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Abstract: SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus) has constantly been evolv-
ing into different forms throughout its spread in the population. Emerging SARS-CoV-2 variants,
predominantly the variants of concern (VOCs), could have an impact on the virus spread, pathogenic-
ity, and diagnosis. The recently emerged “Omicron” variant has exhibited rapid transmission and
divergence. The spike protein of SARS-CoV-2 has consistently been appearing as the mutational
hotspot of all these VOCs. In order to determine a deeper understanding of the recently emerged
and extremely divergent “Omicron”, a study of amino acid usage patterns and their substitution
patterns was performed and compared with those of the other four successful variants of concern
(“Alpha”, “Beta”, “Gamma”, and “Delta”). We observed that the amino acid usage of “Omicron”
has a distinct pattern that distinguishes it from other VOCs and is significantly correlated with
the increased hydrophobicity in spike proteins. We observed an increase in the non-synonymous
substitution rate compared with the other four VOCs. Considering the phylogenetic relationship, we
hypothesized about the functional interdependence between recombination and the mutation rate that
might have resulted in a shift in the optimum of the mutation rate for the evolution of the “Omicron”
variant. The results suggest that for improved disease prevention and control, more attention should
be given to the significant genetic differentiation and diversity of newly emerging variants.

Keywords: SARS-CoV-2; VOC; amino acid usage; mutation rate; recombination; receptor binding
domain

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the
Coronavirus disease 2019 (COVID-19) pandemic has had a distressing effect globally [1,2].
The number of mutations that accumulate as the genome replicates increases, leading to
the variants being produced. The emergence of SARS-CoV-2 has also generated interest in
the role of recombination in the evolution of the virus [3].

Distinguished SARS-CoV-2 variants were categorized by the World Health Organi-
zation (WHO) into three groups: variants of concern (VOCs), variants of interest (VOIs),
and variants under monitoring (VUMs) in order to prioritize the surveillance of these
variants [4,5]. Evolution of mutated lineages with higher infectivity or immune escape
capacities were eventually categorized as VOCs based on their characteristics [4]. As of
December 2021, WHO has identified five VOCs (“Alpha”, “Beta”, “Gamma”, “Delta”, and
“Omicron”). Among them, the “Alpha” VOC (Pango lineage B.1.1.7) was first detected
in the U.K. in 2020, the “Beta” VOC (Pango lineage B.1.351) was first detected in South
Africa in 2020, the “Gamma” VOC (Pango lineage P.1) was first detected in 2020 in Brazil,
the “Delta” VOC (Pango lineage B.1.617.2) was first detected in India in late 2020, and the
“Omicron” VOC (Pango lineage B.1.1.529) was first detected in South Africa and Botswana
in November 2021. The “Omicron” variant outcompeted other variants with a greater
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number of mutations, specifically in the spike (S) protein, which has been linked to the
high transmissibility and infectivity of this variant [6–8].

The evolution and adaptability of the viral genome to the host genome have been
related to the global spread of SARS-CoV-2, which has shown significant drops in some
places and sharp increases in others in terms of transmission rates. The variability has
also been altered by variations in host immune systems, mutations, deletions, recombi-
nation, and genetic drift [9]. Studies have shown that the patterns of global variation are
probably caused by adaptations at the nucleotide and amino acid regions as well as the
variability found in structural proteins, notably spike proteins [10]. Multivariate analysis
of the amino acid usage pattern will help to understand the worldwide heterogeneity of
SARS-CoV-2, the evolution of its genome, and its adaptability to the host. Studies have also
shown natural selection and mutational pressure as key factors influencing the variation in
SARS-CoV-2 [3,11].

