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Abstract: Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a
curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral
rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not
fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of
factors and mechanisms that promote viral latency, current approaches are primarily focused on the
permanent silencing of latently infected cells (“block and lock”) or reactivating HIV-1 gene expression
in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected
cells from the host (“shock and kill”). In this review, we provide a summary of the current, most
promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting
agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in
human clinical trials to reduce the HIV-1 reservoir.

Keywords: human immunodeficiency virus; viral latency; latency reversal; shock and kill; block and
lock; LRA; HIV cure

1. Introduction

Human immunodeficiency virus type 1 (HIV-1) continues to pose a global health challenge.
Currently, 38 million individuals are living with HIV-1, with an additional 1–2 million new
infections annually [1]. Antiretroviral therapy (ART), when taken as instructed, can effectively
suppress viral replication and has substantially reduced HIV-1-related mortality, transform-
ing the infection into a manageable chronic condition. However, people living with HIV
(PLWH) on long-term ART still have a higher risk of non-AIDS-related morbidities and
greater mortality than adults not living with HIV [2]. Chronic inflammation and immune
dysfunction persist despite ART, contributing not only to the maintenance of latent HIV
but also the prevalence of clinical comorbidities [3]. In addition, ART is associated with
genotoxicity and metabolic changes that place the aging PLWH population at greater risk
of developing osteoporosis and fractures, renal and metabolic disorders, central nervous
system disorders, cardiovascular disease, liver disease and chronic inflammation [4–8].
However, PLWH cannot circumvent ART because its cessation results in rapid viral rebound,
showing that control of viral replication alone does not eradicate the infection [9–12].
This is due to the establishment and persistence of viral reservoirs, where HIV-1 remains
transcriptionally silent and therefore impervious to the immune system and circulating
antivirals [13,14]. Long-lived memory CD4+ T cells are the major reservoir of transcrip-
tionally quiescent proviruses, but a range of other cell types, including myeloid cells, mast
cells, natural killer (NK) cells, microglia, and dendritic cells (DC) have also been shown to
act as HIV-1 reservoirs [15–19]. Thus, the field has focused on eliminating or permanently
silencing viral reservoirs, coupled with immune restoration, as a curative strategy for HIV-1
infection [20–22].

Several approaches have emerged as frontrunners in the quest to eradicate HIV-1
infection from the host. The “shock and kill” approach aims to reactivate latent reservoirs,
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making them susceptible to immune responses or targeted elimination therapies. However,
the low efficacy of current latency-reversing agents (LRAs) has raised questions about the
definition of a cure and whether durable suppression of viral replication in the absence
of ART (remission) is sufficient for long-term viral control. In contrast, “block and lock”
approaches aim to use latency-promoting agents (LPAs) to “block” cells into latency and
thereby “lock” viral transcription to preclude the need for ART [23]. These approaches may
also affect immune function, and if locked latency cannot be achieved, patients will have to
remain on ART. The effective development and implementation of any of these curative
approaches requires a deep understanding of the host transcriptional machinery that HIV-1
relies on for both latency and viral gene expression. Additionally, the transcriptional
machinery put in play may vary by cell type and activation status. In this review, we aim
to provide an overview of the regulation of HIV-1 transcription and examine the current
state of approaches to overcome the challenges posed by HIV-1 latency (Table 1).

Table 1. Overview of latency-promoting agents (LPA) and latency-reversing agents (LRA).

Approach Class Mechanism Examples Section

Latency-
Promoting Agents

RNA-induced
silencing

si/shRNA
RNA-induced
silencing

PromA; LTR-362;
S4-siRNA Section 3.1

lncRNA
NEAT1; NRON;
PVT1; NKILA;
AK130181

Section 3.1

Tat inhibition

trans-dominant Tat
mutant Inhibition of Tat

function

Nullbasic Section 3.2

Tat inhibitor Didehydro-
cortistatin A (dCA) Section 3.2

Latency-Reversing
Agents

Epigenetic
modifiers

lncRNA RNA-induced
gene expression HEAL; MALAT1 Section 4.1.1

Histone
deacetylase
inhibitors (HDACi)

Inhibition of
histone
deacetylases

Valproic acid;
Vorinostat (SAHA);
Panobinostat;
Romidepsin;
Givinosat;
Belinostat;
Entinostat; CC-4a

Section 4.1.2

Histone
methyltransferases
inhibitors (HMTi)

Modification of
histone
methylation

Chaetocin; DZNep;
BIX-01294 Section 4.1.3

Bromodomain and
Extra-Terminal
Domain Inhibitors
(BETi)

P-TEFb release
JQ1; I-BET151;
OTX015; CPI-203;
MMQO; RVX-208

Section 4.1.4

PAF1C inhibitor

Release of
promoter-
proximal paused
RNA Pol II

iPAF1C Section 4.3

Activators/inhibitors
of Inducible
Host Factors

TLR agonists
Activation of the
NF-κB, NFAT, and
AP-1 pathways

Poly-ICLC;
MGN1703; GS-986;
GS-9620
(Vesatolimod)

Section 4.2.1

PKC agonists Canonical NF-κB
activation

PMA; Prostratin;
Bryostratin;
Ingenol

Section 4.2.2

PTEN inhibitor Disulfiram Section 4.2.2

Smac mimetic/
IAP antagonist

Non-canonical
NF-κB activation

SBI-0637142;
AZD5582;
Ciapavir;
Debio1143
(Xevinapant)

Section 4.2.3

IL-15 stimulation JAK/STAT
activation IL-15; N-803 Section 4.3

Benzotriazoles STAT5 activation HODHBt Section 4.3
TGF-β inhibitors TGF-β inhibition Galunisertib Section 4.4
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2. HIV Transcription and Establishment of Latency

Upon HIV-1 entry into target cells, viral RNA is reverse transcribed, and the resulting
DNA integrates into the host genome [24,25]. The 5′ long terminal repeat (5′LTR) drives
proviral transcription and comprises a modulatory regulatory element, an enhancer, and a
promoter in the U3 region, followed by the transactivation response element (TAR) in the R
region [26]. This short stem-loop structure binds the viral Trans-Activator of Transcription
(Tat) protein that is critical for HIV-1 gene expression [27]. Transcription activators that bind
to the HIV-1 5′LTR include Sp1, NF-κB, the AP-1 complex composed of Jun and Fos protein
family members, and NFAT proteins [26,28–33]. Cellular repressors or transcriptional
silencers also bind the HIV-1 5′LTR, including NELF, YY1, and AP4 [34–37]. When HIV-1-
infected activated CD4+ T cells transition to a long-lived resting memory state, proviral
gene expression can be repressed by the absence of positive transcriptional regulators or the
inhibition of their binding to the 5′LTR [26,31,38–40]. Additionally, several groups found
that HIV-1 integration into transcriptionally active host genes promotes latency [41–45] by
proximal promoter interference with transcription from the 5′LTR [26].

