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Abstract: The oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead
to cell aging and death. Equally, the skeletal muscle usually hosts enteroviral persistent infection in
inflammatory muscle diseases. As excellent bioactive products, the exosomes derived from umbilical
cord mesenchymal stem cells (ucMSCs) have been proven to be safe and have low immunogenicity
with a potential cell-free therapeutic function. Here, exosomes derived from ucMSCs (ucMSC-EXO)
were extracted and characterized. In a model of oxidative damage to skin fibroblasts (HSFs) under
exposure to H2O2, ucMSC-EXO had an observable repairing effect for the HSFs suffering from
oxidative damage. Furthermore, ucMSC-EXO inhibited mitogen-activated protein kinases (MAPK),
c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) signaling pathways, thereby
promoting p21 protein expression while decreasing lamin B1 protein expression, and finally alleviated
oxidative stress-induced cell damage and aging. In a model of rhabdomyosarcoma (RD) cells being
infected by enterovirus 71 (EV71) and coxsackievirus B3 (CVB3), the ucMSC-EXO enhanced the
expression of interferon-stimulated gene 15 (ISG15) and ISG56 to inhibit enteroviral replication,
whereafter reducing the virus-induced proinflammatory factor production. This study provides a
promising therapeutic strategy for ucMSC-EXO in anti-oxidative stress and antiviral effects, which
provides insight into extending the function of ucMSC-EXO in cell-free therapy.

Keywords: umbilical cord mesenchymal stem cells (ucMSCs); exosomes; oxidative damage;
enterovirus; antiviral activity; cell-free therapy

1. Introduction

The skin is the first line of defense against external stimuli and consists of the epidermis,
dermis, and subcutaneous tissue, of which human skin fibroblasts (HSFs) are the main
cellular component of the dermal tissue involved in the recovery of dermal damage [1].
The increase in reactive oxygen species (ROS) induced by an intracellular oxidant such
as H2O2 causes persistent damage to the telomeric and mitochondrial DNA, and leads
to a DNA-damage response (DDR). Consequently, the senescence-associated secretory
phenotype (SASP) is increased, and the p38 mitogen-activated protein kinases (p38 MAPK),
c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) signaling pathways
are activated with the upregulation of IL-2, IL-4, IL-6, IL-8, and TNF-α expression [2,3].
Thus, the skin is inevitably affected by the internal aging process, while various external
environmental factors accelerate the development of skin-aging-related diseases.
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The local skin and skeletal muscle are linked in the regulation of temperature and
circulation [4]. Enteroviruses have been detected in muscle biopsies from patients with
chronic inflammatory muscle diseases during infection [5]. Among human enteroviruses,
enterovirus 71 (EV71) and coxsackievirus B3 (CVB3) are important causes of hand-foot-and-
mouth disease (HFMD) in infants, especially in China, which infect the muscle cells and
spread through the muscle, resulting in inflammation [6]. Unfortunately, there are no effective
and compatible therapeutic strategies for muscle diseases caused by enteroviral infection.

Mesenchymal stem cells (MSCs) are pluripotent stromal cells with pluripotent differ-
entiation potential and immunosuppressive properties, obtained from a variety of sources,
including the umbilical cord, bone marrow, or adipose tissue, allowing them to promise
candidate cells suitable for immune regulation and regeneration [7,8]. Human umbilical
cord mesenchymal stem cells (hucMSCs) are an ideal therapeutic approach due to their
advantages of easy extraction and expansion, low cost, non-invasive collection procedures,
high cellular content, low risk of pathogenic infections, higher proliferation factor, and
lower immunogenicity [9,10]. Therefore, hucMSCs and their products are deemed to be
widely suitable for use in tissue and cell repair therapies.

Exosomes are endosome-derived extracellular vesicles (EVs) [11] with a diameter of
30–200 nm and originally defined according to their endocytic origin [12,13]. MSC-derived
exosomes display multiple biological functions and can be easily used for cell-free therapy
in many kinds of diseases [14]. Notably, ucMSC-derived exosomes (ucMSC-EXO) have
been proven to be safe and low-immunogenicity, showing considerable immunoregulation
and regenerative ability [15]. However, the therapeutic effects and potential mechanisms of
ucMSC-EXO on oxidative stress and enteroviral replication are not fully understood. Here,
we aim to evaluate the role of ucMSC-EXO in resisting oxidative stress in HSFs and their
effect on enterovirus infection in the skeletal muscle.