Genome-wide analysis of SARS-CoV-2 variants with the first emerged genome in
Wuhan city in China in 2019 might suggest a relative association among viral strains [9,12].
With the prior knowledge of the accumulation of nucleotide substitution over time, the esti-
mation of the most recent common ancestor (tMRCA) of the two strains is possible [13]. As
the SARS-CoV-2 genome is almost entirely made up of protein-coding regions, it is crucial
to distinguish between nonsynonymous and synonymous substitution rates [14,15]. The
SARS-CoV-2 genome can actually be thought of as a collection of several “recombination
blocks”, or areas between predicted breakpoints for recombination events [16]. For the
current pandemic, recombination events in the evolutionary history of the spike protein
are specifically important [17].

This study aims to comprehend the evolutionary pattern and mutational landscape
of the five VOCs (“Alpha”, “Beta”, “Delta”, “Gamma”, and “Omicron”). First, we will
identify the major trends in amino acid usage of spike proteins across five VOCs through
multivariate analysis. We will also evaluate the evolutionary perspective, such as nonsyn-
onymous and synonymous substitutions rates and rate of evolution, and then analyze the
recombination pattern of the five VOCs. This study will be important to understand the
mutational and evolutionary properties that are necessary for new therapeutic and vaccine
development to combat the virus.

2. Materials and Methods
2.1. Sequence Retrieval

A total of 456,409 spike nucleotide sequences of SARS-CoV-2 were downloaded
from the NCBI-Virus repository (https://www.ncbi.nlm.nih.gov/sars-cov-2 accessed on
20 March 2022). Partial sequences and sequences containing ambiguous characters were
excluded from our dataset [1,18]. NCBI provides information about each spike sequence
regarding its association with a designated VOC (i.e., “Alpha”/“Beta”/“Gamma”/“Delta”/
“Omicron”). Finally, there were 100,309, 427, 175,351, 9618, and 170,243 numbers of “Alpha”,
“Beta”, “Delta”, “Gamma”, and “Omicron” variant sequences, respectively, in the down-
loaded data (Supplementary Table S1). 250 whole genome sequences covering five VOCs
of SARS-CoV-2 were downloaded from NCBI for the recombination study. Angiotensin-
converting enzyme 2 (ACE2) variants were retrieved from the Genome Aggregation Consor-
tium Database (gnomAD) (https://gnomad.broadinstitute.org/ accessed on 1 September
2023) (Supplementary Table S2).

2.2. Correspondence Analysis on Amino Acid Usage

To assess the variations in the amino acid usage of the spike protein, we performed a
correspondence analysis (CoA). Major trends in variance in the dataset were revealed by
placing the data along continuous axes. We employed correspondence analysis available in
CodonW v1.4.2 software for the amino acid usage analysis of spike gene sequences [19–21].
Determination of the hydrophobicity of each spike gene sequence was conducted using the
Kyte–Doolittle method present in the CodonW program [1,22].

https://www.ncbi.nlm.nih.gov/sars-cov-2
https://gnomad.broadinstitute.org/
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2.3. Analysis of Evolutionary Selection

The ratio (ω) of the rate of non-synonymous substitutions per nonsynonymous site
(Ka) to the rate of synonymous substitutions per synonymous site (Ks) reveals the influence
of evolution on a gene segment. ω > 1 indicates diversifying (positive) selection, whereas
ω < 1 signifies purifying (negative) selection. The evolutionary rates of genes (with
reference to consensus sequence) were calculated using the Codeml program included in
the PAML software package (ver. 4.5) [23–26] (http://abacus.gene.ucl.ac.uk/software/
paml.html accessed on 1 September 2023) with runmode = −2 and CodonFreq = 1 [26].
Spike gene sequences were subjected to the analysis of synonymous and non-synonymous
substitution rates with respect to the reference SARS-CoV-2 spike gene sequence. Statistical
tests such as the t-test were conducted using the GraphPad (https://www.graphpad.com/
accessed on 1 September 2023) web application.

