgaviridae (Figure 3A). We pro-
pose that MaVLV was a member of unclassified virgaviridaes because its RdRp amino 
acid sequence showed low similarity with isolates of GaVLV in the correlation heatmap 
(Figure 3B). 

Figure 2. Predicted open reading frames (ORFs, with boxes), conserved motifs, domains, and viral
proteins (different colors). (A) MaVLV, (B) CLBV-ML2, and (C) MaNTL. Viral methyltransferase
(MT, pfam01660), viral helicase (HEL, pfam01443), and RNA-dependent RNA polymerase_2 (RdRp,
pfam00978), 2OG-FeII Oxy superfamily (2OG-F, cl21496), peptidase C23 superfamily (Pep, cl05111),
SP24 (pfam16504), coat protein (CP) and movement protein (MP). The unknown sequences of 5′ and
3′ UTRs are shown by black lines at both extremities, An: poly A tail.

3.2. Phylogenetic Placement of Identified Viruses

The phylogenetic tree is based on the RNA-dependent RNA polymerase (RdRp) amino
acid sequences of representative members of the Virgaviridae family. The phylogenetic
analysis result shows that MaVLV falls in the clade with Grapevine-associated virga-like
virus (QXN75450) and belongs to the unclassified Virgaviridae (Figure 3A). We propose that
MaVLV was a member of unclassified virgaviridaes because its RdRp amino acid sequence
showed low similarity with isolates of GaVLV in the correlation heatmap (Figure 3B).

The phylogenetic trees based on the whole sequences of representative members of the
Citrivirus genus show that CLBV-ML2 identified in the present study falls in the clade where
sequences of CLBV-PY2 and -PY1 (Figure 4A). The correlation heatmap shows that the
whole sequence of CLBV-ML2 is conserved among citriviruses (Figure 4B). The nucleotide
and putative amino acid sequences of CLBV-ML2 were compared with those of the CLBV
isolates and unassigned viruses. The whole genome of CLBV-ML2 showed nucleotide
identity higher than 75% (Table 2). At the nucleotide sequence level, each ORFs of CLBV-
ML2 showed nucleotide identities ranging from 53.35 to 88.81%, 58.07 to 98.07%, and 78.51
to 95.32%. At the amino acid sequence level, they showed similar sequence identities
ranging from 75.44 to 82.44%, 79.76 to 84.02%, and 83.12 to 84.59% (Table 2). Based on the
species demarcation criteria for Betafexiviridae [23], we propose that CLBV-ML2 is a new
isolate of Citrivirus because it has similar polyprotein processing programs and share more
than 70% amino acid identity in the polyprotein with any other citriviruses.

The phylogenetic tree is based on the RdRp amino acid sequence of representative
members of the Narnaviridae family. The phylogenetic analysis result shows that MaNLV
falls in the clade with Neofusicoccum parvum narnavirus, which was found in grapevine wood
tissues and is a member of unclassified narnaviruses (Figure 5A). Based on the correlation
heatmap, we considered that MaNLV belongs to the genus Narnavirus (Figure 5B).
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Figure 3. Phylogenetic trees of (A) RdRp proteins constructed for representative members of the family
Virgaviridae (40 tobamoviruses; 5 furoviruses; 6 pomoviruses; 2 pecluviruses; 3 tobraviruses and 32 un-
classified virgaviridaes). (B) The pairwise identity plots of the RNA-dependent RNA polymerase amino
acid sequences aligned by ClustalW and displayed by sequence demarcation using TBtools software.
The trees were constructed using the maximum likelihood method, and the statistical significance of the
branches was evaluated by bootstrap analysis (1000 replicates). Newly discovered viruses are marked in
red. 40 tobamovirus are collapsed together. Relationship: pink background.
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CLBV Strain Actinidia 81.95/8793 nt 81.07 (88.81) n.a. (94.75) 84.59 (95.04)
CLBV 78.19/8747 nt 75.97 (78.00) n.a. (98.34) 84.38 (95.32)
CLBV isolate ML 81.87/8776 nt 81.07 (87.29) n.a. (95.58) n.a. (88.43)
CLBV2 78.82/8697 nt n.a. (58.07) n.a. (90.61) n.a. (93.66)
Humulus lupulus citrivirus 1 76.637181 nt 75.44 (63.95) 79.76 (86.19) n.a. (90.61)
CLBV strain Prunus 78.17/8762 nt n.a. (76.52) n.a. (95.86) n.a. (87.88)
Paeonia citrivirus A 79.28/6451 nt n.a. (59.77) 84.02 (98.07) 83.12 (95.27)
Peony yellowing-associated Citrivirus 80.28/8666 nt n.a. (53.35) n.a. (96.13) n.a. (88.71)
Nandina Citrivirus 77.74/8892 nt 77.66 (81.18) n.a. (58.07) n.a. (78.51)