2. Materials and Methods
2.1. Cell Culture

The human skin fibroblasts (HSFs), also named human foreskin fibroblasts-1 (HFF-1)
(Cat: SCRC-1041), and rhabdomyosarcoma (RD) cells (Cat: CCL-136) were purchased
from the American Type Culture Collection (ATCC) (Manassas, VA, USA), and cultured
in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) (Gibco; Grand Island,
NY, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco). The umbilical cord
mesenchymal stem cells (ucMSCs) (Cat: #7530) were obtained from ScienCell Research
Laboratories (Carlsbad, CA, USA) and cultured in a serum-free MSC medium (Cat: NC0103)
(Yocon Biotech. Co.; Beijing, China). The cells were maintained at 37 ◦C in a humidified
atmosphere containing 5% CO2 and passaged every 3–5 days. The other exosome donor
cells, human embryonic kidney cell line (HEK293T), cardiomyocytes line (AC16), human
intestinal cells (HT29), and human brain microvascular endothelial cells (hBMEC), were
purchased from the ATCC, which were maintained in the above culture condition.

2.2. Antibodies and Reagents

FITC mouse anti-human CD19 (Cat: 560994), CD34 (Cat: 560942), CD45 (Cat: 560976),
CD73 (Cat: 561254), and CD105 (Cat: 561443) and PE mouse anti-human CD90 (Cat:
555596) were purchased from BD Pharmingen (BD Biosciences Systems; San Jose, CA,
USA). The rabbit antibodies against phosphorylated NF-κB p65 (p-p65, Ser536) (Cat: 3033)
and NF-κB p65 (Cat: 8242) were purchased from Cell Signaling Technology (Beverly, MA,
USA). The rabbit antibodies against p53 (Cat: 345567), phosphorylated p38 MAPK (p-
p38, Thr180/Tyr182) (Cat: 310091), and phosphorylated JNK (p-JNK Thr183/Tyr185) (Cat:
R26311) and the mouse antibodies against p38 MAPK (Cat: 200782) and JNK (Cat: 201001)
were purchased from ZENBIO Inc. (Chengdu, China). The rabbit antibodies against p21
(Cat: 10355-1-AP) and the lamin B1 (Cat: 12987-1-AP) polyclonal antibodies were purchased
from Proteintech Group (Chicago, IL, USA). The polyclonal rabbit antibody against EV71
VP1 (Cat: GTX132339) was purchased from GeneTex, Inc. (Alton Pkwy Irvine, CA, USA).
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The rabbit antibody against EV71 3D (Cat: A8608) was purchased from Abclonal (Wuhan,
China). The hydrogen peroxide (H2O2) was purchased from Guangzhou Chemical Reagent
Factory (Guangzhou, China).

2.3. Exosome Isolation and Purification

The cells were cultured in an exosome-depleted medium for 48 h. The cell supernatant
was collected to isolate the exosomes using ultracentrifugation. Briefly, the harvested
supernatant was subjected to differential centrifugation at 4 ◦C, starting with centrifugation
at 300× g for 10 min, followed by centrifugation at 2000× g for 10 min. The pellet was
discarded and the supernatant was filtered with a 0.22 µm filter (Millex-GP; Millipore,
Bedford, MA, USA) to remove the remaining cells and cell debris. The supernatant was
further ultracentrifuged at 120,000× g for 70 min using a Beckman SW41 Ti rotor (Beckman
Coulter; Brea, CA, USA). The resulting pellet was washed with PBS and ultracentrifuged
at 120,000× g for 70 min again. After discarding the supernatant, the exosome pellet was
immediately resuspended in 100 µL PBS and stored at −80 ◦C until use. The number of
exosomes was identified as previously described [16]. Briefly, the exosomes with a total
protein amount ranging from 0.5 to 2.0 µg were incubated in 1 mL of medium for the
treatment of the cultured cells.

2.4. NanoSight Tracking Analysis

The isolated exosomes were subjected to NanoSight tracking analysis (NTA) using a
NanoSight NS300 instrument (NanoSight Ltd., Amesbury, UK). The solution containing the
ucMSC-EXO was injected into the laser chamber using a 1 mL syringe and 60 s recordings
were performed. The mean, mode, median, and estimated concentration for each particle
size were analyzed. Data were processed using NTA 2.3 analytical software.

