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Abstract: Hepatitis C virus is the major cause of chronic liver diseases and the only cytoplasmic RNA
virus known to be oncogenic in humans. The viral genome gives rise to ten mature proteins and
to additional proteins, which are the products of alternative translation initiation mechanisms. A
protein—known as ARFP (alternative reading frame protein) or Core+1 protein—is synthesized by an
open reading frame overlapping the HCV Core coding region in the (+1) frame of genotype 1a. Almost
20 years after its discovery, we still know little of the biological role of the ARFP/Core+1 protein.
Here, our differential proteomic analysis of stable hepatoma cell lines expressing the Core+1/Long
isoform of HCV-1a relates the expression of the Core+1/Long isoform with the progression of the
pathology of HCV liver disease to cancer.

Keywords: proteomics; HCV-1a; Core+1/ARFP; Huh7.5; liver diseases

1. Introduction

Hepatitis C virus (HCV) is an enveloped RNA virus of the Flaviviridae family, trans-
mitted through contaminated blood [1]. HCV targets primarily human liver cells, evades
innate and adaptive immunity, and establishes chronic infections in 70% of cases. Ulti-
mately, infection by HCV leads to hepatocellular carcinoma (HCC) in 20% of the cases [2],
a unique feature for a flavivirus [3,4]. The virus circulates in the blood plasma associated
with low-density lipoproteins, LDLs, and very-low-density lipoproteins VLDLs and enters
liver cells via clathrin endocytosis [5]. Replication of HCV takes place in the cytoplasm at
specialized membrane compartments derived from the ER and induced by the virus [6].
The viral genome is a 9.6-kb single-stranded positive-sense RNA that encodes a polyprotein
precursor of approximately 3000 amino acids, that is processed into at least ten mature
structural and non-structural proteins (Core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A,
and NS5B) by host and viral proteases [7].

The viral genome is then packaged into a capsid composed of the Core protein (C),
covered by a lipid bilayer embedding multiple copies of the two structural glycoproteins
The viral life is concluded by the release of the viral particles through the secretory pathway
without cell lysis [8]. HCV morphogenesis and propagation rely on lipid metabolism [9,10].
Host cells have evolved mechanisms of detecting viral infection and then altering the host
translation capacity to restrict viral protein production. However, viruses, especially RNA
viruses such as HCV, are repositories of functional RNA elements that can exploit the host
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cell’s translation machinery, even before viral proteins accumulate [11]. Interestingly, just as
other viruses such as picornaviruses have done, HCV has evolved alternative mechanisms
to initiate translation and circumvent host defense mechanisms [12]. Moreover, many
positive-sense RNA viruses, which infect mammalian cells, present Alternative Reading
Frame Proteins (ARFPs) in their genomes, which are also translated. The existence of such
ARFPs poses some questions concerning their role during the infection since they do not
directly affect the viral replication in the cell-based infection systems but may contribute to
virus replication in vivo, during natural infection, thus representing virulent factors [13].
One such ARFP is an alternative open reading frame (ORF) overlapping the Core coding
region in the +1 frame of genotype 1 and synthesizing another viral protein by a ribosomal
frameshift mechanism within an A-rich area. The protein was named ARFP, F, or Core+1
protein [14–17]. The ARFP is conserved among the different HCV genotypes [18]. However,
in the case that this repetitive A-rich sequence is absent, as in most HCV isolates of genotype
1, no frameshift is detected. Interestingly, in transfected cells, the predominating isoforms
of Core+1/ARFP (genotype 1a) are generated by internal translation initiation at codons
85/87 (Core+1/Short) [19] or codon 26 (Core+1/Long) [20]. Conserved RNA stem-loops
(SL) SL47 and SL87 of the HCV Core-encoding region are important for viral genome
translation in cell culture and in vivo as well as for mediating the internal translation
initiation of the alternative Core+1/Short ORF [21]. The expression of the two isoforms
was also demonstrated in hepatoma Huh7-Lunet cells transfected with replicons of the
JFH1 HCV isolate (genotype 2a) [22]. The detection of Core+1/ARFP-specific antibodies
and T-cell responses in HCV-infected patients have also indicated that the isoforms are also
expressed in vivo [23–26].