Following the binding of transcription factors, the cellular transcription machinery is
recruited to the HIV promoter, including TBP (TATA-binding protein), which serves as a
platform for the assembly of the RNA polymerase II pre-initiation complex [46–48]. The
elongation of the viral transcript by RNA polymerase II is regulated by the interaction
between Tat and TAR. Tat recruits the positive transcription elongation factor b (P-TEFb),
which phosphorylates RNA polymerase II and other factors associated with the elongation
complex, promoting processive transcription [26,49–51]. The autoregulation of Tat is very
sensitive, and minor changes in transcription initiation rates are enough to restrict Tat
production and thus halt elongation [52]. In latently infected cells, this transcriptional feed-
back mechanism is disrupted, resulting in a decrease in Tat below threshold levels [52,53].
There are also several negative regulatory factors that can interfere with the recruitment
or function of Tat, leading to the repression of HIV-1 transcription [54,55]. For example,
HEXIM1, 7SK snRNA, and DSIF (DRB sensitivity-inducing factor) sequester P-TEFb and
prevent its interaction with the Tat/TAR complex [27,49,51,56].

Epigenetic mechanisms add another layer of control of HIV-1 expression and latency.
In vitro studies have reported that the methylation of CpG sites found within the proviral
promoter can silence the transcription of HIV-1 genes and may contribute to the mainte-
nance of latency [26,40,57]. Other epigenetic factors such as nucleosome positioning and
chromatin remodeling influence the accessibility of the TAR region and the efficiency of
Tat-mediated transcriptional activation [58–60]. Histone modifications including deacetyla-
tion, methylation, and hypoacetylation in the vicinity of the HIV-1 promoter contribute to
transcriptional repression and latency [61,62]. These epigenetic processes also influence the
elongation process [59,63]. The termination of HIV-1 transcription is primarily regulated
by general mechanisms such as attenuation, elongation, and, in some cases, read-through.
Variability in premature termination contributes to the generation of diverse viral RNA tran-
scripts, which oppose the formation of full-length transcripts, thus negatively impacting
HIV-1 gene expression [26,57].

The establishment of HIV-1 latency is regulated by cellular processes that restrict the
access of the transcription machinery to the HIV-1 promoter region [52,64]. The availabil-
ity of transcriptional regulators and their interplay with epigenetic modifications of the
provirus largely depend on the activation and differentiation status of infected cells and
determine the outcome of HIV-1 expression and the establishment of latency. HIV latency
is promoted by the activation of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian
target of rapamycin (mTOR) pathway in CD4+ T cells. This mechanism has been shown to
promote HIV latency by suppressing viral transcription and promoting cell survival [65].
Repression of provirus expression also occurs through blocking the phosphorylation of
CDK9, a P-TEFb complex member that is a cofactor for Tat-mediated transcription. Con-
versely, latency can be reversed through the modulation of cellular signaling pathways
involved in T cell activation, such as the NF-κB and NFAT pathways [16,45,66,67].
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3. “Block and Lock” Approach

The HIV-1 integration complex generally favors open, transcriptionally active chro-
matin, with a majority (approx. 69%) of integration sites being in active genes or in regional
hotspots [41]. All current HIV-1 cure strategies adopting the block and lock approach rely
on inducing epigenetic or transcriptional silencing of the HIV-1 5′LTR to prevent viral gene
expression [68]. Moreover, the strategy seeks to permanently lock the viral transcriptional
machinery in a suppressed state, thus precluding the need for ART [69].

3.1. RNA-Induced Silencing

Heterochromatin is transcriptionally silent, and its formation or maintenance can be
induced by short interfering (si) or short hairpin (sh) RNA molecules targeting specific
sequences [70]. The general mechanism is reviewed in Vansant et al. [71]. si/shRNAs,
among which PromA was the first to be developed, target the distinctive tandem NF-κB sites
within the HIV-1 promoter [72]. PromA siRNA effectively triggers robust transcriptional
gene silencing mediated by the sustained recruitment of key factors such as Argonaute 1
(AGO1), responsible for target gene silencing, as well as histone deacetylase-1 (HDAC1)
and histone methyl-transferases that induce the formation of heterochromatin [73,74]. This
silencing was observed both in vitro and ex vivo in human bone marrow-derived CD34+
cells [70,75,76]. Furthermore, cells expressing PromA siRNA were found to be resistant
to reactivation stimuli such as an anti-CD28 antibody and LRAs including TNF, SAHA,
Bryostatin, and Chaetocin [70], though the addition of the HDAC inhibitor trichostatin-
A partially restored HIV-1 transcription [77]. LTR-362 is another siRNA that targets the
tandem NF-κB sites in the HIV-1 promoter that is effective in cell culture but not in HIV-1
infected humanized mice [68,78]. Differences in NF-κB sequences render clade B-targeting
siRNAs less effective against clade C viruses [79], which is why S4-siRNA was developed to
target the unique NF-κB binding sequences in HIV-1 subtype C, responsible for more than
half of all global HIV-1 infections. There was a significant reduction in viral RNA (vRNA)
levels when TZM-bl cells were transfected with S4-siRNA in vitro. siRNAs targeting
other sequences in the U3 region of the 5′LTR have also been shown to induce target
gene silencing but have not been pursued beyond initial in vitro studies [74]. The main
hurdle to the clinical application of RNA-induced epigenetic silencing is the sustained
delivery of si/shRNAs to all or most reservoir cells [80]. An additional major issue is the
potential for off-target effects, such as the inadvertent targeting of genes with homology
to the siRNAs [80,81]. Long non-coding RNAs (lncRNAs) are another important class of
RNAs involved in transcription and gene modulation and are capable of both repressing
and promoting gene expression [82–84]. In vitro studies in J-Lat cells have shown that
HIV-1-encoded lncRNA can induce transcriptional silencing by chromatin-remodeling
via the recruitment of DNMT3a, EZH2, and HDAC-1 to the virus promoter region of the
5′LTR [85]. The suppression of HIV-1 gene expression by lncRNA has been reported in
multiple studies [86–92]. It is notable that NRON, an lncRNA expressed in resting CD4+
T cells, directly links Tat to ubiquitin/proteasome components, including CUL4B and
PSMD11, thus facilitating Tat degradation [89]. Therefore, the manipulation of NRON
expression in PLWH could be a novel approach for developing latency-reversing as well as
latency-promoting agents.