2.5. Transmission Electron Microscopy (TEM)

The exosome samples were dropped on a para-membrane, and a carbon-coated nickel
grid was placed on the drop for 30 to 60 min. The grids were washed with 1 PBS three
times and fixed in 2.5% glutaraldehyde for 30 min. The samples were then treated with 1%
uranyl acetate for 30 s, rinsed 3 times with ddH2O, and detected using a JEM1400 120 kV
TEM (JEOL Ltd.; Peabody, MA, USA).

2.6. Oxidative Damage and Exosome Treatment

For the establishment of the premature senescence model, the HSFs were treated with
0, 10, 50, 100, 200, and 400 µM of H2O2 in serum-free high glucose DMEM at 37 ◦C with 5%
CO2 for 1 or 2 h. The cells were then washed with the serum-free medium twice to remove
the residual H2O2. In the exosome treatment group, the H2O2-treated cells were washed
with the serum-free medium and incubated with the exosomes for 48 h for further assays.

2.7. Western Blotting

The cells were harvested and lysed using an RIPA buffer (Beyotime, Shanghai, China)
containing 1 mM of protease inhibitor (Roche Diagnostics; Penzberg, Germany). The
total proteins were extracted and the protein concentrations were determined by using
a bicinchoninic acid (BCA) Protein Assay Kit (Beyotime). For each sample, 20 µg of the
total protein was loaded onto a 10–15% SDS-PAGE gel. The proteins were transferred to a
polyvinylidene fluoride (PVDF) membrane (Millipore), followed by being blocked with 5%
skim milk at room temperature for 1 h and then incubated with primary antibodies at 4 ◦C
overnight. The membranes were washed with PBST and incubated with HRP-conjugated
secondary antibodies at a dilution of 1:5000 (Proteintech Group) for 1 h at room temperature.
The blots were analyzed using the ChemiDoc Touch Imaging System (Bio-Rad; Hercules,
CA, USA).
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2.8. Cell Proliferation Assay

For the Cell Counting Kit-8 (CCK8) assay, the HSF cells were plated at 1 × 105 cells
per well in 24-well plates and incubated overnight in DMEM supplemented with 10% FBS.
The cell proliferation index was measured using a Cell Counting Kit-8 (Cat: CK04-500)
(Dojindo Laboratories; Kumamoto, Japan) according to the manufacturer’s instructions.
The absorbance was measured at a wavelength of 450 nm.

2.9. Lactate Dehydrogenase (LDH) Assay

The HSF cells (1 × 105) were seeded in a 24-well plate and subsequently treated with
H2O2 in different concentrations. The supernatants of the HSF cells were collected and the
levels of LDH were assessed using the LDH cytotoxicity detection kit (Dojindo Laboratories)
according to the manufacturer’s instructions. Briefly, 200 µL of supernatant was added
to each 96-well plate in triplicates. Then, 50 µL of the working solution was added and
wrapped in tin foil to avoid light. After a 10 to 30 min reaction at room temperature, 25 µL
of the stop solution was added to each well and mixed. The absorbance of each sample
was read at 490 nm using a Varioskan LUX microplate reader (Thermo Fisher Scientific,
Waltham, MA, USA).

2.10. Senescence-β-Galactosidase (SA-β-Gal) Staining

The HSF cells (1 × 105) were grown in a 24-well plate and treated with different
concentrations of H2O2 for 2 h, and subsequently treated with exosomes at different
amounts for 48 h. The cells were washed with PBS and stained with an SA-β-Gal kit
(Cat: C0602) (Beyotime; Shanghai, China) according to the manufacturer’s instructions.
Firstly, the cells were fixed using a β-Gal fixator at room temperature for 15 min. After
washing them with PBS three times, the cells were added to 500 µL of staining solution,
and incubated overnight in a CO2-free incubator at 37 ◦C. An inverted microscope was
used to photograph randomly selected fields to determine the degree of cell senescence.

2.11. qPCR Assay

The total RNA from collected cells was subjected to RNA extraction using a TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) and reverse-transcribed into cDNA. A quanti-
tative real-time PCR (qPCR) test was completed using a Lightcycler 480 RT-PCR system
(Roche Diagnostics; Mannheim, Germany) with a SYBR Green I Master RT-PCR kit (Roche
Diagnostics). Relative quantitation was performed based on the ∆∆CT method. The primers
used for the qPCR are shown in Table 1.

Table 1. List of primers used for the qPCR in this study.