The biological significance of these alternative translation isoforms is still under inves-
tigation. Experiments in chimpanzees (HCV genotype 1a), mice (HCV genotype 1a/JFH1),
and culture cells (HCV genotype 2a) implied that Core+1/ARFP is not required in repli-
cation [21,27], a fact embedded in the study of Core+1/ARFP. On the other hand, several
independent studies provided preliminary evidence for the contribution of Core+1 protein
in advanced liver disease and liver cancer (refs in [18,28]). The presence of specific natural
occurring mutations within the Core/Core+1 region in clinical samples isolated from liver
biopsies of HCC patients demonstrated that a different distribution of Core+1/ARFP quasi-
species between tumoral and non-tumoral liver tissue may occur [29]. Another important
role of Core+1/ARFP that emerged from several studies is the modulation of the immune
system. Core+1/ARFP can modulate dendritic cell function leading to stimulation of T
cells [30]. Moreover, studies on an in vitro model system based on isolated human immune
cells infected with recombinant adenovirus vectors carrying the Core/Core+1 sequences re-
ported that Core+1/ARFP induces several cytokines involved in hepatic injury [31]. Notably,
expression of Core+1/ARFP seems to relate to decreased IFNα production by peripheral
blood mononuclear cells (PBMC) in hepatitis C patients [32], while it attenuates type I and
type III IFN responses to RIG-I/MDA5 PAMPs in Huh7 cells [33]. Consistent with this
finding, a positive correlation between the prevalence of Core+1/ARFP antibodies and
lack of response to the standard IFN /RBV therapy was recently shown [34]. Nonetheless,
additional work is required to clarify the mechanisms whereby Core+1/ARFP interferes
with innate immune responses. Proteomics has been used extensively to identify cellular
pathways perturbated by viral proteins and virus biology [35,36].

To address the function of the Core+1/ARFP isoforms we have established stable
Huh7.5 cell lines expressing the Core+1/Short and Core+1/Long isoforms of the HCV
genotype 1a [37]. To further address the functional role of the Core+1/ARFP isoforms we
performed proteomic analysis on the stable Huh7.5 Core+1/ARFP expressing cell lines and
the annotated differentially expressed proteins were used in functional pathway analysis.
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2. Materials and Methods
2.1. Cell Lines

The Huh-7.5 cell lines expressing the Core+1/Long and Core+1/Short isoforms of
HCV-1a and the control Gun (empty vector) were described in [37]. Cells were cultured in
Dulbecco’s modified Eagle’s medium supplemented with nonessential amino acid, 2 mM
L-glutamine (Gibco™, Waltham, MA, USA), 100 ug/mL penicillin–streptomycin (Gibco™),
and 10% fetal bovine serum at 37 ◦C and 5% CO2 with the addition of G418 (1 mg/mL).
Cells were treated with 2 mM hydroxyurea for 24 h before analysis.

2.2. Sample Preparation for MS Analysis

Samples were homogenized in FASP lysis buffer (4% SDS, 0.1 M DTE, 0.1 M Tris-HCl
pH 7.6). Protein concentration was determined by the Bradford assay. Protease inhibitors
(Roche, Basel, Switzerland) were added at a final concentration of 3.6% and samples
were stored at −80 ◦C until further use. Protein extracts (200 µg/sample) were processed
using filter aided sample preparation (FASP) as described previously [38], with minor
modifications [39]. Briefly, buffer exchange was performed in Amicon Ultra Centrifugal
filter devices (0.5 mL, 30 kDa MWCO; Merck, Kenilworth, NJ, USA) at 14,000 rcf for
15 min at room temperature. The protein extract was mixed with urea buffer (8 M urea
in 0.1 M Tris-HCl pH 8.5) and centrifuged. The concentrate was diluted with urea buffer
and centrifugation was repeated. Alkylation of proteins was performed with 0.05 M
iodoacetamide in urea buffer for 20 min in the dark followed by centrifugation at 14,000 rcf
for 10 min at RT. Additional series of washes were conducted with urea buffer (two times)
and ammonium bicarbonate buffer (50 mM NH4HCO3 pH 8.5, two times). Tryptic digestion
was performed overnight at RT in the dark, using a trypsin to protein ratio of 1:100. Peptides
were eluted by centrifugation at 14,000 rcf for 10 min, lyophilized, and stored at −80 ◦C
until further use.

2.3. LC-MS/MS Analysis

All LC-MS/MS (liquid chromatography-tandem mass spectrometry) experiments were
performed on the Dionex Ultimate 3000 UHPLC system coupled with the high-resolution
nano-ESI Orbitrap-Elite mass spectrometer (Thermo Scientific, Waltham, MA, USA). Each
sample was reconstituted in 200 µL loading solution composed of 0.1% v/v formic acid. A
5 µL volume was injected and loaded on the Acclaim PepMap 100 (100 µm × 2 cm C18,
5 µm, 100Ȧ) trapping column with the ul PickUp Injection mode with the loading pump
operating at a flow rate of 5 µL/min. For the peptide separation the Acclaim PepMap RSLC,
75 µm × 50 cm, nanoViper, C18, 2 µm, 100Ȧ column retrofitted to a PicoTip emitter was
used for multi-step gradient elution. Mobile phase (A) was composed of 0.1% formic acid
and mobile phase (B) was composed of 100% acetonitrile, 0.1% formic acid. The peptides
were eluted under a 240-minute gradient from 2% to 80% (B). Flow rate was 300 nL/min and
column temperature was set at 35 ◦C. Gaseous phase transition of the separated peptides
was achieved with positive ion electrospray ionization applying a voltage of 2.5 kV. For
every MS survey scan, the top 10 most abundant multiply charged precursor ions between
m/z ratio 300 and 2200 and intensity threshold 500 counts were selected with Fourier
Transform (FT) mass resolution of 60,000 and subjected to HCD fragmentation. Tandem
mass spectra were acquired with FT resolution of 15,000. Normalized collision energy was
set to 33 and already targeted precursors were dynamically excluded for further isolation
and activation for 30 s with 5 ppm mass tolerance.