2.4. Detection of Mutation Rate and TMRCA

BEAST (Bayesian Evolutionary Analysis Sampling Trees) is a software suite for phy-
logenetic analysis with an importance on time-scaled trees. The BEAST-1.10.4 software
package was used to estimate the mutation rate and TMRCA (Time to Most Recent Com-
mon Ancestor) of the spike gene sequences [27]. Gene sequences were aligned using
MAFFT v.7 [28] and the best-fit evolutionary model was estimated in MEGA-X [29]. The
BEAUti2 v1.10.4 graphical user interface tool was used for generating the configuration
files. The Tracer [30] and FigTree v1.4.4 tools were used for analyzing and visualizing the
log data.

2.5. Recombination Analysis

A recombination analysis was performed with the whole genome sequences using the
RDP4 program [31]. From the GISAID database, we have taken one whole genome from
each lineage of all variants of concern (VOCs) of SARS-CoV-2 for our analysis and aligned
them against the reference SARS-CoV-2 genome using MAFFTv7 [28]. The full-genome
alignment was scanned for recombination using different algorithms. RDP, GENECONV,
MaxChi, Chimera, and 3Seq algorithms were used for the primary scan. BootScan and
SiScan algorithms were used for the secondary scan [32–34].

2.6. Protein Homology Modeling and Docking

Three-dimensional structural models of the spike protein of five VOCs were generated
through homology modeling using the MODELER program [35]. Similarly, the structure of
angiotensin-converting enzyme 2 (ACE2) was also generated. Protein structural models
generated through homology modeling were refined using the ModRefiner web server [36].
The molecular interaction between viral spike proteins and the human ACE2 receptor
was studied using a Z-dock server [37]. Then, using the PRODIGY webserver [38], the
resulting docking data were processed and analyzed while taking the binding energies of
each complex into consideration.

3. Results
3.1. Analysis of Amino Acid Usage

We performed a correspondence analysis to detect the amino acid usage pattern among
the spike gene sequences of five SARS-CoV-2 variants. We observed a clear separation
of the spike genes of the “Omicron” variant from the other four variants along the first
major axis (Figure 1) that explained 82.86% of the total variations, while no other axis could
explain more than 9.36% of the total variations.

http://abacus.gene.ucl.ac.uk/software/paml.html
http://abacus.gene.ucl.ac.uk/software/paml.html
https://www.graphpad.com/
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Figure 1. Distribution of spike genes of five VOCs along the two major axes of the correspondence
analysis (COA) based on amino acid usage (AAU) data. x-axis−Axis 1 of AAU; y-axis—Axis 2 of
AAU. Spike genes of “Alpha”, “Beta”, “Delta”, “Gamma”, and “Omicron” are represented with
green, purple, yellow, orange, and blue dots, respectively.

We observed a positive correlation between the hydrophobicity of the encoded proteins
and the position of the genes along the horizontal axis (r = 0.238, p < 0.01). Additionally,
we found that the average hydrophobicity of the spike proteins distributed on the negative
side (−0.0821) of the horizontal axis is significantly lower (p < 0.01) than the average
hydrophobicity of the spike proteins distributed on the positive side (−0.0795) of the
horizontal axis. These results clearly state that the evolution of hydrophobicity in spike
proteins has been associated with the accumulation of more hydrophobic residues in the
“Omicron” variant with respect to “Delta” and “Alpha” variants.

According to the amino acid composition, there is a rise in the following amino acid
compositions of the “Omicron” variant compared with the “Delta” variant: Arginine,
Lysine, Aspartic acid, and Glutamic acid. These increases indicate that the “Omicron”
variant has more charged residues that contribute to salt bridge formation and that charged
residues are exposed to a much greater degree.

The higher amino acid composition of Phenylalanine and Isoleucine in the “Omicron”
spike protein, when compared with the “Delta” variant, suggests that the “Omicron” spike
protein includes more hydrophobic amino acids, which may be due to its positioning inside
the protein core. When compared with the “Delta” variant, the “Omicron” variant’s amino
acid composition is low in polar amino acids such as Asparagine and Glutamine.