3.2. Inhibition of Tat Function

The viral Tat protein stimulates HIV-1 RNA elongation by recruiting and activating
RNA polymerase II [93]. Tat also recruits histone acetyltransferases (HATs) to the viral
promoter region, leading to the activation of HIV-1 transcription [94,95]. Blocking Tat
function, therefore, is a viable latency-promoting strategy. To this end, Nullbasic was
developed as a trans-dominant Tat mutant with a mutated TAR-binding region. The mutant
competes with endogenous, wild type Tat, thereby inhibiting HIV-1 transcription by RNA
polymerase II through interaction with the positive transcription elongation factor (P-TEFb)
and causing epigenetic silencing of the HIV-1 promoter [96]. Nullbasic also inhibits Rev-
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dependent viral mRNA transport from the nucleus by binding to DEAD/H-box helicase 1
(DDX1) [97] and inhibiting reverse transcription, leading to accelerated uncoating kinetics
post infection and defective viral DNA synthesis [96,98]. In vivo studies in NSG mice with
primary CD4+ T cell engraftment showed undetectable viral RNA levels only 14 days
after treatment with Nullbasic [99]. However, introducing Nullbasic into all or most of
the reservoir cells would face the same hurdles as any gene-therapy approach. A more
viable option to modulate Tat function, therefore, could be the development of small
molecule inhibitors. Cortistatins, steroid-like alkaloids isolated from the marine sponge
Corticium simplex, represent such a class of compounds [100]. Didehydro-cortistatin A
(dCA) inhibits TAR/Tat binding and blocks HIV-1 replication at concentrations as low as
1 nM [101]. Over time, the inhibition of Tat-dependent HIV-1 transcription by dCA results
in the accumulation of epigenetic modifications in the nucleosome directly downstream of
the HIV-1 promoter, restricting RNA polymerase II recruitment and elongation [101]. As
such, dCA prompts the viral promoter into deep transcriptional latency, refractory to viral
reactivation by cytokines, HDAC inhibitors, and protein kinase C (PKC) activators [102].
Additionally, dCA was found to enhance the recruitment of the repressive BAF complex,
further contributing to the suppression of viral expression [103]. In patient-derived cell
models and bone marrow/liver/thymus (BLT) humanized mouse models of HIV-1 latency,
dCA effectively delays and decreases viral rebound [104] and is one of the most advanced
block and lock approaches having progressed to ex vivo studies in non-human primate
cells [105]. Importantly, when assessing any “block and lock” strategy, two key factors
must be considered: (1) is the compound targeting and reaching all latently infected cells
and (2) how long does transcriptional latency last?

4. “Shock and Kill” Strategy for Curing HIV-1 Infection

A major challenge to curing HIV is its persistence in long-lived, quiescent, CD4+ mem-
ory T cells. An effective therapy must completely remove or disable these viral reservoirs.
The “shock and kill” strategy aims to reactivate latent pro-viral genomes in the presence of
antiretroviral therapy and expose cells that are actively expressing viral proteins to immune
clearance or treatments designed to target and kill these cells [106]. At the heart of this
approach are latency-reversing agents (LRAs), small molecules or immunomodulatory
treatments that trigger the expression of viral genes in latently infected cells (Figure 1).
Several LRAs have been described, including T cell stimulatory agents, kinase activators,
and chromatin modifiers, but these regimens have largely proven to be ineffective in clini-
cal trials to date due to incomplete penetrance and great variability in their reactivation
potential on an individual, cellular, and provirus basis [107–117]. This heterogeneity in
reactivation is thought to arise from the complex interaction between regulatory cis-acting
elements near the site of proviral integration, the extracellular environment, as well as
transcriptional regulators available in the cell [118]. Additionally, many LRAs that activate
proviral expression also lead to widespread immune activation or induce severe adverse
effects, making them unsuitable for clinical use [119]. By understanding the complex
interplay between intrinsic host factors and virus reactivation by LRAs, we can pave the
way for safe and more effective and targeted interventions to eliminate HIV.
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Figure 1. Cellular pathways targeted by LRAs. (A) Epigenetic modifiers: HDACi, which prevents
histone deacetylation, and HMTi, which disrupts the deposition of repressive methylation marks,
promote a relaxed chromatin structure, enhancing the accessibility of the viral promoter. BET
proteins also impact the regulation of HIV-1 transcription. BRD4 competes with Tat for P-TEFb
binding, thereby limiting Tat-mediated transcriptional activation. By displacing BRD4 from chromatin,
BETi frees P-TEFb and enables its binding of Tat. (B) Pattern recognition receptor signaling: The
stimulation of endosomal or cell surface TLRs leads to the activation of transcription factors NF-
κB, AP-1, NFAT, and/or IRF family members. Since many TLRs are not expressed at significant
levels in CD4+ T cells, TLR agonists identified as LRAs act mostly indirectly by inducing type I
interferon production in plasmacytoid dendritic cells, which causes the downstream activation of
CD4+ T cells and induces HIV-1 latency reversal. (C) Canonical NF-κB signaling: The recruitment
of TAK1 by a range of transmembrane receptors, including TNFR, leads to activation of the IKK
complex, the degradation of IκBα, and the translocation of the transcriptions factors RelA and
p50 to the nucleus. This pathway can be activated by PKCa or by disulfiram to promote HIV-1
transcription. (D) Non-canonical NF-κB signaling is activated by a different set of receptors than
the canonical pathway, including CD40 and LTβR. Non-canonical NF-κB signaling can be induced
by Smac mimetics that antagonize cIAP proteins, leading to an accumulation of NIK, the cleavage
of p100, and the translocation of the transcription factors RelB and p52 to the nucleus. Illustration
created with BioRender.com.

4.1. Epigenetic Modifiers
4.1.1. Long Non-Coding RNAs (lncRNAs)

As stated in the previous section, lncRNAs (long non-coding RNAs) can repress or
promote gene expression. In particular, the lncRNA HEAL upregulates transcription by
forming a complex with the RNA-binding protein FUS, which binds the HIV promoter
and facilitates the recruitment of the histone acetyltransferase p300 [120]. This recruitment
activates proviral transcription by promoting increased acetylation of histone H3K27 and
P-TEFb enrichment at the HIV-1 promoter [120]. Another lncRNA, MALAT1, reverses the
epigenetic silencing of HIV-1 transcription by interacting with the chromatin modulator
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polycomb repressive complex 2 (PRC2), disrupting its recruitment to the HIV-1 LTR pro-
moter [121]. As a result, the methylation of histone H3 on lysine 27 (H3K27me3) through
enhancer of zeste homolog 2 (EZH2), a core component of PRC2, is prevented. Methy-
lation of H3K27me3 recruits HDACs that promote heterochromatin formation and thus
latency. Consequently, preventing H3K27me3 methylation relieves the epigenetic silencing
of HIV-1 transcription and promotes latency reversal [121]. However, using lncRNAs to
induce latency reversal has the same caveats as the RNA-induced silencing approaches
described above, namely a need for sustained delivery of the lncRNAs to the targeted
reservoir cells and high target specificity to avoid the potential for off-target effects due to
sequence homologies.