2.4. MS Data Processing and Quantification

Raw files were analyzed with Proteome Discoverer 1.4 software package (Thermo
Finnigan, San Jose, CA, USA), using the Sequest search engine and the Uniprot human
(Homo sapiens) reviewed database, including 20,204 entries. The search was performed
using carbamidomethylation of cysteine as static and oxidation of methionine as dynamic
modifications. Two missed cleavage sites, a precursor mass tolerance of 10 ppm, and
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fragment mass tolerance of 0.05 Da were allowed. False discovery rate (FDR) validation
was based on q value: target FDR: 0.01.

2.5. MS Data Analysis

The Student’s two-tailed t-test was performed on the normalized values of the Long
(L), Short (S) and Vector (V) groups. The distributions of the expression levels of L versus V
replicates (and S versus V replicates) were evaluated with F-test for each gene to examine
whether they are homoscedastic or heteroscedastic. If the value of the F-test was less
than or equal to 0.05 the distributions were considered heteroscedastic for the t-test, else
if the value of the F-test ranged between 1 and 0.05, the distributions were considered
homoscedastic [40]. Subsequently, a two-tailed t-test was applied with homoscedastic or
heteroscedastic distribution assumption derived from the F-test to the gene expression
levels of V and L. The average value of the three biological replicates was calculated and
the ratio between the L group and V group for each protein of the group gave the relative
fold change of the protein expression, differentially expressed proteins (DEPs) in the L
group were selected the ones with a p-value of t-test ≤ 0.05, had at least three peptides
assigned by the mass analyzer, and their expression was ≥2-fold or ≤0.5-fold different
from the control (V group proteins) [41].

2.6. Functional Network Enrichment Analysis

The DEPs were used as input for STRINGDB to create a functional network [42]. The
sources used for the analysis and the creation of the network were text-mining, experi-
mental data, gene fusion data, co-reference in databases, co-expression data, common cell
topological neighborhood, and co-occurrence. The network was enriched with fifty-first
protein neighbors of the DEPs, obtained from the same sources. Non-experimental sources
were also used. The threshold was set at 0.7 for each one of the fifty entries to be considered
statistically significant and included in the network.

2.7. GSEA Analysis

Gene set enrichment analysis is based on Smirnoff–Kolmogorov test, which calcu-
lates the probability of finding out the number of genes belonging to the same pathway
randomly [43]. Gene set enrichment analysis was performed using the Broad Institute
software (http://software.broadinstitute.org/gsea/, accessed on 1 July 2022). Accordingly,
selected DEPs were ranked according to their negative decimal logarithm of the p-value and
assigned a negative value to them if they were down-regulated. The “Hallmark database
7.4” used for the analysis and the resulted ranks were then inputted into a Preranked Gene
Set Analysis, using the following parameters: at least three genes needed to consider a
hallmark enriched, the metric used was signal-to-noise ratio, the enrichment was weighed,
the normalization mode was meandiv. The results of the analysis were then evaluated and
only hits with FDR values ≤ 0.27 were accepted. Statistical significance was calculated
using 1000 permutations.

2.8. Bibliographic Searches

All the bibliographic searches were performed using the DisGeNet database [44].

2.9. Visualisation of Proteomics Data

Both Heatmap, PCA, as well as the mapping of genes on KEGG pathways, were
generated with R (https://www.R-project.org/, accessed on 1 July 2022) using the dplyr,
stringr, gplots, pathview, gage, and gageData packages.

2.10. Cellular Pathway Analysis Using KEGG Annotations

KEGG pathways analysis was performed via R-GAGE enrichment analysis against
the pathways of KEGG [45] with FDR threshold < 0.25 and downloading the pathways that
had at least 2 DEPs featured.

http://software.broadinstitute.org/gsea/
https://www.R-project.org/
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2.11. RNA Isolation, cDNA Synthesis, and qPCR

Total RNA was isolated from cells according to the NucleoZOL protocol (Magerey–Nagel,
Düren, Germany) was used to synthesize cDNA using the Takara Smart MMLV protocol accord-
ing to the manufacturer’s instructions with an additional final phenol: chloroform: isoamylic
alcohol purification step. qPCR was performed on an ABI7500 real-time PCR system (Ap-
plied Biosystems, Waltham, MA, USA). Transcripts were detected using the following sets of
primers: EPB41L2 (5′-GAGCTGCACAAA-ACCCACAG-3′, 5′-CCAGCTTGATGTCCACACCT-
3′), CTTN (5′-AGGCCGACCGAGTAGACAA-3′, 5′-TATTTGCCGCCGAAACCT-3′), ACTN1
(5′-GGGGACACAGATCGAGAA-3′, 5′-TGTGCACTCTCATCTTGCC-3′), HRAS (5′-
CCCTTGGGTGTCAAAGGTAAA-3′, 5′-AAACTGATGCGTGAAGTGCTG-3′), Ykt6 (5′-
TCAGCGTCCTCTACAAAGGC-3′, 5′-AGCGCTCCACAATCAGTTG-3′).