3.2. Evolutionary Rate Analysis

Estimation of synonymous (Ks) and nonsynonymous (Ka) substitution rates is im-
portant in understanding the dynamics of molecular sequence evolution. The Ka values
for the spike gene sequences were found to correlate significantly with the data points
on Axis 1 (r = 0.98, p < 0.01). The Ks values also correlated significantly with the data
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points on Axis 1 (r = 0.91, p < 0.01). These results indicate that evolutionary selection
pressure significantly influenced the amino acid usage pattern of spike gene sequences of
five variants of SARS-CoV-2.

Our results show that the Ka/Ks values of the spike genes of the “Alpha” variant are
the lowest and under purifying selection. Gradually, the values of Ka/Ks increase to reach
the value closer to 1 (1.008) for the “Delta” variant, indicating that the genome was going
through a neutral evolution (Figure 2). The values of Ka/Ks become much higher for the
“Omicron” variant and under positive selection. This increase in Ka/Ks is mostly due to the
enhanced rate of the nonsynonymous substitution rate; in particular, the nonsynonymous
substitution rate is increased more than four times in the “Omicron” variant compared
with the “Delta” variant. We hypothesize that this increase may be attributed to a larger
diversity of sequences that may have given rise to more diverse lineages via undetected
intra-SARS-CoV-2 recombination, which is analogous to a positive feedback loop.

Viruses 2023, 15, x FOR PEER REVIEW 5 of 13 
 

 

positioning inside the protein core. When compared with the “Delta” variant, the “Omi-
cron” variant’s amino acid composition is low in polar amino acids such as Asparagine 
and Glutamine. 

3.2. Evolutionary Rate Analysis 
Estimation of synonymous (Ks) and nonsynonymous (Ka) substitution rates is im-

portant in understanding the dynamics of molecular sequence evolution. The Ka values 
for the spike gene sequences were found to correlate significantly with the data points on 
Axis 1 (r = 0.98, p < 0.01). The Ks values also correlated significantly with the data points 
on Axis 1 (r = 0.91, p < 0.01). These results indicate that evolutionary selection pressure 
significantly influenced the amino acid usage pattern of spike gene sequences of five var-
iants of SARS-CoV-2. 

Our results show that the Ka/Ks values of the spike genes of the “Alpha” variant are 
the lowest and under purifying selection. Gradually, the values of Ka/Ks increase to reach 
the value closer to 1 (1.008) for the “Delta” variant, indicating that the genome was going 
through a neutral evolution (Figure 2). The values of Ka/Ks become much higher for the 
“Omicron” variant and under positive selection. This increase in Ka/Ks is mostly due to 
the enhanced rate of the nonsynonymous substitution rate; in particular, the nonsynony-
mous substitution rate is increased more than four times in the “Omicron” variant com-
pared with the “Delta” variant. We hypothesize that this increase may be attributed to a 
larger diversity of sequences that may have given rise to more diverse lineages via unde-
tected intra-SARS-CoV-2 recombination, which is analogous to a positive feedback loop. 

 
Figure 2. Distribution and statistical comparison of the Ka/Ks ratio of spike genes among the
“Alpha”, “Delta”, and “Omicron” variants. The plot shows a significantly higher distribution of the
Ka/Ks ratio of the “Omicron” variant compared with the “Alpha” and “Delta” variants.



Viruses 2023, 15, 2132 6 of 13

The relatively high Ka/Ks (Figure 2) ratio for the “Omicron” variant suggests that
the selective pressure acting on the spike protein of the “Omicron” variant is relaxed, and
some sites may be undergoing positive selection. This increased evolutionary rate can be
explained by the important function of the spike protein, which participates in host-specific
recognition and undergoes several drastic changes during virus infection.

