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Abstract: Since the first recorded outbreak of the highly pathogenic avian influenza (HPAI) virus
(H5N1) in South Korea in 2003, numerous sporadic outbreaks have occurred in South Korean duck
and chicken farms, all of which have been attributed to avian influenza transmission from migratory
wild birds. A thorough investigation of the prevalence and seroprevalence of avian influenza viruses
(AIVs) in wild birds is critical for assessing the exposure risk and for directing strong and effective
regulatory measures to counteract the spread of AIVs among wild birds, poultry, and humans. In
this study, we performed a systematic review and meta-analysis, following the PRISMA guidelines,
to generate a quantitative estimate of the prevalence and seroprevalence of AIVs in wild birds in
South Korea. An extensive search of eligible studies was performed through electronic databases
and 853 records were identified, of which, 49 fulfilled the inclusion criteria. The pooled prevalence
and seroprevalence were estimated to be 1.57% (95% CI: 0.98, 2.51) and 15.91% (95% CI: 5.89, 36.38),
respectively. The highest prevalence and seroprevalence rates were detected in the Anseriformes
species, highlighting the critical role of this bird species in the dissemination of AIVs in South Korea.
Furthermore, the results of the subgroup analysis also revealed that the AIV seroprevalence in wild
birds varies depending on the detection rate, sample size, and sampling season. The findings of
this study demonstrate the necessity of strengthening the surveillance for AIV in wild birds and
implementing strong measures to curb the spread of AIV from wild birds to the poultry population.

Keywords: avian influenza virus; wild birds; prevalence; seroprevalence; systematic review; meta-analysis;
South Korea

1. Introduction

Avian influenza (AI), also known as the “bird flu,” a disease caused by influenza type
A viruses, affects a wide variety of domestic and wild birds. Based on their pathogenicity
in birds, influenza A viruses are classified as either highly pathogenic or low pathogenic
avian influenza viruses, known as HPAI and LPAI viruses, respectively [1,2]. Wild birds,
particularly migratory aquatic birds of the order Anseriformes (ducks, geese, and swans)
and Charadriiformes (shorebirds and gulls) are natural reservoirs of LPAI viruses [3–5]. As
LPAI viruses primarily replicate in duck intestinal tracts, their transmission among wild
birds occurs primarily through the fecal-oral route [1]. LPAI viruses are excreted in feces
and have been demonstrated to survive in water for an extended period of time [6]. Thus,
waterborne transmission could play a significant role in the spread of LPAI viruses among
migratory waterbirds.

Generally, AI viruses do not cause disease in wild birds, although subtypes of HPAI
viruses can invade and replicate in different organs and may cause severe infections [4,7].

Viruses 2023, 15, 472. https://doi.org/10.3390/v15020472 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v15020472
https://doi.org/10.3390/v15020472
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0003-2973-5345
https://orcid.org/0000-0001-8897-2258
https://orcid.org/0000-0002-5193-508X
https://doi.org/10.3390/v15020472
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v15020472?type=check_update&version=2


Viruses 2023, 15, 472 2 of 16

HPAI viruses evolve by mutation when the virus, carried in its mild form by a wild bird, is
introduced into poultry [5,8]. These viruses are capable of infecting a wide range of animal
species, such as swine, birds, companion animals, marine animals, and humans [7,9]. The
transmission of avian influenza viruses (AIVs) from infected wild birds to domestic birds is
perceived to occur through the sharing of water sources or the contamination of feed [10,11].
In humans, zoonotic subtypes of AIVs are transmitted mainly through direct contact with
infected domestic poultry [11,12]. To date, eight AIVs have been reported to infect humans,
of which, the H5N1 and H7N9 subtypes are associated with high morbidity and mortality
in a large number of humans [11,13,14]. In South Korea, the HPAI subtype, H5N1, was first
detected in duck meat imported from mainland China in 2000, which resulted in the loss of
4588 tons of meat [15]. From 2003 to 2004, an HPAI outbreak affected 392 chicken and duck
farms in South Korea, causing a total discard of 5,285,000 birds, which was equivalent to
$458 million [15,16].