2.12. Wound-Healing Assay

Wound-healing assay was performed using an Ibidi wound healing kit (Cat. No. 81176)
according to the manufacturer s guidelines. Images were captured at different time points on
an inverted microscope using 40×magnification and then analyzed with ImageJ [46]. The
calculation of cell migration velocity was done using the following calculations [47]:

t1/2gap =
InitialGapArea

2 | slope | vmigration =
| slope |

2× l

where t1/2gap is the time it takes for the gap to close to half the original area, and vmigration is
the cell migration rate.

3. Results
3.1. Proteomic Analysis of the Huh 7.5/ARFP Expressing Cell Lines

To identify the cellular proteins induced by the expression of the HCV Core+1/ARFP
by a proteomic-based approach, lysates were prepared from the established Huh7.5 cell
lines that constitutively express the Core+1/ARFP (Long and Short isoforms) [37]. Three
independent biological replicates constituted of two individual clones and the initial pool
of cellular clones were analyzed. Cell lysates were trypsin-digested and analyzed by
liquid chromatography-tandem mass spectrometry (LC-MS/MS). Of the 2866 proteins
identified in the L sample compared to 2755 in the control (V) sample, 144 were considered
differentially expressed proteins (DEP) with a ≥2- or ≤0.5-fold difference from the control
and at the same time p < 0.05 (Supplementary File S2). Moreover, they were identified
in all three replicates (frequency 3) and had at least three unique peptides detected. Of
the 144 DEPs in the L sample, 103 proteins were up-regulated, whereas 41 proteins were
down-regulated. Only three proteins, TMP4, CADM1 and RTCA, were specific to the
Huh7.5c+1/L cell line and not detected in the control Huh7.5/G cell line (Figure 1A).

Similarly, we analyzed data from the Huh7.5c+1/S cell line stably expressing the
Core+1/Short isoform. The normalized protein list included 2711 proteins of the S sample.
After applying the same filters as for L, 74 proteins were defined as the DEPs set of the S
sample (Figure 1B, Supplementary File S2). Notably, the mass analyzer did not register
any Core+1/Long and or Core+1/Short peptides (Supplementary File S1). However, their
expression was confirmed by immunofluorescence and western blot, provided the cells
were treated with the proteasome inhibitor MG132, otherwise they are both unstable
proteins, especially the Short form [37].
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3.2. The Expression of Core+1/ARFP Changes the Proteome of the Huh7.5 Cells

Principal component analysis (PCA) and the heatmap of the normalized raw mass
spectrometry data showed that the cell lines used in the analysis clustered in three distinct
groups that differ from each other quite significantly (Figure S1). Of note, after filtering,
using the three set criteria: first, log2(fold-change) > +/−1 (>2 or <0.5), second, the t-test
between the sample and control replicates should be (−log10(p-value)) > 1.3, and third,
the mass analyzer identified at least three unique peptides per protein, the positions of
the individual replicates on the PCA graph did not change drastically, but their relative
distances did change, bringing the replicates of each group closer to each other. Also, the
variance described by the PC1 increased substantially, in comparison to the PCA graph
of the unfiltered data, from 28.8% to 63% (Figure 2A). The filtered heatmap of the DEPs
demonstrated an obvious pattern of gene expression. The genes were split into two large
clusters that were down-regulated in the V group, while up-regulated in L and S and
vice versa (Figure 2B). The unfiltered mass-spectrometry data were also clustered together.
There was only a small cluster in the S group which is down-regulated and in V, while
up-regulated in L.