Name Primers

Tnf-α
F: 5′-CTGCACTTTGGAGTGATCGG

R: 5′-AGGGTTTGCTACAACATGGG

Cxcl-12
F: 5′-TCTTCGAAAGCCATGTTGCC

R: 5′-CTTCGGGTCAATGCACACTT

Il-6
F: 5′-AATGAGGAGACTTGCCTGGT

R: 5′-GCAGGAACTGGATCAGGACT

EV71
F: 5′-CTGTGCGAATTAAGGACAG

R: 5′-GAGTTCCATAGGTGACAGC

CVB3
F: 5′-CGGTACCTTTGTGCGCCTGTT

R: 5′-GCGGTGCTCATCGACCTGA

Gapdh
F: 5′-ATGTTTGTGATGGGTGTGAA

R: 5′-ATGCCAAAGTTGTCATGGAT
F: Forward; R: Reverse.
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2.12. Plaque Assays

To test the antiviral ability of the ucMSC-EXO, the progeny viruses from the cell culture
supernatants were harvested in preparation, and the titers were determined using plaque
assay on the RD cells. The RD cells were seeded and it was ensured that the monolayers of
the cells reached 90% confluence at the bottom of the wells. A series of 10-fold dilutions
of the viral supernatants was infected for 2 h. 1%-agarose-containing DMEM was layered
onto the infected cell monolayer at 37 ◦C for 2 to 3 days. The plaques of the EV71 viruses
were observed by fixing them with 4% paraformaldehyde and stained for 30 min with
crystal violet dye (0.5%) for 30 min at room temperature.

2.13. Statistical Analysis

All data are presented as the mean ± standard deviation (SD) from at least three
repeated assays. A comparison between the two groups was performed using Student’s
t-test. All statistical analyses were performed using Graph Pad Prism 7.0 (GraphPad
Software, Inc.; San Diego, CA, USA). A p < 0.05 was considered to indicate a statistically
significant difference.

3. Results
3.1. Characterization of ucMSCs and Identification of ucMSC-EXO

The umbilical cord mesenchymal stem cells (ucMSCs) were prepared from a human
umbilical cord and cultured in a serum-free MSC medium. At passage 0 of the ucMSCs, the
morphological characterization of the cells was spindle-shaped with an oval nucleus in the
center, and the cytoplasm protruded outward with different lengths of protrusions. After
passages 1–4, the cells strongly adhered to the wall and were arranged in a homogeneous
and swirled pattern (Figure 1A). The surface markers at passage 4 of the ucMSCs using flow
cytometry for CD105, CD73, and CD90 were 99.3%, 98.8%, and 99.1%, respectively, whereas
for CD19, CD45, and CD34, they were 1.7%, 0.82%, and 1.16%, respectively (Figure 1B),
of which the positive rate was ≤5%. The phenotypic markers of the isolated cells were
consistent with those previously reported for ucMSCs [17].
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Figure 1. Identification and analysis of ucMSCs and ucMSC-derived exosomes. (A) Images of cul-
tured ucMSCs from passage 0 (P0) to 4 (P4) under a light microscopy observation. Scale bar = 100 µm.
(B) Flow cytometry analysis of surface antigens on cultured P4 ucMSCs. (C) NTA analysis of the
isolated fractions from P4 ucMSCs supernatant. (D) Morphology of ucMSC-EXO under TEM obser-
vation. Scale bars = 100 nm. (E) Western blot analysis of positive markers (CD9, CD63, TSG101, and
HRS) in exosomes. Calnexin is used as a cytosol marker. WCL, whole-cell lysis. EXO, exosomes.

Next, the exosomes from the supernatants of the ucMSCs were isolated and purified.
The average size and concentration of the ucMSC-derived exosomes were analyzed us-
ing NTA (Figure 1C). The ucMSC-derived exosomes were further observed as a single
membrane and spheroid shape using TEM (Figure 1D). In addition, the internal content
and surface markers of the exosomes, including HRS (hepatocyte growth factor receptor
tyrosine kinase substrate), TSG101 (tumor susceptibility gene 101), and tetraspanins (such
as CD63 and CD9), were detected in the purified exosomes (Figure 1E). Altogether, the
ucMSC-derived exosomes were identified and verified.