In wild birds, the first cases of the H5N1 HPAI virus infection were primarily observed
in Hong Kong in late 2002 [17,18]. Since then, multiple AI outbreaks associated with the
H5N1 subtype have been reported in Asia, Africa, and Europe, all of which have been
ascribed to wild migratory birds [19,20]. These documented cases imply that wild aquatic
birds may play a major role in carrying AIVs over long distances via migration. Waterfowl
are the most observed migratory birds, and winter birds are predominantly associated
with the occurrence of AI in South Korea [2,16]. Although many countries have been
able to halt the spread of H5N1 in animal and human populations by conducting regular
surveillance and enforcing strict animal health regulations, the virus remains endemic to
poultry populations, primarily in low-income countries with inadequate animal health
and surveillance facilities. Owing to the rapid evolution of HPAI viruses, their devastating
impact on the global poultry industry, and the threat they pose to public health, it is critical
to understand the prevalence of AIVs in wild birds for risk assessment and preparedness
against future outbreaks.

The prevalence and seroprevalence of AIVs in the wild bird populations of South
Korea have been reported in various individual studies; however, no attempt has been
made to consolidate these studies to derive a robust prevalence estimate of AIVs using a
meta-analytical approach. The crucial benefit of meta-analysis is that it combines evidence
to achieve a more robust point estimate with a higher statistical power as compared
with that obtained from a single study from where the data originated [21,22]. Currently,
systematic reviews and meta-analyses are perceived as the best available knowledge sources
to make decisions regarding treatment choices [23], and meta-analyses are broadly used
to calculate precise estimates of disease frequency, such as disease incidence rates and
prevalence proportions [21,24]. In various studies, meta-analysis and regression analysis
techniques have been used to generate overall prevalence estimates of infectious agents in
animal populations and provide empirical evidence on associated risk factors [11,25,26].
In this study, we performed a systematic review and meta-analysis to estimate the overall
prevalence and seroprevalence of AI in wild birds, using data from available studies
conducted in South Korea. We hypothesized that the detection rate of AI in wild birds
would depend on the sampling period, detection method, sample size, and sample type.
Thus, subgroup analysis was adapted to investigate the sources of heterogeneity between
the reported prevalence from individual studies using the above-mentioned variables.

2. Materials and Methods
2.1. Study Design and Systematic Review Protocol

A systematic review and meta-analysis were performed in accordance with the Pre-
ferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P)
guidelines [27] to determine the prevalence and seroprevalence of AI in wild birds in South
Korea (Table S1). The review question was structured in accordance with the “population,
exposure, comparator, and outcome” (PECO) format. In this systematic review, the “popu-
lation of interest” refers to the wild birds, and “exposure” refers to the AIVs. As this study
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is a systematic review and meta-analysis of prevalence, the category of “comparator” was
not relevant to this study. The “outcomes of interest” included the detected prevalence and
seroprevalence of AIVs in wild birds in South Korea.

2.2. Literature Search Strategy

An extensive literature search was conducted with no language restriction using
MEDLINE (via PubMed), Scopus, Web of Science, and South Korean databases, such as RISS
and KISS, to identify studies published between 1980 and 2021. The last literature search
was conducted on 23 December 2021. The following keywords: (wild bird* OR migratory
bird* OR waterfowl OR Galliformes OR Charadriiformes OR Anseriformes) AND (avian
influenza* OR AI OR bird flu OR avian flu OR influenza A virus OR AIV) AND (Korea OR
South Korea) AND (prevalence OR inciden* OR proportion OR cases OR surveillance OR
seroprevalence) were used to find eligible studies on the prevalence and seroprevalence of
AIVs in wild birds in South Korea. An asterisk was used to extend a search term to related
words with the same meaning (e.g., inciden* for incidence and incident).

2.3. Eligibility and Exclusion Criteria

In this systematic review and meta-analysis, the inclusion criteria were as follows:
cross-sectional studies, primary studies conducted in South Korea, studies that assessed the
prevalence and/or seroprevalence of AI in wild birds, studies that reported the sample size
and the number of positive samples or the prevalence/seroprevalence rate, and studies
with virus-isolation data. Studies were excluded if they were not conducted in South
Korea, if samples were collected from animals other than wild birds, and if they did not
report the total number of samples alongside the number of positive samples detected or
the exact calculated prevalence rate. The titles and abstracts were screened for suitability
using predetermined criteria. The full texts of potentially relevant articles were obtained
and evaluated.