4.1.2. Histone Deacetylase Inhibitors (HDACi)

Histone acetylation relaxes euchromatin, rendering promoters more accessible to tran-
scription factors and RNA polymerase II. Histone deacetylase (HDAC) removes acetyl
groups from lysine residues in the NH2 terminal tails of core histones, resulting in a more
closed chromatin structure and repression of gene transcription [1]. In humans, there
are altogether four classes of HDACs with 18 members: class I and II can be targeted by
HDAC inhibitors (HDACi), an emerging class of anticancer drugs [122–133]. As reviewed
in Li et al., HDACi were originally designed to increase global transcription levels of tumor
suppressor genes, thereby exerting an anti-proliferative effect [134]. Since quiescent HIV-1-
infected T-cells express high levels of HDAC, HDACi were subsequently tested as LRAs
and found to promote viral reactivation as a result of increased HIV-1 promoter accessibil-
ity [1,135]. HDACi vary greatly in LRA efficacy depending on the latency model they are
applied to [136–142]. For example, while MRK-1 had modest activity both in primary cell
models and JLat clones, the HDACi vorinostat acted similarly to MRK-1 in primary models
but showed poor activity in JLat cells [142]. Nonselective pan-HDACi, such as vorinostat
and panobinostat, which inhibit many HDAC class isoforms, have a greater potential for
toxicity. More selective HDACi that specifically target class I HDACs, like entinostat and
romidepsin, may be able to act as LRAs with reduced off-target effects, provided they
can exhibit the same potency as the pan-HDACi [143]. In the last decade, four different
HDACi were approved by the US-FDA for the treatment of several cancers, and three of
these, romidepsin, panobinostat, and vorinostat, have been tested as LRAs in clinical trials
(NCT02850016, NCT01680094, NCT01365065, NCT02513901, NCT00289952, NCT01933594,
NCT01319383). Panobinostat was well tolerated and caused a 3.5-fold increase in cell-
associated HIV-1 RNA in aviremic PLWH on ART but did not decrease reservoir size [113].
Romidepsin showed good latency reversal activity in an in vitro T cell model with an EC50
of 4.5 nM [144], but outcomes in clinical trials were inconsistent and ranged from no effect
to a moderate increase in HIV-1 transcription [112,115]. Vorinostat disrupted HIV-1 latency
in individuals on ART, leading to a median 4.6-fold increase in cell-associated unspliced
HIV-1 RNA in resting memory CD4+ T cells, but it did not result in lower HIV-1 RNA
levels in study participants upon analytical treatment interruption (ATI) [107,111]. More-
over, combinations of Vorinostat and Romidepsin with broadly neutralizing antibodies
(VRC07-523LS and 3BNC117, respectively) showed no impact on reservoir size in a clinical
trial [108,109]. Additional HDACi have shown promising LRA efficacy in vitro/ex vivo
but have not yet progressed to clinical trials as LRAs, including Givinosat [145], currently
in phase III clinical trials for the treatment of Duchenne Muscular Dystrophy [135]; Belinos-
tat [136], FDA-approved for peripheral T-cell lymphoma [146,147]; and Entinostat, which is
being tested in clinical trials for breast cancer [135]. Mocetinostat [135], developed to treat
several blood cancers [148], activated latent HIV-1 expression ex vivo in patient cells but
did not proceed to clinical trials due to cytotoxicity [146]. An in vitro study of oxamflatin
suggested that a small therapeutic window may limit proviral expression at sub-cytotoxic
concentrations [149]. Notably, the newly developed HDACi CC-4a has been reported to
reactivate latent HIV-1 as well as induce apoptosis in infected cells in vitro [150], suggesting
the potential to be both a “shock” and “kill” agent. Overall, despite promising in vitro and
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ex vivo data, HDACi have performed poorly as single agents in vivo. However, future
studies may investigate the potential benefit of incorporating HDACi into an LRA cocktail
to leverage synergies by targeting multiple latency mechanisms.

4.1.3. Histone Methyltransferases (HMT) Inhibitors (HMTi)

Histone methylation marks, such as H3K9me3 (mediated by Suv39H1) and H3K27me3
(mediated by G9-alpha), create a chromatin environment that restricts transcriptional ac-
tivity [151]. These repressive marks are often found in the HIV-1 promoter, contributing
to the establishment and maintenance of latency [152]. HMTis disrupt the deposition of
repressive methylation marks, leading to a more relaxed chromatin structure, and enhanced
accessibility of the viral promoter to the transcriptional machinery [153,154]. Given the
potential for contrasting effects arising from different histone methylation patterns, achiev-
ing latency reversal through HTMi treatment will demand a high specificity for distinct
methyltransferases to precisely target the intended epigenetic mark and avoid off-target
effects [155]. Ex vivo experiments in resting CD4+ T cells isolated from ART-suppressed
PLWH found that chaetocin, an inhibitor of Suv39H1, as well as DZNep and BIX-01294,
inhibitors of G9-alpha, significantly increased virus production [156]. However, another
study failed to reproduce high levels of latency reversal by these agents [152]. Further inves-
tigations found that DZNep was cytotoxic at levels required for latency reversal. However,
lower doses in combination with other LRAs such as HDACi may be an option to achieve a
therapeutic window. Due to their cytotoxicity, the progress of these drugs to clinical trials
as LRAs has been halted pending results from ongoing oncology clinical trials [157].

4.1.4. Bromodomain and Extra-Terminal Domain Inhibitors (BETi)

BET proteins are epigenetic readers that play a vital role in gene expression [158–160].
Each of the four protein family members, BRD2, BRD3, BRD4, and BRDT, comprises
two N-terminal bromodomains (BD1 and BD2) that bind acetylated lysine residues on
histones [158,160]. BRD4 relaxes chromatin [161] and recruits transcription factors, the
Mediator complex, and RNA Pol II to active promoter and enhancer regions [162–164].
BRD4 also binds P-TEFb, which activates transcription initiation and elongation [165].
During active HIV-1 transcription, BRD4 and Tat compete for binding to P-TEFb, which is
available in limited supply [166,167]. In latency, high levels of BRD4 outcompete Tat for
P-TEFb binding and inhibit Tat-mediated transcriptional transactivation while increasing
basal transcription [168,169]. The roles of the other BET proteins in HIV-1 expression are
less well defined. However, BRD2 was shown to promote latency and suppress HIV-1
transcription in a Tat-independent manner [170] by recruiting repressor complexes to the
LTR [171]. In in vitro shRNA BRD2 knockdown experiments, HIV-1 reactivation was
comparable to treatment with BET inhibitor JQ1 [170].