Conclusively, the mass spectrometry measurements were reproducible within one
group of biological replicates and the changes in the expression levels caused by the
expression of Core+1/Long or Core+1/Short isoforms pointed to the same direction.
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3.3. Functional Network Enrichment Analysis Using the STRINGDB

To discover the impact of the Core+1/Long protein expression on the cell functions,
we applied Functional Network Enrichment analysis to the DEP data set of L. Therefore,
the 144 DEPs were used as input in the STRING database (STRINGDB), in order to create
a functional human protein network [42]. For the creation of the network, all types of
first neighbors were used and the confidence threshold for each of them was set to mildly
strong (significance ≥ 0.7). The resulting functional network depicted a sub-proteome that
was directly affected by the expression of Core+1/Long with a resulting p = 5.39 × 10−11.
Enrichment of the network with 50 first neighbors resulted in a network highly intercon-
nected between the members and a low probability of emersion of such network by chance
(p-value = 2.33 × 10−15). The functional network was clustered into eleven functional
cluster (Figure 3): mRNA/rRNA Processing, Nucleoporins, Vesicle Coating/Transport,
Neddylation/Signalosome, Proteosome, β-oxidation/Peroxisome, Cell cycle/Cytoskeleton,
Mitochondrion, TCA Cycle, Transcription Regulation, and DNA Repair (Figure 3). More
specifically, in the mRNA/rRNA processing group, all genes related to rRNA processing,
ribosome assembly, as well as various ribosome subunits were up-regulated, apart from
CMSS1 and NOL6, which were down-regulated. On the other hand, proteins related to
mRNA processing, RBM28, DDX27, and MRTO4, were down-regulated apart from CEBPZ,
which is up-regulated and possibly affects the upregulation of heat-shock proteins [48]. The
transcription factors GTF2B and BRD2 from the transcription regulation cluster were found
down-regulated as well (Figure 3). Three differentially expressed nuclear pore proteins
appeared in the network, that belong to different nuclear pore compartments, NUP37,
which is a member of the Y-complex and is downregulated, NUP214, an FG-nucleoporin
associated with the nucleocytoplasmic transport of proteins, and NUP210, a transmem-
brane nucleoporin (Figure 3). The expression of Core+1/Long seems also to affect cellular
metabolism. All genes in the mitochondrion cluster, such as HCCS, NDUFAF3, and CYC1,
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except for POR, that are involved in the energy production through oxidative phosphoryla-
tion are down-regulated, while genes involved in lipid metabolism and β-oxidation and
connected to TCA cycle, such as CPT2, HADHA, ACAA2, and ACLY were up-regulated.
HK2 from the mitochondrion cluster and PCK2 from the cluster TCA cycle cluster, which
are predominantly involved in glycolysis were also down-regulated (Figure 3). The major-
ity of proteins that constitute the cytoskeleton cluster in the network were up-regulated.
In particular, HRAS, ACTN1, TPM4, CTTN, DPYSL2, and RAP1B are involved in the
organization of the cytoskeleton and the development of actin filaments (Figure 3). All
these proteins were up-regulated, except for RAP1B. There were also proteins related to
microtubules and mitotic spindle development, such as MAP1B, which is downregulated,
and PRKACA, EML4, and PRKAR1A, which were up-regulated. Finally, LIG1, RFC5, and
PDS5B, which are involved in DNA damage repair, were also up-regulated (Figure 3). All
proteins located in the Vesicle Coating/Transport cluster, except YKT6, were up-regulated
(Figure 3). PSME2 and PSMD10 are members of the proteasome. PSME2, which acts in the
proteolysis of peptides before they are transported to the MHCI proteins, is up-regulated.
On the other hand, PSMD10 is involved in the negative regulation of tumor suppressors
RB1, and p53/TP53 is down-regulated [49]. Finally, two proteins, UBE2M and COPS5,
present in the Neddylation/Signalosome cluster, were down-regulated. Additionally, the
differentially expressed proteins were mapped in similar KEGG pathways such as tight
junction (hsa04530), cytoskeleton (hsa04810), MAPK Signaling (hsa04010), antigen process-
ing and presentation (hsa04612), endocytosis (hsa04144), fatty acid degradation (hsa00071),
and peroxisome (hsa04146) (Table 1).
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Table 1. KEGG pathways related to the DEPs of sample L and the associated genes. Green: down-
regulated, red: up-regulated. KEGG: Kyoto Encyclopedia of Genes and Genomes.

KEGG Pathway (Pathway ID) Gene Names
Tight junction (hsa04530) CTTN ACTN1 PKA

Actin Cytoskeleton (hsa04810) ACTN1 HRAS - - -
MAPK Signaling (hsa04010) HRAS PKA RAP1 HSP72 -

Antigen processing and Presentation (hsa04612) PA28 HSP70 - - -
Endocytosis(hsa04144) ARF HRAS HSC70 SNX5 -

Fatty acid degradation (hsa00071) MFP HADHA ACAA CTP2 ALDH
Peroxisome(hsa04146) SPX ABCD GSTK1 PMP70 -

The corresponding functional network of Core+1/Short was dismissed as non-significant
(p-value: ~0.2) (Supplementary File S3).