* The GenBank accession numbers used are as follows: CLBV-PY2: MW713063, Dweet mottle virus: FJ009367,
CLBV strain Actinidia: MG604237, CLBV: MN495980, CLBV isolate ML: MT767171, CLBV2: MH144344, Humu-
lus lupulus citrivirus 1: MW328761, CLBV strain Prunus: KR023647, Paeonia citrivirus A: MH898501, Peony
yellowing-associated Citrivirus: MN253488 and Nandina Citrivirus: MN055483. Comparison based on amino
acid sequence is shown in parentheses.
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3.3. The Detection of Viruses from Samples and Complete Sequence of CLBV-ML2

To further confirm the transcriptome sequencing and analysis results and identify
the complete virus genomic sequence. Total RNA was extracted from the diseased leaves
for the subsequent PCR and RACE experiments. The results of RT-PCR showed that
the RdRp of MaVLV and CLBV-ML2 can be detected, but the passage of MaNLV was
negative. Therefore, we determined that MaVLV and CLBV-ML2 were latent in G026 and
G039 samples (Figure 6A). The 5′-terminal and 3′-terminal sequences of CLBV-ML2 were
amplified by the RACE kit (Figure 6B). Then, the purification of PCR products was cloned
into the pESI-T vector to screen positive clones and sequenced commercially (Figure S1).
Finally, the 66 nt 5′-UTR (1–66 nt) and 528 nt 3′-UTR (8265–8792 nt) were obtained.
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3.4. Viruses Infectivity in N. benthamiana and Morus alba

In order to investigate the infectivity of this novel virus, mechanical inoculation was
used for virus infection by grinding up the samples from mulberry trees and adding an
appropriate amount of phosphate buffer. We then rubbed the extracted sap onto the leaves
of five Nicotiana benthamiana and five Morus alba. Ten days later, there were no symptoms
on the upper leaves of the inoculated seedlings (Figures 7A and S2). Total RNA was
extracted from the infection leaves. RT-PCRs with specific primers of RdRp (Table S1) were
performed against the part infection leaves. There were weak stripes for MaVLV RdRp
sequences in the cDNA from N. benthamiana and nothing in mock or cDNA from Morus alba
compared to the result of the G026 sample with the mock and infection. Both N. benthamiana
and Morus alba lanes had obvious stripes in the detection of CLBV-ML RdRp sequences,
and their sizes were consistent with the sample detection results (Figure 7B). In addition,
the test results for MaNLV infectivity were negative (Figure S2). We concluded that of the
possible reasons for this phenomenon, one possibility is viral titers in collected mulberry
were low, and few plants were inoculated. The other possibility is inoculation buffer is
inappropriate, especially the pH-value.
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4. Discussion

This study uncovered three viruses connected to mulberry based on transcriptome
sequencing of eight mulberry samples. A full-length sequence of CLBV-ML2, which
exhibited high homology and clustered with citriviruses in phylogenetic trees. The other
two viruses, MaVLV and MaNLV, belong to the member of unclassified virgaviridaes and
unclassified narnaviruses by genome and phylogenetic analysis.