BET inhibitors (BETi) are small molecules that displace BRDs from chromatin by bind-
ing to their bromodomains BD1 and BD2 [172]. This enables binding of Tat to P-TEFb,
thereby activating HIV-1 transcription from the LTR [153,173,174]. Like many other cate-
gories of LRAs, BETi were originally designed as cancer therapeutics [175–179] that were
subsequently shown to reverse HIV-1 latency [180]. Several BETi have shown varying
degrees of latency reversal in vitro and ex vivo [168,169,180–187]. Well established pan-
BETi that universally target BET proteins, such as JQ1 and I-BET151, have shown strong
latency reversal activity in vitro, but these results have not translated to ex vivo and in vivo
studies at non-toxic concentrations [168,170,180,182,183]. For example, JQ1 potently re-
versed HIV-1 latency in multiple cell lines but had only modest activity when tested in
resting CD4+ T cells from PLWH [168,169,180–182]. I-BET151 preferentially reactivated
HIV-1 in monocytic cells over T cells when tested in humanized mice, with no p24 detected
in CD4+ T cells [183]. OTX015 induced a 2-fold increase in HIV-transcription in resting
CD4+ T cells from PLWH [184]. More recently, BRD4-selective BETi have been developed
that preferentially target BRD4 over other BET family proteins. CPI-203 targets the BD1
bromodomain of BRD4 and was found to be more potent as LRA than JQ1 in a J-Lat
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model [183]. Studies in resting CD4+ T cells from PLWH indicated that CPI-203 may offer
a significant therapeutic window because cytotoxicity was observed only at concentrations
more than 100 times greater than its effective concentration of 1 uM [185]. MMQO, a
BRD4-specific functional mimic of JQ1, and RVX-208, a BRD4(BD2)-selective BETi, were
ten-fold less potent than JQ1 in CD4+ T cells from PLWH but are expected to have a greater
therapeutic index [186,187]. In vivo mouse studies suggest that BD2-selective BETi are less
toxic and do not induce widespread immune activation or a cytokine storm in comparison
to pan-BETi or BD1-selective BETi [188–190], but they are also less potent. Because effective
dose cytotoxicity has been a limiting factor in the successful in vivo LRA activity of BETi,
this new generation of BD2-selective BETi may offer a therapeutic window that allows
achieving latency reversal in vivo.

4.2. Activators/Inhibitors of Inducible Host Factors
4.2.1. Toll-Like Receptor (TLR) Agonists

TLRs are pattern recognition receptors expressed on the cell surface or within the
endosomal structures of various innate and adaptive immune cells, including B cells,
macrophages, dendritic cells (DCs), and T cells [191–194]. Upon recognizing specific
pathogen-associated molecular patterns (PAMPs), TLRs trigger signaling pathways that
result in the expression of innate antiviral factors as well as the interferon response [192].
The stimulation of TLRs results in the upregulation of proinflammatory cytokines and
immune modulators through the NF-κB and MAPK pathways, which are also involved
in HIV-1 expression [195]. Following observations that microbial PAMPs induce HIV-1
transcription, TLR agonists have been studied as potential LRAs [195,196]. The latency-
reversing activity of TLR agonists can be direct, by activating signaling pathways in CD4+
T cells, or indirect, by activating other immune cells to release cytokines or IFNs that in
turn mediate latency reversal in infected CD4+ T cells [197,198].

A range of agonists targeting different TLRs have been investigated in vitro and ex
vivo (reviewed in [195,196]). Compounds that activate TLR3, TLR7, and TLR9 are the
most advanced candidates that have progressed to clinical trials in ART-suppressed study
participants. In a clinical study of the synthetic double-stranded RNA molecule poly-ICLC,
a TLR-3 agonist, transient innate immune stimulation was reported. However, no signs
of HIV-1 latency reversal or changes in the size of the viral reservoir were observed [199].
The TLR9 agonist MGN1703 induced detectable viral RNA in plasma of 6 out of 15 study
participants in a first clinical trial treating ART-suppressed PLWH but caused no reduction
in reservoir size [116]. A second trial of MGN1703 with prolonged treatment duration also
did not reduce the size of the viral reservoir or affect viral rebound upon ATI [117].

The TLR7 agonists GS-986 and GS-9620 (Vesatolimod) have been studied in SHIV-
and SIV-infected rhesus macaques before advancing to clinical trials. In the first NHP
study, treatment of SIV-infected rhesus macaques with a combination of GS-986 and the
therapeutic vaccine Ad26/MVA resulted in a reduction in viral DNA levels and delayed
viral rebound upon ATI [200]. A second study by the same authors that combined GS-9620
with the broadly neutralizing antibody (bnAb) PGT121 to treat SHIV-infected rhesus
macaques also reported delayed rebound in a majority of animals [201]. Further, Lin et al.
treated SIV-infected rhesus macaques with repeated doses of GS-986 or GS-9620, reporting
detectable RNA in all treated animals in the first phase of the study and a diminished
response in a second intervention period [202]. A reduction in the inducible SIV reservoir
was reported as well. However, more recently, other groups failed to detect spikes in
plasma viral RNA levels or differences in rebound kinetics following ATI in GS-9620-treated
animals [203,204]. It has been proposed that differences in the duration and timing of ART
initiation may be responsible for the different outcomes of the studies, suggesting that the
induction of viral transcription by GS-9620 may be highly sensitive to the characteristics
of the latent reservoir [203]. In a phase I clinical trial, GS-9620 was well tolerated, safe,
and reversed latency in HIV-1-infected individuals, though the size of the latent viral
reservoir remained unaffected (NCT02858401) [114]. A second phase I trial of GS-9620 is
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ongoing (NCT03060447). Thus, while some studies conducted in NHP showed promise for
TLR7 agonists as LRAs, it remains to be seen whether these results can be reproduced in
a clinical setting. Pending results from the clinical trial NCT03060447 promise to provide
additional insights.

4.2.2. Activators of Canonical NF-κB Signaling

Upon infection, HIV-1 activates NF-κB through various signaling pathways, leading to
its translocation into the nucleus. The binding of NF-κB to specific enhancer elements in the
viral LTR then promotes the transcription of viral genes [205]. When HIV-1 is in a latent state,
NF-κB binding to the 5′LTR can reactivate viral gene expression [206,207]. Thus, regulating
NF-κB signaling has been investigated as a latency reversal strategy. Protein kinase C (PKC)
agonists, which activate the canonical NF-κB pathway, are among the most effective LRAs
in vitro described to date. PKC is a family of serine/threonine kinases that are activated
by diacylglycerol (DAG), a phospholipases C (PLC) metabolite. PKCs phosphorylate their
cellular substrates, including IκB, which is essential for the activation of the canonical
NF-κB pathway [142,208]. Natural and synthetic PKCa, including phorbol ester phorbol
myristate acetate (PMA), Prostatin, dipeptidyl peptidase (DPP), Bryostatins, diacylglycerol
(DAG) analogs, and Ingenol derivatives, all activate the NF-κB pathway to induce HIV-1
transcription [209]. Although PMA is an effective LRA, a clinical trial for its use as a
cancer therapeutic highlighted severe adverse effects, thereby excluding it from clinical
use [207]. Similarly, Prostratin potently reactivated HIV-1 production in latently infected
rCD4+ T cells from PLWH, but caused substantial cytotoxicity, equivalent to 0.04 uM of
PMA at >10 uM [210]. Additionally, the activation of the canonical NF-κB pathway by these
compounds was shown to induce widespread immune activation [211,212]. Bryostatin-1,
the most well studied member of the Bryostatins, a class of macrocyclic lactones, was
found to be a significantly more potent LRA, activating HIV-1 expression in THP-p89 cells
at low nanomolar concentrations [213,214]. Unlike compounds that reactivate HIV-1 by
targeting PKC-α, β1, β2, or γ, Bryostatin-1 activates both PKC-α and PKC δ to reverse
latency in vitro [215,216]. The activation of PKC δ enhances HIV replication in the presence
of sub-optimal concentrations of Tat by mediating phosphorylation of Nef [213,217,218].
Additionally, unlike other isoforms, PKC δ does not require calcium for activation [215].
An unexpected effect of Bryostatin-1 is that treated cells are more resistant to apoptosis, as
shown by the ERK1/2-dependent phosphorylation of anti-apoptotic BCL2 [219,220]. This
could potentially interfere with the activity of additional kill agents used in combination to
deplete reservoir cells following viral reactivation with this compound. While one clinical
trial reported a single dose of Bryostatin-1 to be well tolerated in aviremic HIV-1-infected
individuals on ART, the plasma concentrations of the drug achieved in this study were
insufficient to activate PKC and significantly below the levels required for HIV-1 latency
reversal [110]. Other clinical trials evaluating Bryostatin-1 for cancer indications at higher
doses reported severe adverse effects, indicating that this compound may not be tolerable
at concentrations effective for latency reversal [221].