2.4. Data Extraction

Data on the prevalence and seroprevalence of AI in wild birds in South Korea were
extracted by two independent reviewers, and any disagreements were resolved through
discussion and consensus. From all eligible studies, information regarding the first author,
year of publication, publication status (i.e., published or non-published), sample type (i.e.,
feces, cloacal swabs, carcass, or blood), detection method, sampling season, sampling
location, bird species, detected AI subtype, sample size, and the number of positive sam-
ples was extracted. Data were extracted and organized into a pre-developed Microsoft
Excel spreadsheet.

2.5. Risk of Bias Assessment

The eligible studies were assessed for internal and external validity by two indepen-
dent reviewers using the Joanna Briggs Institute (JBI) critical appraisal tools for prevalence
studies [28,29]. Each study was classified as having a low, high, or unclear risk of bias. The
checklist contained nine questions, but only eight were evaluated because one question
(regarding the response rate) was irrelevant to this study.

2.6. Data Synthesis

Data analysis was conducted using R version 4.1.2 (R Studio version 1.4) software [30,31].
The meta-analysis was performed and the forest plots were generated using the “meta”
and “metafor” packages [32–34]. The total number of samples collected and the number of
positive samples detected in each study were used to calculate overall prevalence estimates.
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To fulfill the assumption of a normal distribution, the logit transformation method was
applied to the data [24,26,35] using the following formula:

logit p = ln
(

p
1−p

)
with variance : var(logit p) = 1

np + 1
n(1−p)

where “n” is the total sample size and “p” is the prevalence of the pathogen under study. A
generalized linear mixed model, together with a logit transformation, demonstrates better
performance; different studies recommend the use of this approach, which was adapted in
this study to pool the data [35,36]. A random effects model was used to generate the pooled
prevalence and seroprevalence of AIV in wild birds in South Korea. To combine the study
estimates, the between-study variance (τ2) was estimated using the maximum likelihood
method. The overall effect size of the logit model and its corresponding 95% confidence
interval (CI) were calculated and back-transformed to prevalence rates for ease of inter-
pretation. The between-study heterogeneity was assessed using the Q test and I2 statistic,
which accounts for the amount of the observed variance that reflects the variance in true
effects rather than sampling error [37]. The heterogeneity between studies was considered
substantially high if the Q test yielded a statistically significant p-value (p < 0.05) and I2

was greater than 50%.
To investigate the reason for heterogeneity, a subgroup analysis was undertaken using

four pre-specified variables, including sampling season (i.e., fall/winter and spring/summer),
sample size (i.e., more than 1000 or less than 1000), sample type (i.e., feces, cloacal swabs,
carcass, and blood), detection method (i.e., ELISA, reverse transcription-polymerase chain
reaction (RT-PCR), rRT-PCR, hemagglutination (HA) test, virus isolation, hemagglutinin
inhibition (HI) test, and agar gel precipitation test (AGPT)) that could potentially affect
the reported prevalence in the literature. Publication bias was assessed through visual
inspection of the symmetry of the contour-enhanced funnel plots, and a quantitative
estimate of publication bias was performed using Egger’s regression test [38,39]. After
confirming publication bias, the Duval and Tweedie trim-and-fill method was used to
estimate an unbiased effect by imputing missing studies in the funnel plot [40].

3. Results
3.1. Search Results

Initially, 853 records were obtained by conducting an electronic database search. After
duplicates were removed, 434 studies remained, and their titles and abstracts were reviewed
for eligibility. After the title and abstract screening, 337 of the 434 records were removed.
The remaining 97 studies were subjected to full-text screening, of which 48 were deemed
irrelevant to this study, and the remaining 49 were finally included in the quantitative
synthesis (meta-analysis). The study selection process is illustrated in Figure 1.

3.2. Study Characteristics

Among the 49 studies eligible for the meta-analysis, 39 assessed the prevalence and
10 assessed the seroprevalence of AIVs in wild birds in South Korea. Of the prevalence
studies, 24 studies were published in peer-reviewed journals and 15 were non-published
records (e.g., government reports, research institute reports, and student dissertations).
Regarding the sampling season, 16 studies collected samples in fall and winter, whereas
the other 23 studies did not report the sampling season. The sample types included feces
(30 trials), carcasses (10 trials), cloacal swabs (10 trials), and combinations of samples
(2 trials); two trials did not specify the type of samples used. Samples were collected
from the Anseriformes (10 trials), Charadriiformes (5 trials), other species (9 trials), and
non-reported bird species (36 trials). Regarding seroprevalence studies, three studies were
published in South Korean or international academic journals, and the other seven were non-
published records. Regarding the sampling season, three studies collected samples in the
fall and winter, whereas the other seven studies did not report the sampling season. Blood
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samples were collected from the Anseriformes species (8 trials), Charadriiformes (5 trials),
other species (8 trials), and non-reported species (3 trials). The characteristics of studies
included in this systematic review and meta-analysis are summarized in Tables S2 and S3.
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influenza virus in wild bird populations in South Korea for use in a systematic review and meta-analysis.