Virgaviridae family consists of plant viruses with rod-shaped virions, a single-stranded
RNA genome with a 3′-terminal tRNA-like structure, and an alpha-like replication protein.
Its member genera include Furovirus, Hordeivirus, Pecluvirus, Pomovirus, Tobamovirus, and
Tobravirus [24,25]. In this study, we identified a novel virus, MaVLV, in mulberry plants,
which was presumed to be a member of virgaviruses. Interestingly, similarly to the member
of virgaviridae, MaVLV ORF1 is also an alpha-like replication protein with conserved
methyltransferase (MT) and helicase (Hel) domains. The RNA-dependent RNA polymerase
(RdRp) is expressed as the C-terminal part of this protein by the readthrough of a leaky
stop codon. But the movement protein and coat protein have not been proven to encode in
the MaVLV genome. Due to the lack of 5’UTR and 3’UTR sequences in the genome, the
existence of a 3′-terminal tRNA-like structure needs future investigation.

Narnaviruses have been described as positive-sense RNA viruses with a remarkably
simple genome of ~3 kb, encoding only a highly conserved RNA-dependent RNA poly-
merase (RdRp) [26]. They could be detected in diverse fungi, plants, protists, arthropods
and nematodes [27]. In this study, we identified a novel virus MaNLV with uncomplete
genome sequence of about 4097 nt in mulberry plants. It was presumed to be a member
of narnaviruses. MaNLV has the same characteristics as narnaviruses, and its genomic
sequence only encodes a conserved RdRp protein. The extent of the virus infection and
whether it causes symptoms need to be confirmed by subsequent experiments (Table S2).

The International Committee on Taxonomy of Viruses recognizes the Citrus leaf blotch
virus (CLBV) as the sole species in the genus Citrivirus [23]. The natural host range of CLBV
is citrus, and it has also been reported in Prunus spp. [28], Actinidia [29], peony [30], and
mulberry [16]. Studies have shown that for juvenile citrus plants, an advantage of CLBV
as a viral vector for citrus is that it causes asymptomatic infection in most cultivars [31].
CLBV vectors are appropriate for gene expression or silencing in tissues that lack phloem,
including meristematic regions [24], and CLBV is not transmitted by vectors. Therefore,
they could be safely used in field experiments [32]. In our study, we identified a new
CLBV isolate from mulberry trees named CLBV-ML2. It is highly homologous with the
whole sequence and ORF1 of the previously reported CLBV-ML [16] but differs from ORF2
and ORF3. Recently, a viral vector based on the Citrus leaf blotch virus for genetics and
breeding, which can used for precocious flowering of juvenile citrus. The mulberry tree
harboring CLBV-ML2 showed no symptoms at the date of collection. Therefore, it has a
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good application potential as a virus-mediated transgenic vector using mulberry as the
host if the virus can confirm implement system infection.

In the ensuing decades, researchers focused on discovering and eliminating viral
threats to plant and animal health. However, viruses are not merely agents of destruction
but essential components of global ecosystems. Due to the increasing interest in organic
farming to reduce the use of synthetic chemicals in agriculture, viral-based vector to
manage crop pests and diseases in a sustainable way is a good strategy. A virus-mediated
transgenic system is a quick system to deliver genes without any need for transformation
and regeneration techniques and has currently been successfully used in apples and other
woody species [33–42]. More efforts need to be made to discover new viruses in mulberry
to accelerate CLBV-ML2 the application of virus-mediated transgenic in mulberry varieties.

5. Conclusions

In this study, we collected eight groups of mulberry leaves from different provinces in
China. Three viruses were identified based on genome and phylogenetic analysis, named
Citrus leaf blotch virus isolate mulberry alba 2 (CLBV-ML2), Mulberry-associated virga-like
virus (MaVLV), and Mulberry-associated narna-like virus (MaNLV).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14112564/s1, Figure S1: The detection of positive clones; Figure S2:
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Table S1: The primers of RACE; Table S2: The results of MaNVL RdRp blastp.
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