3.2. ucMSC-EXO Attenuate the H2O2-Induced Oxidative Damage of HSFs

To establish an oxidative damage model in the HSFs, the cells were incubated with
increasing concentrations of H2O2 for 2 h. Compared with a control group, the cell morphol-
ogy was remarkably changed into a round shape and the number of dead cells increased
with an increase in the H2O2 concentration (Figure 2A). SA-β-gal is a lysosomal enzyme
that has been commonly used as the biomarker of cell senescence [18]. In parallel, we
observed an increasing number of SA-β-gal-positive senescent cells after H2O2 treatment
(Figure 2B), suggesting an enhanced degree of HSF aging.

Next, CCK8 assay revealed that the cell viability was significantly reduced by H2O2-
induced injury, while LDH assay indicated that the degree of cell damage increased in
response to H2O2 treatment (Figure 2C). To further assess the HSFs’ senescence resulting
from H2O2-induced damage, both p21 and lamin B1 proteins were examined as important
molecular markers for cell aging [19]. After H2O2 treatment at varying concentrations,
the lamin B1 protein level was strikingly downregulated, while the p21 protein level was
significantly raised after 100 µM or more (Figure 2D and Supplementary Figure S1A). These
data suggested that oxidative damage enhanced cell senescence and decreased the cell
survival of HSFs in exposure to H2O2 in high concentration.
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Figure 2. ucMSC-EXO treatment alleviates H2O2-stimulated oxidative injury in HSFs. (A) HSFs
were exposed to different concentrations of H2O2 (0, 1, 10, 25, 50, 100, 200, and 400 µM) for 2 h.
Morphology of cells was observed under light microscopy. Scale bar = 50 µm. (B) HSFs were exposed
to different concentrations of H2O2 (0, 10, 50, and 100 µM) for 2 h. Cell senescence is indicated by
dark SA-β-Gal intracellular staining. Scale bar = 100 µm. (C) Cell viability and LDH release of H2O2-
treated HSFs were examined using CCK8 and LDH assay, respectively. (D) In H2O2-treated HSFs, the
expression of lamin B1 and p21 proteins was determined using Western blotting. (E–G) HSFs were
incubated with different concentrations of H2O2 (0, 50, and 100 µM) for 2 h and then treated with
different amounts of ucMSC-EXO for 48 h. Morphology of cells was observed under light microscopy.
The damaged cells and repaired cells are indicated by the arrows in yellow and red, respectively (E).
Scale bar = 100 µm. Cell viability and LDH release of H2O2-treated HSFs at different concentrations
(0, 50, and 100 µm) were examined using CCK8 and LDH assay, respectively (F). The expression
of lamin B1 and p21 proteins was determined using Western blotting (G). Graphs are expressed as
mean ± SD. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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To study the effect of the ucMSC-EXO on HSFs after oxidative injury, cells were treated
with H2O2 and followed by treatment with the ucMSC-EXO. After treatment with H2O2,
the number of senescent HSFs increased significantly, and their morphology changed
significantly, including an increase in dead cells, a decrease in the overall number of cells,
and rounded cell morphology, losing their original normal shape (Figure 2E), whereas these
changes were lessened in cells co-treated with H2O2 and ucMSC-EXO compared to cells
treated with H2O2 alone, especially at 100 µM (Figure 2E). Then, the viability and extent
of the cell damage were measured using CCK8 and LDH release assay, respectively. The
CCK8 assay indicated that the cell viability was decreased by H2O2 in the HSFs whereas
such change was reversed by treatment with the ucMSC-EXO (Figure 2F, up). In a parallel
experiment, the level of LDH in HSFs supernatants in the ucMSC-EXO groups decreased
compared with control groups (Figure 2F, down). Consistently, in the control group with
H2O2 alone, the lamin B1 protein level decreased while the p21 protein level increased
(Figure 2G). However, the changes in the above two protein levels induced by H2O2
were reversed after ucMSC-EXO treatment (Figure 2G and Supplementary Figure S1B).
Therefore, the results demonstrated that ucMSC-EXO attenuated H2O2-induced oxidative
injury in HSFs.

3.3. ucMSC-EXO Specific Therapeutic Effects on Oxidative Damage as Indicated by Multiple
Signaling Pathways

To better elucidate the unique role of ucMSC-EXO in oxidative damage repair, we
investigated the effects of exosomes from different types of cells on the recovery of HSFs.
HSFs were treated with exosomes from ucMSCs and four other kinds of cells (AC16, HT29,
HEK293T, and BMEC). In the groups with H2O2 treatment, the number of senescent HSFs
significantly increased and a remarkably changed morphology was observed; however,
these changes could be reduced in the presence of the exosomes derived from ucMSCs but
not the AC16, HT29, HEK293T, and BMEC cells (Figure 3A). Similarly, β-galactosidase activ-
ity assays revealed that the exosomes derived from ucMSCs rather than other cells reduced
H2O2-induced cell senescence in the HSFs (Figure 3B), suggesting that the therapeutic
effects of ucMSC-EXO on oxidative damage of HSFs are cell-specific.