Ingenol, another PKCa, is extracted from the plant Euphorbia peplus and has long
been used in traditional medicine to treat skin conditions and certain cancers. More
recently, natural and man-made derivatives of Ingenol have been used as treatments
for skin cancers [222] and were found to act through the PKC/NF-κB pathway [223].
With regard to HIV-1, novel semi-synthetic Ingenols have been developed that exhibit
optimized LRA activity [224,225]. Among these compounds, Ingenol-3-mebutate (Ingenol-
3-angelate) and Ingenol B have demonstrated latency-reversing activity in multiple systems,
including a study treating SIV-infected rhesus macaques with a combination of Ingenol
B and Vorinostat that resulted in one of two animals exhibiting increased viral loads,
albeit in the presence of systemic inflammation markers [226–228]. A newly designed
stabilized Ingenol B derivative, GSK445A, induced latency reversal in CD4+ T cells from
both ART-suppressed humans and rhesus macaques at concentrations above 10 nM. When
tested in vivo in ART-suppressed SIV infected macaques, the drug was well-tolerated by
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most animals, and three out of four monkeys showed a modest but measurable increase
in plasma SIV RNA after three doses [229]. Lastly, the PKC activator Gnidimacrin, a
daphnane dieterpene that is a potent anti-cancer agent was also found to reverse latency
in chronically infected cell lines, ACH-2 and U1, at picomolar concentration [230–232].
In a viral outgrowth assay treating PBMCs from PLWH, a reduced frequency of latently
infected cells was reported, which the authors attributed to the induction of a strong CTL
response by Gnidimacrin [233]. Overall, PKCa, in particular Bryostatins and Ingenols,
have demonstrated potent LRA activity but are also linked to systemic T cell activation,
cytotoxicity, and adverse effects that result in a small therapeutic window and limit their
clinical use. In the absence of novel molecules with a reduced risk of adverse effects,
PKCa could potentially be utilized at sub-toxic doses in synergistic combinations with
other LRAs. In addition to PKCa, disulfiram [bis(diethylthiocarbamoyl) disulfide], an
FDA-approved drug for the treatment of alcoholism, has been identified as an LRA that
promotes HIV-1 transcription via canonical NF-κB signaling [234]. Disulfiram mediates
the depletion of the phosphatase and tensin homolog (PTEN) protein, which activates the
PI3K/Akt pathway and results in the activation of NF-κB transcription factors [235]. Two
clinical trials conducted to evaluate latency reversal by disulfiram, including a phase 2
dose escalation study, showed that the drug was well tolerated but induced only modest
increases in HIV-1 transcription, with a two-fold increase in cell associated unspliced HIV-1
RNA and no reduction in the reservoir size [236,237]. A study assessing combinations of
disulfiram with PKCa or HDACi did not find evidence of synergy between the LRAs ex
vivo [238].

4.2.3. Second Mitochondria-Derived Activator of Caspases (Smac) Mimetics

In addition to activation through PKCa-mediated canonical NF-κB signaling, HIV
transcription can also be induced by the non-canonical NF-κB pathway (ncNF-κB) [239].
Unlike the canonical pathway, which is characterized by the rapid onset of broad and
transient activation of genes, ncNF-κB signaling induces the activation of a more limited
set of genes with slower, longer-lasting kinetics [240]. The slower onset, more persistent
activity, and higher functional selectivity of ncNF-κB have been found to induce latency
reversal while limiting toxicity [239,241,242]. The ncNF-κB pathway is activated through a
subset of tumor necrosis factor receptors (TNFRs), including lymphotoxin beta receptor
(LTbR) and CD40 [240]. In the absence of receptor ligation, TRAF3, in complex with TRAF2,
cIAP1, and cIAP2, constitutively degrades NF-κB-inducing kinase (NIK) and prevents
ncNF-κB pathway activation. Upon receptor stimulation, TRAF3 is degraded, leading to
NIK accumulation, IKKa activation, and p100 cleavage to p52, which translocates into
the nucleus along with RELB [240]. In addition to receptor stimulation, the ncNF-κB
pathway can also be activated through the degradation of cIAP1 mediated by the second
mitochondria-derived activator of caspases (Smac) protein that targets the inhibitor of
apoptosis protein (IAP) family [243,244]. Smac mimetics are small molecules mimicking
a sequence of Smac and were originally designed as cancer therapeutics to compete with
XIAP for caspase binding, thereby promoting apoptosis. Smac mimetics can also bind to
cIAP1 and cIAP2 and allosterically activate their E3 ubiquitin ligase activity, leading to
their autoubiquitination and subsequent proteasomal degradation.