3.3. Interaction Profile between Spike Protein and ACE2

Our comparison of amino acid usage underlines the differential pattern of evolution
through the accumulation of mutations in spike proteins among the five SARS-CoV-2
variants. Since the receptor for SARS-CoV-2 has been identified as ACE2, it was very
important to analyze how the differential mutation patterns of amino acid usages of
the spike proteins of five variants of SARS-CoV-2 responded to binding to the human
ACE2 receptor. Three-dimensional structures of spike protein sequences for spike proteins
from each of the five variants were constructed through homology modeling. The 3D
structure of ACE2 was also generated computationally through homology modeling. The
docking study was performed with ACE2 separately with five spike proteins representing
five different VOCs and the binding energy was calculated separately for each of the
docking experiments. We observed that the binding energy for the spike–ACE2 complex
for the “Omicron” variant is lowest among the binding energy of the four other complexes
(Figure 3). The “Omicron” variant always represented the lowest energy complex with all
the ACE2 variants when the ACE2 variants were docked with the spike protein variants.
A lower binding energy for the spike–ACE2 complex for the “Omicron” variant indicates
its higher stability compared with the other four complexes made by the ACE2 and spike
protein from the “Alpha”, “Beta”, “Gamma” and “Delta” variants. The highest stability of
the spike (“Omicron”)-ACE2 complex may also be corroborated by the presence of more
hydrogen bonds in the spike (“Omicron”)-ACE2 complex (Supplementary Figure S1).
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We surveyed the Genome Aggregation Consortium Database (gnomAD) (https://
gnomad.broadinstitute.org/ accessed on 1 September 2023) and found that human ACE2
is highly polymorphic, with single-nucleotide variants (SNVs) that result in missense
mutations. These ACE2 could influence susceptibility to SARS-CoV-2 and potentially affect
disease outcomes. The information on the association of each of these ACE2 alleles in
various populations (e.g., East Asian, South Asian, European, African, Admixed American,
etc.) was collected from the same database. The number of ACE2 genes associated with
each population is shown in Table 1. For a given population, the allele frequency was
calculated and the allele with the highest frequency is considered as the most common
allele in the given population. The binding energies between the most common allele of a
population and the spike protein of Omicron are provided in Table 2. It is clear that the
highest binding energy is represented by four different populations (viz. American, Jewish,
European, and South Asian). African and East Asian populations represent lower binding
energies. Our results support epidemiological evidence that the African continent has an
extremely low incidence and fatality rate compared with America [39]. We observed lower
binding energy for the African population compared with the American population, which,
in turn, indicates that the African population will be less prone to SARS-CoV-2 infection
due to enhanced binding affinity.

Table 1. The number of ACE2 genes associated with each population.

Population The Number of Associated ACE2 Genes

African/African American 45

Latino/Admixed American 41

Ashkenazi Jewish 3

East Asian 26

Europe 139

South Asian 43

Table 2. The binding energies between the most common allele of a population and spike protein of
Omicron.

Population Most Common Allele Binding Energy (kcal/mol)

African/African American rs147311723 −23.4

Latino/Admixed American rs4646116 −24.2

Ashkenazi Jewish rs41303171 −24.2

East Asian rs191860450 −23.9

Europe rs41303171 −24.2

South Asian rs41303171 −24.2

3.4. Mutation Rate and tMRCA

In this study, tMRCA results were in accordance with the reported emergence of all
VOCs (designated as per WHO guidelines). The “Beta” and “Gamma” variants appeared
almost simultaneously, followed by the “Delta” variant and then the “Omicron” variant
(Table 3). This observation in time scale phylogeny helps us to understand that, in most
cases, recombinant “Delta” lineages were created by other “Delta” linages because all
the “Delta” lineages shared a common ancestor at a time point during the 2nd wave of
COVID-19.

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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Table 3. TMRCA values depicting the emergence of the VOCs. A ten-time increase in mutation rate
is observed in the “Omicron” variant compared with the “Alpha” variant.