Since lamin B1 and p21 proteins are the molecular hallmarks of aging cells, the changes
in the lamin B1 and p21 proteins were also seen in the HSFs in their treatment with H2O2
and cell-specific derived exosomes. In the groups with H2O2 treatment, the level of lamin
B1 protein decreased, and the level of p21 protein increased, whereas these changes could
be recovered in the presence of the exosomes derived from ucMSCs but not from the
AC16, HT29, HEK293T, or BMEC cells (Figure 3C and Supplementary Figure S2A). These
molecular and morphological observation results show that the ucMSC-EXO exerted unique
oxidative damage-blocking effects in the HSFs. Thus, we identified that ucMSC-EXO
specifically attenuate the H2O2-induced oxidative damage of HSFs, by downregulating the
NF-κB, JNK, and MAPK signals to increase the p21 and p53 protein levels and decrease the
lamin B1 protein level.

ROS accumulation impairs intracellular redox homeostasis to trigger multiple signals
and downstream effectors [20]. Namely, ROS could activate MAPK and key transcription
factors such as NF-κB, nuclear factor erythroid 2-like (Nrf2), JNK, and activating protein 1
(AP-1), which are also associated with a p53-mediated pathway, activating p16 and p21 and
finally resulting in cellular damage and senescence (Figure 3D). To verify whether ucMSC-
EXO inhibited the signaling pathways that were induced by oxidative stress, we examined
the signals and target factors in the H2O2-treated HSFs. In the groups exposed to H2O2, the
phosphorylation levels of p65, JNK, and p38 increased, while the level of lamin B1 protein
decreased, and the levels of p21 and p53 proteins increased (Figure 3E and Supplementary
Figure S2B). However, treatment with the ucMSC-EXO typically reversed these changes
induced by H2O2 in the HSFs (Figure 3E and Supplementary Figure S2B), suggesting an
attenuation of the NF-κB, JNK, and MAPK signaling to inhibit oxidative damage.
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3.4. The Cell-Specific ucMSC-EXO Exert Antiviral Activity upon Enteroviral Infection

To explore the antiviral activity of ucMSC-EXO, we first conducted the treatment
of ucMSC-EXO in EV71-infected RD cells, an infectious model in skeletal muscle. The
ucMSC-EXO and the exosomes from different cell sources were incubated at different
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concentrations to validate the antiviral effect. In the RD cells treated with ucMSC-EXO,
the level of EV71 replication significantly decreased, while the AC16, HT29, HEK293T,
and BMEC-derived exosomes did not elicit antiviral effects (Figure 4A), indicating the cell-
specific nature of the ucMSC-EXO’s anti-EV71 replication effect. The culture supernatant
collected after ucMSC-EXO treatment was tested using a progeny virus titer, suggesting
that the production of progeny viruses was significantly reduced (Figure 4B). It is worth
mentioning that the treatment of ucMSC-EXO enhanced the levels of antiviral protein
ISG15 and ISG56 expression with a decrease in viral protein expression (Figure 4C and
Supplementary Figure S3A). Noticeably, ucMSC-EXO treatment solidly repressed the
EV71-induced expression of proinflammatory factors, including Tnf-α, Cxcl-12, and Il-6,
(Figure 4D), suggesting an alleviation of the EV71-induced inflammatory response in the
RD cells.