3.4. Functional Analysis Using Gene Set Enrichment Analysis (GSEA)

In our attempt to discover the significant cell functions and pathways that are modified
directly by the expression of Core+1/Long, we performed Gene Set Enrichment Analysis
(GSEA), in conjunction with the Functional Network Enrichment Analysis. The 144 DEPs
of the L sample were used to generate a Gene Rank list (see in Materials & Methods). The
enrichment analysis was performed against the Molecular Signatures Database (MSigDB)
hallmark gene set collection to reduce the redundancy and noise, because of the analysis.
The criteria set was that gene sets had to include at least three members and their false
discovery rate (FDR) had to be below or equal to 0.27 (FDR ≤ 0.27). According to the above
set criteria, the GSEA of the 144 significant proteins revealed that they fall mainly into eight
functional categories (Table 2), and most of them were characterized as cancer hallmarks.
The “up-regulated” gene sets were related to the formation of the mitotic spindle and to
apical junction (Figure 4A), while the down-regulated functional “hallmarks” were the:
MTORC1 pathway, apoptosis signaling pathways, MYC targets, hypoxia, response to UV
radiation, and glycolysis (Figure 4B). Notably, the functional network enrichment analysis
of the S data did not yield any meaningful results (Supplementary File S4).

Table 2. Enriched pathways using the 144 DEPs of L.

Regulation Hallmarks Enriched Genes Protein Names

Up
regulated

APICAL JUNCTION
ACTN1 Alpha-actinin-1

EPB41L2 Band 4.1-like protein 2
HRAS GTPase Hras

MITOTIC SPINDLE
CTTN Src substrate cortactin

EPB41L2 Band 4.1-like protein 2
LRPPRC Leucine-rich PPR motif-containing protein
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Table 2. Cont.

Regulation Hallmarks Enriched Genes Protein Names

Down-regulated

MTORC1 SIGNALING

ACLY ATP-citrate synthase
GBE1 1,4-alpha-glucan-branching enzyme
ASNS Asparagine synthetase
COPS5 COP9 signalosome complex subunit 5
CTH Cystathionine gamma-lyase
HK2 Hexokinase-2

PSMG1 Proteasome assembly chaperone 1
YKT6 Synaptobrevin homolog YKT6

APOPTOSIS
CTH Cystathionine gamma-lyase
DFFA DNA fragmentation factor subunit alpha

HMOX1 Heme oxygenase 1

MYC TARGETS V1

MRTO4 mRNA turnover protein 4 homolog
NIP7 60S ribosome subunit biogenesis protein homolog
SRM Pyrimidine/purine nucleoside phosphorylase
HK2 Hexokinase-2

HYPOXIA
GBE1 1,4-alpha-glucan-branching enzyme
HK2 Hexokinase-2

HMOX1 Heme oxygenase 1

UV RESPONSE UP

PPIF Peptidyl-prolyl cis-trans isomerase F
ASNS Asparagine synthetase
YKT6 Synaptobrevin homolog YKT6

HMOX1 Heme oxygenase 1

GLYCOLYSIS
GMPPA Mannose-1-phosphate guanyltransferase alpha

HK2 Hexokinase-2
CTH Cystathionine gamma-lyase
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3.5. Correlation of GSEA Results with Liver Pathology

Next, the genes from the enriched pathways were searched against the DisGeNET
database for possible correlations with liver pathologies. Interestingly, the regulation of
the HRAS, CTTN, YKT6, DFFA, ACTN1, EPB41L2, ASNS, HMOX1, and PPIF proteins in L
could be correlated with that of HCV-infected hepatocytes. In particular, the up-regulation
of GTPase HRAS is associated with carcinoma [50], while up-regulation of Cortactin
and down-regulation of YKT6 and DFFA are related to tumor cell invasiveness [51–53]
and down-regulation of PPIF/CypD may lead to steatosis [54]. Finally, up-regulation of
alpha-actinin-1, Band 4.1-like protein 2 (EPB41L2), asparagine synthetase (ASNS), and
down-regulation of heme oxygenase (HMOX1) are correlated with cirrhosis [55] (Table 3).
Conclusively, misexpression of HRAS, CTTN, YKT6, DFFA, ACTN1, EPB41L2, ASNS,
HMOX1, and PPIF is related to advanced liver diseases frequently observed in patients
infected with HCV, indicating that Core+1/Long may play an important role in the devel-
opment of liver pathology. After the selection of the most significant genes using GSEA
and the DisGeNET database, we decided to test the expression levels of HRAS, CTTN,
ACTN1, EPB41L2, and YKT6, which are involved in carcinoma (HRAS), tumor invasion
(CTTN, YKT6), and cirrhosis (EPB41L2, ACTN1) and cross-validate them with the mass
spectrometry results. The mRNA levels were 1.97-fold for EPB41L2, 1.43-fold for ACTN1,
1.47-fold for CTTN, 1.72-fold for HRAS, and almost invariable 1.19-fold for YKT6, while
their protein levels were almost two-fold up-regulated, with the exception of YKT6, which
was found to be down-regulated (Supplementary File S2).

Table 3. Genes associated with liver pathology according to the DisGeNET database [44].