Spike Variant Mutation Rate Mean Value (TMRCA) Root Age

“Alpha” 3.537 × 10−3 1.109 2019.943

“Beta” 3.18 × 10−3 0.95 2020.03

“Gamma” 3.737 × 10−3 1.07 2020.006

“Delta” 7.25 × 10−3 1.189 2020.967

“Omicron” 3.506 × 10−2 0.746 2021.414

Recombination events in the evolutionary history of the spike protein have particular
significance for the current pandemic. The spike protein sequences are known to undergo
frequent changes through recombination. The recombination and tMRCA results show us
that some of the early recombinant lineages of a particular variant were created by intra-
variant recombination, e.g., recombination between several lineages of “Delta” like AY.80,
AY.86, etc. But later recombinants like BA.2 were the results of inter-variant recombination
(Table 4). In the case of the “Omicron” variant, we observed a nearly 10-time increase
in mutation rate compared with the “Alpha” variant (Figure 4). The enhanced mutation
rate might have been possible due to the higher rate of nonsynonymous substitution as
observed in this study. The “Delta” and “Omicron” variants created recombinants like
BA.2 because they all share a common ancestor in time scale phylogeny.
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Table 4. Recombination analysis demonstrated that several recombinant events occurred among
variants highlighted in the table. All recombinants and their respective major and minor parents are
listed below. All are significant at p < 0.01.

Recombinant Major Parent Minor Parent

“Delta” AY99.1 “Delta” AY.126 “Delta” AY.106

“Delta” AY.88 “Gamma” P.1.5 “Delta” AY.99.1

“Delta” AY.34.2 “Delta” AY.34.1.1 “Delta” AY.88

“Delta” AY.86 “Delta” AY.105 “Delta” AY.106

“Delta” AY.126 “Delta” AY.90 “Delta” AY.20

“Delta” AY.80 “Delta” AY.85 “Delta” AY.90

“Delta” AY.46.6.1 “Delta” AY.56 “Delta” AY.88

“Omicron” BA.2 “Omicron” BA.1.1 “Delta” AY2.0

“Omicron” BA.1.1 “Delta” AY.55 “Delta” AY.39

4. Discussion

This study compared the amino acid usage patterns of spike proteins of five VOC
lineages (“Alpha”, “Beta”, “Gamma”, “Delta”, and “Omicron”). The distinct amino acid
usage pattern of the “Omicron” variant from other variants is clear in Figure 1. The selection
pressure on the evolution of spike genes in “Omicron” is expected to affect the distinct
amino acid usage pattern. The non-synonymous (Ka) to synonymous substitutions (Ks)
ratio in protein-coding genes is commonly used to detect the selection pressure during gene
evolution. A Ka/Ks ratio larger than 1 indicates positive selection, while a Ka/Ks ratio
less than 1 indicates negative selection acting on protein-coding genes. Our results show
that the Ka/Ks of the “Alpha” variant of SARS-CoV-2 is less than 1 indicating purifying
selection. The “Delta” variant showed a value almost equal to 1 indicating neutral selection.
However, the comparatively high Ka/Ks ratio of the spike protein of the “Omicron” variant
indicates that the selective pressure acting on this variant is relaxed, and positive selection
may be occurring in some sites. This accelerated evolutionary rate can be explained by the
crucial role of the spike protein, which contributes to host-specific recognition and goes
through a number of significant modifications during virus infection.

Furthermore, our results from mutation rate analysis suggest that the rate of mutation
significantly increases from the “Delta” to the “Omicron” variant. Observations from
evolutionary selection suggest that “Alpha” variants face relatively greater purifying
selection pressure during the 1st wave of the pandemic. But this scenario was changed
during the 2nd wave, which was caused by the “Delta” variant. The “Delta” variant
and its lineages appear to have been subjected to nearly neural selection pressure from
the beginning to the end of the wave. Again, these scenarios were changed during the
emergence of the “Omicron” variant, which is associated with positive selection pressure.