Figure 4. The antiviral activity of ucMSC-EXO upon EV71 infection. At 2 h p.i. with EV71 at an
MOI of 0.5, RD cells were incubated with ucMSC-EXO at different doses (0, 0.5, 1.0 µg/mL) or the
EXO from AC16, BMEC, 293T, and HT29 cells for another 12 h. (A) Relative expression of intracellular
viral RNA levels was measured using qPCR assay. (B) The progeny virus titers in cell supernatants
were determined using plaque assay in RD cells shown as PFU/mL. The representative images of the
viral plaque assay were displayed. (C) Cell lysates were prepared and EV71 VP1, ISG15, ISG56, and
β-actin in the cell lysates were detected using Western blot analyses. (D) Total RNA was extracted
from the cells, and the RNA levels of Tnf-α, Cxcl-12, and Il-6 were determined using qPCR assay. The
GAPDH mRNA was used as an internal control. Data are expressed as fold change relative to control.
All data are shown as mean ± SD. ns, nonsignificant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Consistently, in another enterovirus infectious model, CVB3-infected RD cells, ucMSC-
EXO significantly inhibited CVB3 replication (Figure 5A) and progeny production (Figure 5B)
by means of enhancing the expression of ISG15 and ISG56 (Figure 5C and Supplemen-
tary Figure S3B), and downregulated the levels of CVB3-induced proinflammatory fac-
tors (Figure 5D). Altogether, ucMSC-EXO exhibit considerable antiviral activity upon
enterovirus in muscle cells. In sum, we explore a promising insight into ucMSC-EXO as
cell-free therapy both in the alleviation of oxidative damage in human skin fibroblasts and
a new approach to antiviral therapy in human skeletal muscle.
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4. Discussion

At low levels, ROS are the first line of defense and are involved in various physiolog-
ical functions. However, excess ROS or insufficient endogenous defense systems impair
intracellular redox homeostasis. Oxidative damage to skin fibroblasts being caused by
UV irradiation and oxidant exposure, leading to skin aging, has been confirmed by a
large number of studies [21–23]. Among them, the main cause of oxidative damage is
the massive production of ROS, which breaks its balance with peroxidase in vivo. In this
study, we treated fibroblasts with hydrogen peroxide to mimic the effect of amplifying
ROS on skin fibroblasts. Senescent cells are usually enlarged and have a flattened shape.
The nuclear envelope integrity is disrupted due to the decreased expression of lamin B1,
while the DNA damage response (DDR) leads to the activation of the tumor suppressor
p53, which in turn activates p21 to initiate cell cycle arrest [19]. Through treatment with
different concentrations of hydrogen peroxide, we observed the morphology changes in
senescent cells at 100 µM and the expressions of lamin B1 decreased and p21 increased,
thus establishing a suitable model of oxidative damage in HSFs.
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As one of the critical stem cell derivatives, ucMSC-EXO contain a variety of growth
factors, cytokines, and RNA that improve cell function and could be used as an effective cell-
free therapy in many diseases [24–27]. Here, we further investigated the therapeutic effect
of ucMSC-EXO on the H2O2-induced oxidative damage of HSFs. Although previous studies
demonstrate that ucMSC-EXO protect against the UV-induced senescence of HSFs [28,29],
little is known about the role of ucMSC-EXO and their mechanisms of protection against
the oxidative damage of HSFs. In this study, it was found that ucMSC-EXO blocked cellular
oxidative damage by inhibiting multiple H2O2-activated pathways. This includes the
NF-κB, JNK, and p38 MAPK signaling pathways, which increase the p21 and p53 protein
levels and decrease the lamin B1 protein level. Ultimately, the ucMSC-EXO protect skin
fibroblasts from being damaged by ROS.

It is acknowledged that ROS trigger the secretion of pro-inflammatory factors, leading
to inflammatory damage as the concept of “inflammaging”. As such, oxidative stress and
DNA damage commonly contribute to skin aging, both of which are related to inflam-
mation [30]. Actually, the activation of JNK and p38 MAPK leads to premature senes-
cence [30,31], implying that these pathways may be a potential link between skin aging and
oxidative stress. At the same time, the oxidative stress state triggers the activation of the
NF-κB pathway to regulate the expression of inflammation-related genes, resulting in the
appearance of photoaging such as wrinkles and the increased thickness of the skin [32,33].
We found ucMSC-EXO inhibited these inflammation-related pathways, including NF-κB,
JNK, and p38 MAPK signaling, from being activated by oxidative stress from H2O2 to
protect skin fibroblasts from oxidative damage. It could be explained that ucMSC-EXO
attenuate inflammation in oxidative damage repair. The potent anti-inflammatory proper-
ties of hucMSCs-EVs have been investigated in inflammatory bowel disease (IBD) [34,35],
which is consistent with our findings in this study.