Gene Symbol Phenotype References

HRas Carcinoma [50]

CTTN Tumor cell invasion [53]

DFFA Tumor cell invasion [52]

YKT6 Tumor cell invasion [51]

PPIF Steatosis [54]

ACTN1 Cirrhosis [55]

EPB41L2 Cirrhosis [55]

HMOX Cirrhosis [56]

ASNS Cirrhosis [55]

3.6. Core+1/Long Stable Expression in Huh7.5 Cells Increases Cell Migration

Differential expression of CTTN and of YKT6 has been related to cell migration and
tumor invasion [51,53]. This led us to the hypothesis that the expression of Core+1/Long
in Huh7.5 cells may transform them into highly invasive tumor cells. To test the occurrence
of this phenotype, cell migration velocities were calculated for Huh7.5c+1/L and control
cells in a wound-healing assay. We observed the cell migration for 26 h for the Huh7.5/G
cell line and for 19 h for the Huh7.5c+1/L cell line (Figure 5A). The cell migration rate was
extrapolated from the slope of the plot of the gap area as a function of time (Figure 5B,
Supplementary File S5). In summary, the Huh7.5c+1/L cell line closed its wound much
faster than the Huh7.5/G. As shown in Figure 5, the wound-healing rate, and by extension,
the cell migration velocity (72,840 pixels/h), in Huh7.5c+1/L is approximately 1.56 times
faster than in the control (46,577 pixels/h), as shown by the slopes of the plot.
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4. Discussion

Here, we used a proteomic approach to shed light on the functional role of HCV
Core+1/ARFP protein via analyzing mass spectrometry data of Huh7.5 cells stably express-
ing it. Differentially expressed proteins (DEPs) with relative fold change ≥2 or ≤0.5 and
t-test p-value ≤ 0.05 were further used in functional pathways analysis.

As reported before, the expression of Core+1 isoforms (Core+1/Long and Core+1/Short)
in stably transfected Huh7.5 cells accelerated cell cycle progression and increased mRNA
levels of proliferation-related oncogenes. Moreover, the Core+1/Short isoform was found
before to enhance liver regeneration and oncogenesis in transgenic mice [37]. Increased
proliferation was associated with the induction of cyclin D1 expression and Rb phosphory-
lation. It was also discovered that the p21 CDK inhibitor was enhanced in the presence of
both Core+1/ARFP isoforms, possibly promoting the oncogenic form of p21 [57]. Finally,
serological tests displayed a high prevalence of anti-Core+1/ARFP antibodies in patients
with HCV-induced HCC or advanced cirrhosis compared to control groups, suggesting a
link of Core+1/ARFP with virus pathogenesis in the late stages of infection [23,25]. Our
findings after the analysis of the mass spectrometry data concerning Core+1/Long also
supports these findings. Notably, we found via GSEA that the enriched hallmarks consisted
of genes such as HRAS, DFFA, CTTN, YKT6, PPIF, ACTN1, EPB41L2, HMOX, and ASNS
are responsible for liver pathology phenotypes, namely as cirrhosis, steatosis, oncogenesis,
and tumor invasion (Table 3).

This fact adds evidence to the hypothesis that Core+1/ARFP may be contributing to
the development of HCC and cirrhosis by altering the expression profiles of these genes.
The non-precise correlation of protein levels with transcripts levels of the selected genes we
observed may be attributed to differences in transcription and translation regulation [58]
and differences in the biological replicates used.

According to the STRINGDB clustering (Figure 3), the expression of Core+1/Long pro-
tein reduces the expression of genes involved in mRNA processing and transcription, while
enhancing the expression of genes involved in ribosome assembly and rRNA processing.
These findings could indicate that Core+1/Long may play a role in hijacking the host cell
translation machinery during HCV infection. Since the processing of mRNA is hindered,
cellular mRNA export from the nucleus may be inhibited, and by extension, cellular mRNA
translation may be limited. As a result, the cytoplasmic (+) ssRNA genome of HCV is trans-
lated in higher amounts by the increased number of ribosomes, whose function is enhanced
by Core+1/Long. Moreover, the blockage of expression of selected innate immunity genes,
even indirectly, may be another mechanism used by the virus to manipulate the host [59]. It
should be noted that an experimental system mimicking HCV pathogenesis is still lacking;
therefore, all experiments were conducted on an immortalized cancer cell line with altered
homeostasis compared to normal hepatocytes, which is an over-simplification of an organ
with its intricate multi-cell type structure lacking the contribution of the immune system.
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Many RNA and most DNA viruses manipulate nucleocytoplasmic transport and its
components [60,61]. Despite the fact that it is a cytoplasmic replicating virus, HCV exploits
the nuclear transport machinery to establish a favorable environment for its replication [62].
Our proteomic analysis revealed three nuclear pore proteins affected by Core+1/Long
expression. Nup37 has a positive role in the progression of HCC and other cancers as
well [63], while its silencing induces inhibition of cell proliferation, G1 phase cell cycle
arrest, and apoptosis in non-small cell lung cancer cells [64]. Surprisingly, NUP37 was
found to be down-regulated in the L sample, possibly due to the hydroxyurea treatment
that arrested cells in the G1/S phase. NUP214 is an FG -nucleoporin that participates
in the shuttling of NF-κB and latent STAT1 into the nucleus [65]. Interestingly, NUP214
together with transmembrane nucleoporin NUP210 is one of the nucleoporins subverted
by dsDNA viruses, (+) ssRNA viruses such as coronaviruses, and ssRNA-RT viruses such
as HIV-1 [61,66]. NUP210 expression was one of the host genes affected during equine
encephalitis virus (VEEV) infection [67] and was overexpressed during primate infection
by the Zaire Ebolavirus (ZEBOV) mRNA [68] and in adenovirus-infected cells [69], but was
down-regulated by Dengue Virus Type 2 in a cell-based assay [70].