Thus, it is worth noting that the rate of substitution is an important driving force
for evolutionary selection, and the variation in evolutionary selection pressure may be
critical for various waves throughout the pandemic period. Purifying selection pressure
is associated with genomes of the “Alpha” variant during the first wave of the pandemic
whose duration was shorter than the other two waves. In the case of the “Omicron” variant,
positive evolutionary selection helps to establish its lineages in the human population
longer than the other two variants through stronger binding affinity with the ACE2 receptor.

The phylogenetic tree (Figure 5) among the variants displays two clades formed after
the divergence from the root. One clade includes “Alpha” (blue), “Beta” (green), “Delta”
(violet), and “Omicron” (pink), and the other clade includes “Gamma” (red).
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Our data show that the number of recombinants started increasing from the “Delta”
variant, but its mutation rate was similar to other variants like “Alpha”, “Beta”, and
“Gamma”. After that, a number of recombinants and a nearly 10-time increase in the
mutation rate of the “Omicron” variant was observed. As an explanation for this occurrence,
we prepared two hypotheses: one for the “Delta” variant, where we observed no shift in
the mutation rate despite recombination. The other one is for the “Omicron” variant, where
we observed a shift in mutation rate along with the recombination.

Hypothesis I: Recombination could accelerate adaptation without changing the opti-
mal mutation rate. Earlier in the pandemic, diversity among SARS-CoV-2 was low and,
eventually, the recombination rate was low. But later in the pandemic, various “Delta”
lineages were created as a result of recombination. After this happened, recombination
could speed up adaptation without changing the optimal mutation rate. This led to more
differences between “Delta” lineages, but it did not change the optimal mutation rate.

Hypothesis II: “Omicron” was a product of the recombination of “Omicron” and
“Delta” lineages. As a result, by the time of the emergence of this variant, genomic variation
among the SARS-CoV-2 genomes was very high. Where there is a functional link between
recombination and mutation, the rate of mutation shifts, and the ability of the host to
adapt increases. Functional interdependence between recombination and the mutation rate
would result in a shift in the optimum of the mutation rate.

The increase in the mutation rate in “Omicron” subvariants compared with other
variants led to an increase in infectivity [40,41]. Although the accumulation of effective
mutations is generally considered to be the main driving force behind viral evolution [42],
inter-variant and intra-variant recombination can actually escalate this evolution pro-
cess [43]. The high genetic diversity among the SARS-CoV-2 genomes during the time of
evolution of the “Omicron” variant might be an important reason behind the large diversity
observed among “Omicron” subvariants. The co-occurrence of multiple subvariants at a
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similar time has made it possible for “Omicron” to undergo multiple recombinations due
to co-infection of the host by different variants [44].

The increased recombination event in the “Omicron” variant has led to changes in
the binding affinity between the Receptor Binding Domain (RBD) region of the spike
protein and the human receptor ACE2. The increase in recombination rate will result in
an increase in mutation rate in order to better the adaption capability of the virus. The
high mutation rate in the “Omicron” variant increased the probability of accumulation of
effective mutation in the spike proteins which serve as the key region in the viral genome
to boost viral adaptation to the host. “Omicron” subvariants have a much higher rate of
effective mutation among the other SARS-CoV-2 variants, which characterizes the viral
adaptability through better binding of spike proteins to human receptors, thus increasing
its infectivity.

5. Conclusions

The process of viral evolution is persistent and has the potential to enhance “viral
fitness” and selective adaption. Scientists and authorities all around the world have
suffered as a result of newly emerging SARS-CoV-2 strains. Vaccines presently offer good
protection against all VOCs, but continuous monitoring of vaccine effectiveness is necessary
to combat the main SARS-CoV-2 strains and the newly emerging variants. The advent of the
“Omicron” variant and the evolution of the entire coronavirus subfamily serve as a warning
to researchers, scientists, vaccine developers, and policymakers to maintain vigilance.
However, the majority of currently approved vaccination plans and monoclonal antibody
treatments target the spike ORFs because of their inherently higher rate of mutation and
recombination; however, other more stable genomic regions should be thoroughly explored
as potential targets for future research.
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