Since ucMSC-EXO slow down the senescence of skin fibroblasts due to oxidative
damage, we also assessed the antiviral activity of ucMSC-EXO in enterovirus-infected
muscle cells, and found that ucMSC-EXO can reduce EV71 and CVB3 replication and lessen
the virus-induced inflammatory response. Considering the potential antiviral activity of
ucMSC-EXO, the extension of the application of this nanotherapeutic strategy could be
hopeful in the treatment of the concerned acute virus-associated diseases. Since the outbreak
of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease
2019 (COVID-19) and the pneumonia caused by the viral infection has infected millions
of individuals and caused a large number of deaths worldwide [36]. Stem-cell-derived
exosomes are expected to achieve a therapeutic purpose by inhibiting viral replication and
weakening the virus-induced inflammatory response in COVID-19 [37]. It is promising
that ucMSC-EXO treatment is profitable for the surveillance of COVID-19.

Innate cellular immunity constitutes the first barrier against pathogen invasion and
the antiviral effect being mediated by interferons is an extremely important part of innate
immunity. An interferon is a secreted protein induced by cells recognizing pathogen-
associated molecular patterns (PAMPs) [38]. After IFNs are produced, they bind to the
IFN receptors on the cell surface, thereby initiating the downstream signaling pathway
and inducing the transcription of hundreds of ISGs. The expression of ISGs can not only
directly inhibit the replication of the virus but also indirectly regulate the expression of
IFNs to play an antiviral role. In our study, ucMSC-EXO treatment enhances ISG15 and
ISG56 expression, leading to the inhibition of enteroviral replication and virus-induced
inflammatory factor production.

ISG15 is a ubiquitin-like 17-kDa protein that is covalently conjugated to target pro-
teins via a process called ISGylation. ISGylated 4EHP may act as a viral mRNA-specific
translation inhibitor in a cap-dependent manner [39]. The IFN-induced protein with tetratri-
copeptide repeats (IFIT) family member ISG56 acts as a sensor to bind viral single-stranded
RNA bearing a 5′-triphosphate group and plays an inhibitory role in the replication phase
of the virus [40]. The antiviral effects of ucMSC-EXO could be highly related to its up-
regulation of ISG15 and ISG56; however, the specific mechanism by which ucMSC-EXO
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regulate the activation of interferon-stimulated genes is still unclear, and further verification
is needed.

Future work can concern proteomics and RNA transcriptomics to verify the specific
modulators in ucMSC-EXO in the performance of anti-oxidant and antiviral effects. In
addition, relevant animal models or skin organoids need to be established for further
verification. For example, HSFs can be cultured in an optimized three-dimensional medium
for organoids [41], in which ucMSCs-EXO repair skin fibroblasts or muscle suffering from
oxidative injury or viral pathogenesis as a reliable model.

5. Conclusions

In summary, this study indicated that ucMSC-EXO have potential therapeutic and
antiviral activities and suggested some mechanisms for these actions. These findings extend
the functional exploration of ucMSC-EXO and provide potential cell-free therapeutics for
anti-oxidative stress and antiviral effects on skin and muscle.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/v15102094/s1, Figure S1: Relative expression of indicated protein
by Western blot analyses in Figure 2; Figure S2: Relative expression of indicated protein by Western
blot analyses in Figure 3; Figure S3: Relative expression of indicated protein by Western blot analyses
in Figure 4.
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ROS Reactive oxygen species
ucMSC Umbilical cord mesenchymal stem cells
ucMSC-EXO Exosomes derived from ucMSCs
HSFs Skin fibroblasts
MAPK Mitogen-activated protein kinases
JNK c-Jun N-terminal kinase
NF-κB Nuclear factor kappa-B
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ISG15 Interferon-stimulated gene 15
DDR DNA damage response
SASP Senescence-associated secretory phenotype
p38 MAPK P38 mitogen-activated protein kinases
HFMD Hand-foot-and-mouth disease
EVs Extracellular vesicles
HRS Hepatocyte growth factor receptor tyrosine kinase substrate
TSG101 Tumor susceptibility gene 101
Nrf2 Nuclear factor erythroid 2-like
AP-1 Activating protein 1
IBD Inflammatory bowel disease
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
COVID-19 Coronarius disease 2019
PAMPs Pathogen-associated molecular patterns
IFIT IFN-induced protein with tetratricopeptide repeats
hBMEC Human brain microvascular endothelial cell
TEM Transmission electron microscopy
PVDF Polyvinylidene fluoride
LDH Lactate dehydrogenase
SA-β-Gal Senescence-β-Galactosidase
CCK8 Cell Counting Kit-8
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