Our group previously identified cIAP1 as a negative regulator of HIV-1 transcription
due to its inhibition of non-canonical NF-κB signaling [239]. We were able to demonstrate
that Smac mimetics act as LRAs by mediating the ubiquitination and degradation of cIAP1,
which leads to the binding of non-canonical NF-κB to the HIV-1 5′LTR [239]. Several
Smac mimetics, including LCL161, Debio-1143 (Xevinapant), Ciapavir, and AZD5582, have
since been shown to exhibit LRA activity in vitro, ex vivo, and in vivo [239,241,242,245].
Studies comparing the LRA activity of different compounds have found that Smac mimetics
with a bivalent structure, having the ability to bind two domains of IAP proteins in cis
or in trans, appear to exhibit superior latency reversal activity compared to monovalent
molecules [239,241]. Importantly, these studies have demonstrated the LRA activity of



Viruses 2023, 15, 2435 12 of 27

the Smac mimetic Ciapavir in a humanized BLT mouse model and of AZD5582 in both a
humanized mouse model and SIV-infected rhesus macaques, showing increases in viral
RNA levels in treated, ART-suppressed animals in the absence of widespread immune
activation. Moreover, a recent study combined the Smac mimetic AZD5582 with SIV Env-
specific Rhesus monoclonal antibodies (RhmAbs) ± N-803 (an IL-15 superagonist) to treat
SIV-infected, ART-suppressed adolescent rhesus macaques [246]. Beyond demonstrating
latency reversal in most Smac mimetic-treated animals, the authors reported a reduction in
the lymph node viral reservoir, evidenced by lower levels of total and replication-competent
SIV-DNA in lymph node-derived CD4+ T cells in animals treated with a combination of
Smac mimetic and RhmAbs. While it is unlikely that AZD5582 will progress into the
clinic due to potential toxicity issues associated with this particular molecule, the data
demonstrate clear proof of concept that Smac mimetics, as part of a shock and kill approach,
can be employed to reduce reservoir size. Thus, Smac mimetics currently represent one of
the most promising classes of LRAs, able to reverse HIV-1 latency in vivo in the absence
of systemic immune activation and with minimal adverse effects and showing potential
for reservoir depletion when combined with an antibody treatment. The development of
novel Smac mimetics that enable latency reversal without inducing immune activation will
be an important step towards the use of these compounds as a cure treatment in the clinic.

4.3. Latency-Reversing Agents in Combination

While different LRAs have been shown to reactivate HIV-1 expression in various cellu-
lar and animal models, none have succeeded at effectively reducing, let alone clearing, the
latent viral reservoir to date. The success of any cure strategy will depend on reaching all
latently infected cells, and combination treatments to target multiple distinct mechanisms
may be required to broadly and effectively reverse latency [238]. Because most LRAs were
originally designed to induce cancer cell death, many exhibit some level of cytotoxicity
at the concentrations required for robust latency reversal as single agents. Since current
ART regimens allow for the management of HIV-1 with a high quality of life and life
expectancies comparable to people without HIV, adverse effects of any curative treatment
for HIV-1 need to be minimal [247]. Combining such LRAs to leverage synergistic effects
by targeting multiple mechanisms would allow the use of sub-toxic concentrations of the
drugs. Several studies have investigated combining different classes of LRAs. PKCas,
particularly Bryostatin, Prostatin, and Ingenol, were found to synergize with HDACi in
several cell lines and ex vivo in resting CD4+ T cells from PLWH [135,229,238,248–250].
The combination of these LRAs allowed up to a 10-fold increase in the efficacy of latency
reversal at significantly lower concentrations of the individual agents, thereby increasing
their therapeutic window. The HDACi CC-4a, which was shown to reactivate HIV and
induce apoptosis, synergized with the PKCa Prostratin without triggering widespread
immune activation [150]. PKCas have also been found to synergize with BET inhibitors,
particularly JQ1, in vitro and ex vivo [206,227,238,251–253], but result in widespread im-
mune activation, and varying levels of cytotoxicity at levels required for substantial latency
reversal [170,185–187,254,255]. It is critical for any combination treatments to maintain
a balance between viral reactivation and immune activation that ensures LRA efficacy
while avoiding immune-related adverse effects. Interestingly, the immune activation typi-
cally caused by PKCas decreased when newly designed PKCa 10-methyl-apog-1 (10MA-1)
was combined with the BETi JQ1 [256]. Smac mimetics have been shown to synergize
with HDACi and BETi as well but did not show significant synergy in combination with
PKCas [239,241,242,245,257]. While combinations of Smac mimetics and BET inhibitors
showed excellent latency reversal activity in vitro, the efficacy of these combinations could
not be replicated ex vivo [242,245,253,258,259]. Smac mimetics also exhibited synergy in
combination with HDACi in vitro and ex vivo. However, these treatment combinations
have not yet been evaluated in vivo [241,242,245,260].

A recent study combining a Smac mimetic with the IL-15 superagonist N-803 and
RhmAbs reported latency reversal and a reduction in reservoir size in SIV-infected rhesus
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macaques upon treatment [246]. While the impact of N-803 on latency reversal in this
study was modest, the use of IL-15 or N-803 as a part of cure strategies has been studied
extensively (reviewed in [261]). In vivo studies and clinical trials have indicated that
IL-15 or N-803 alone are unlikely to provide sufficient latency reversal activity but have
highlighted their potential as a component of combination treatments. This is supported by
observations of immune restorative effects of IL-15 or N-803 treatment that may support
the clearance of reservoir cells [261–263].

The small molecule 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) has been
shown to act as an LRA ex vivo in cells from PLWH by enhancing STAT5 activation and its
binding to the HIV LTR, promoting viral transcription [264]. Further, in combination with
IL-15, STAT5 activation by HODHBt mediated increased latency reversal and enhanced
the immune effector functions of NK cells and CD8 T cells targeting HIV-1-infected cells,
leading to a reduction in intact proviruses ex vivo [263,265,266].

A new LRA mechanism affecting transcriptional regulation has been proposed by
a recent study reporting that iPAF1C, an inhibitor of the polymerase-associated factor 1
complex (PAF1C), reduces the genome-wide chromatin occupancy of PAF1C and thereby
induces the release of promoter-proximal paused RNA Pol II [267]. The molecule reac-
tivated latent proviruses ex vivo in cells from PLWH and was shown to enhance viral
reactivation by several LRAs, including the BETi JQ1. iPAF1C has been proposed to remove
a block to transcriptional elongation, thereby promoting synergistic latency reversal when
combined with an LRA that stimulates transcription initiation [267].

The synergistic effects of LRA combination therapies on the latent reservoir show
great promise but will require careful assessment of their effects on the immune response.
Multiple studies have implicated certain LRAs, in particular HDACi and PKC, to impact
CD8+ T cell function, indicating that these effects will have to be further examined to
ensure and maintain an effective CD8+ T cell response during treatment [268]. In general,
combining LRA treatments will require a thorough evaluation of potential drug–drug
interactions that may result in unanticipated adverse effects not observed in individual
drug treatments to ensure the safety of these regimens.