We also observed that Core+1/Long may cause metabolic reprogramming of the host
cell. The expression of Core+1/Long in Huh7.5 cells caused the downregulation of genes
related to oxidative phosphorylation, while simultaneously up-regulating genes related
to β-oxidation. These alterations usually cause oxidative stress to cells, which was also
observed during infection by HCV [71,72]. Metabolic and oxidative stress could be easily
attributed to protein overexpression, however, Core+1/ARFPs are very unstable proteins
and not highly expressed in the Huh7.5 stable cell lines [73].

The role of a COPI protein complex in the HCV infection life cycle that relies on its
involvement in vesicle trafficking is not fully defined. Interestingly, the COP1Z subunit of
the COPI complex identified in our analysis was also identified in a functional genomic
screen for viral replication genes [74], while a physical interaction between an HCV protein
and a subunit of the COPI protein complex has also been reported [75]. Core+1/Long may
be associated with the construction of virions in endoplasmic reticulum (ER) since HCV
lipoviroparticles assemble in the ER and bud off from it to the Golgi compartment in COPII
vesicles [76]. The discovery of up-regulated genes related to vesicle transport could lead to
the assumption that Core+1/Long may play a role in virus replication; however, previous
in vivo studies did not support this notion [27], [77]. Remarkably, the tumor suppressor
protein p53 is a central hub that regulates all the affected pathways. Of note, both the HCV
Core protein and the Core ARFP have been shown to deregulate the p53 pathway [78,79],
while it has been suggested that mutations in the HCV genome Core region are associated
with increased HCC risk [28].

We also observed that genes associated with cytoskeleton and focal adhesion, such as
ACTN1 and CTTN, are up-regulated and are related to HCV-mediated cirrhosis [80]. In
addition, the up-regulation of these and other proteins associated with the cytoskeleton
and cell cycle progression, such as HRAS, may explain the fast growth of the Huh7.5 cells
expressing Core+1/ARFP. Our wound-healing assay proved the predicted phenotype that
cells expressing Core+1/ARFP migrate faster than control cells. Remarkably, the Huh7.5
cells expressing Core+1/Long displayed significantly higher plate adhesion in comparison
to the control cells, a fact which may also be attributed to the over-expression of genes
associated with the cytoskeleton, and apical junction.

Psme, a protein linked to the proteolysis of peptides that are transported to the MHCI,
was also found up-regulated [49]. Moreover, the molecular chaperone protein HSPA1A or
Hsp70 is down-regulated (Figure 3). Hsp70 is responsible for the transport of peptides to the
MHCI [81]. Therefore, we may hypothesize that HCV infected cells activate pathways for
antigen presentation via MHCI and the expression of Core+1/Long hinders this pathway
by preventing Hsp70 to transport the proteolyzed peptides to MHCI, thus modulating the
immune response. Okamoto et al. have related HCV RNA replication with FKBP8 and
Hsp90, and their interaction with NS5B was reported as well [75,82].
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In summary, while a correlation between HCC and the expression of the Core+1/ARFP
isoforms has been speculated in the past, here we provide the first molecular signature that
the existence of Core+1/ARFP may trigger oncogenesis and metastasis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14081694/s1, Figure S1: (A) PCA of the normalized raw mass
spectrometry data. (B) Heatmap of the normalized raw mass spectrometry data V1, V2, VP, the
biological replicates of the Control group V. L1, L2, LP, the biological replicates of the cell line express-
ing Core+1/Long (L). S1, S2, SP, the biological replicates of the cell line expressing Core+1/Short
(S); Figure S2: mRNA levels of five genes related to liver pathology in the Huh7.5c+1/L cell line.
** p < 0.01, ns, non-significant; File S1: Raw data. The full list of the cellular proteins identified by MS;
File S2: DEPs; File S3: STRINGDB clusters from Figure 3 and associated genes; File S4: List of GSEA
enriched pathways, Enrichment-Core+1-L, and Enrichment-Core+1-S; File S5: wound healing assay.
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