4.4. Kill Agents

HIV-1 infection kills its target cells and causes immune dysregulation, which further
complicates elimination of the virus, even in the presence of an effective latency reversal
agent. Numerous studies have shown that latency reversal alone is insufficient to eliminate
reservoir cells, indicating that an additional immune effector component must be coupled
with LRA treatment [269]. To this end, a wide range of immune-based therapies are being
investigated, including therapeutic vaccines, antibodies, and the enhancement of T cell
function (reviewed in [270]). Stem-cell transplants from a CCR5-negative donor have been
successful in eliminating intact HIV-1 in a small number of patients, including Timothy
Ray Brown, known as the ‘Berlin Patient’ and Adam Castillejo, known as the ‘London
Patient’ [271,272]. While the significant risks and complications associated with stem-cell
transplantation make it unsuitable for broad clinical use as an HIV-1 cure, gene editing of
T cells to disrupt CCR5 coreceptor expression represents an alternative to protect CD4+
T cells from infection [273]. Clinical trials with CCR5 gene-edited CD4+ T cells in PLWH
have reported increased CD4+ T cell counts [274] and delayed, though not prevented, viral
rebound [275]. The development of a CCR5 gene-edited memory stem cell-like CD4+ T cell
subset has been proposed to enable the long-term sustained reconstitution of CD4+ T cells
and the decay of the viral reservoir [276]. However, the potential effects of CCR5 editing
on immune responses to other pathogens, as well as the risk posed by CXCR4-tropic HIV-1
strains, must be taken into consideration when evaluating these therapeutic strategies [277].

Chimeric antigen receptor (CAR)-T cells that recognize and eliminate infected cells are
effectors that have been studied extensively as “kill agents” in the context of HIV-1 latency.
Originally designed as a cancer therapeutic [278], this technology was applied to HIV-1
elimination strategies in the 1990s by modifying cytolytic CD8+ T cells to express CD4 with
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an MHC-independent intracellular signal transduction domain. This allowed for CD8+ T
cell-mediated cytolysis despite HIV-1-dependent downregulation of MHC-1 [279]. Despite
in vitro studies showing that CAR-T cells specifically targeted and lysed gp120-expressing
cells, no control of viral infection was observed in clinical trials [279]. Costimulatory
domains were added (including CD28 and IL-12) to increase lymphocyte activation and
attract other innate immune cells [280,281]. Clinical trials of these constructs failed to show
efficacy even as they exhibited strong safety profiles [282]. The most recent generation of
CAR-Ts has a dual CAR-T construct designed to target two gp120 epitopes, preventing
viral interaction with CCR5. Clinical trials of this construct are ongoing [283]. Several
obstacles have been encountered in the design of CAR-T therapy, including their infection
by HIV-1, viral escape, and a need to broadly target the viral reservoir. These hurdles must
be overcome for CAR-T therapy to be effective, as well as combining this therapy with an
effective “shock” approach [284].

Beyond cell and gene therapy, further approaches are being investigated to eliminate
reservoir cells. Antibody-derived bispecific molecules that recognize HIV-1-infected cells
based on monoclonal envelope-targeted antibodies have been engineered to recruit cyto-
toxic T cells or NK cells that mediate antibody-dependent cellular cytotoxicity (ADCC)
(reviewed in [285]). Immune checkpoint molecules, including those targeting programmed
cell death-1 (PD-1), are known to contribute to the establishment and maintenance of
HIV-1 latency [286]. Studies investigating whether immune checkpoint inhibitors may act
to disrupt the viral reservoir not only showed evidence of latency reversal in a clinical
trial [287], but PD-1 blockers have also been indicated to enhance the immune clearance
of reservoir cells, which may be due to a proliferation and activation of HIV-specific
CD8+ T cells [288–291]. TGF-β signaling has been found to enhance the establishment
and maintenance of HIV-1 latency [292]. Consequently, TGF-β inhibition was proposed
as a strategy to target the latent reservoir. This has been demonstrated by recent studies
that reported increased latency reversal in SIV-infected rhesus macaques by the TGF-β
inhibitor galunisertib [293] and a decrease in the viral reservoir size, evidenced by reduced
cell-associated viral DNA levels and likely resulting from the stimulation of SIV-specific
immune responses [294].

Additional kill strategies have been proposed that induce apoptosis in latently infected
cells following LRA treatment by targeting specific signaling pathways. An example is
the inhibition of the PI3K/Akt pathway, which is critical to controlling the cell cycle and
promoting cell survival. PI3K antagonists could induce apoptosis in HIV-1-infected cells
as part of a shock and kill treatment [66,295,296]. Also being investigated as inducers of
apoptosis in the context of latency are Bcl-2 antagonists such as venetoclax, FDA-approved
for treatment of myeloid and lymphocytic leukemia, or navitoclax [297,298]. Further,
the inhibition of Jak-STAT signaling through the treatment of PLWH on ART with the
Jak1/2 inhibitor ruxolitinib in a clinical trial resulted in a significant decrease in Bcl-2
expression [299], which has been associated with reservoir reduction following latency
reversal [300]. A decrease in HIV-1-DNA-harboring T cells upon ex vivo treatment with Jak
inhibitors ruxolitinib and tofacitinib has been reported [301]. Together, these data suggest
that a combination of Jak inhibitors with LRAs could promote reservoir depletion [299].
Lastly, RIG-I inducers and Smac mimetics have been proposed to exhibit both LRA and
pro-apoptotic activities that may both reactivate latent HIV-1 and induce cell death, though
further studies are needed to confirm these activities [302–304].

An important caveat for the development of kill agents is that these approaches
will require an effective LRA treatment to allow for the assessment of their efficacy to
eliminate reactivated reservoir cells. Therefore, and due to the combined effects that certain
treatments have on both the latent reservoir and the immune system, the development of
“shock” and “kill” treatments is closely connected and mutually dependent.

Lastly, the disruption of integrated proviral DNA through CRISPR/Cas gene editing
has emerged as an alternative approach to eliminate the viral reservoir (reviewed in [305]).
While studies investigating gene editing approaches as an HIV-1 cure strategy have shown
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promise, the need for effective delivery methods and the risk of off-target effects, viral
escape, and immunogenicity continue to pose significant challenges for this strategy.

5. Conclusions

With HIV/AIDS continuing to impose an immense global burden, the urgency for
an effective cure is paramount. Overcoming the hurdle of long-lived latently infected
CD4+ T cells is necessary to eliminate the virus in PLWH or achieve viral remission in
the absence of ART. HIV cure therapy is particularly crucial for populations with limited
access to healthcare as it offers a potential path to alleviating the burdens imposed by
viral persistence. In environments where healthcare resources are scarce, the long-term
management of HIV through traditional antiretroviral therapy can present significant
challenges, including accessibility, adherence, and cost. A cure, which eliminates the
need for lifelong treatment, would not only improve individual health outcomes but also
reduce the strain on healthcare systems. However, as HIV antiretroviral treatment has
transformed the landscape of managing the virus, providing individuals on ART with a
high quality of life and normal life expectancy, the pursuit of curative therapies for HIV
must adhere to exceptionally high levels of safety. Therapeutic intervention aiming at
reservoir elimination and a complete cure must not compromise the safety and efficacy
of existing ART regimens. In the past decade, several approaches, including “Shock and
Kill” and “Block and Lock”, have advanced to the pre-clinical or clinical trial stage but
have not yet translated into a successful cure. Nevertheless, recent studies have shown
encouraging progress. However, the further development of these approaches, and likely
the combination of multiple treatments, will be necessary to successfully eliminate the
latent HIV-1 reservoir from PLWH and achieve a complete cure.
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