3.3. Risk of Bias Assessment

The results of the quality assessment of relevant studies that reported the prevalence
and seroprevalence of AIVs in wild birds are shown in Figure 2. Studies that reported
both prevalence and seroprevalence had a risk of bias, assessed by sorting each result.
Prevalence studies that used samples from the entire nation [8,17,41–56] or major migra-
tory bird habitats [2,57–63] determined that the sampling frame was properly chosen, as
samples were taken from within the pertinent regions to calculate the prevalence therein.
The sampling frame made for the studies whose primary goal was to identify the char-
acteristics of isolated AIVs [64–67] was judged to be at a high risk of bias because the
isolation rate reported in the studies was constrained to a particular region. It was challeng-
ing to assume that the sample frame of the studies reporting the prevalence of carcasses
referred for diagnosis was representative of the general wild bird population [68,69]. How-
ever, these prevalence studies used census, a suitable sampling method that examined
all samples within a predetermined sampling frame. Seven primary studies that eval-
uated the prevalence of AIVs were judged to have a low bias in the sampling method,
owing to proper capture methods from randomized wild birds [2,41–43,48,50,57]. All
studies, except for two [59,66] that did not describe the isolation method in detail, recorded
the condition of the samples by examining them with the proper techniques, such as
RT-PCR [2,8,17,41–44,48–52,54–56,58,60–62,65,67–74], rRT-PCR [53,63,64,75,76], or HA
tests [41,42,46,47,57,77]. All investigations, except for 12 studies [8,46,55,57–59,65–68,75,77],
had read the experimental results with distinguishing criteria. Prevalence studies with
small [56–59,64–69,71,73,74] and large sample sizes [2,8,17,41–55,60–63,70,72,75,76] were
differentiated according to adequate sample size (1000 samples).
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All studies unambiguously stated the number of examined samples and the number
of positive or virus-detected samples. Studies that assessed prevalence in subgroups
subdivided into sampling month [46,60,64,68,70,72], sampling year [2,8,48,49,51,54,55,72],
province [17,41–43,51,58–60,68,75], and bird species [42,43,46,48–52,57–59,68,75] allowed
for comparisons between the study sample and the population of interest. A low coverage
bias was determined in prevalence studies [2,41–43,48,50,52,60,72,75] that used a similar
sample number for each distinct subgroup. Otherwise, coverage bias was assessed as
high [8,17,46,49,51,54,55,57–59,64,68,70].

Seroprevalence studies, in which samples were collected from the entire
country [41–43,46,48,50,51] and major migratory bird habitats [2,49,78], were judged to set
a suitable sample frame. Seroprevalence studies [2,41–43] that sampled random subjects
using proper capture methods were judged to have low sampling bias. All experiments
detected antibodies in serum using appropriate methods, including the HI assay [46,48,49]
and ELISA [2,41–43,50,51,78]. All investigations, except for one [46], read the experimental
results with distinguishing criteria. Seroprevalence studies with small [2,41–43,78] and
large sample numbers [46,48–51] were differentiated according to adequate sample size
(1000 samples). All the studies unambiguously stated the number of examined and posi-
tive samples. Studies that assessed prevalence into subgroups subdivided into sampling
month [2], sampling year [2,48,51,78], province [43,49], and bird species [41,42,46,48–51,78]
allowed for comparisons between the study sample and the population of interest. Low
coverage bias was observed in prevalence studies [2,48,50] that used a similar sample size for
each distinct subgroup. Otherwise, coverage bias was assessed to be high [41–43,46,49,51,78].

Viruses 2023, 15, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 2. Risk-of-bias assessment of eligible studies on prevalence (a) and seroprevalence (b) of 

avian influenza viruses in wild birds of South Korea using the Joanna Briggs Institute (JBI) critical 

appraisal tools for prevalence studies. 

3.4. Meta-Analysis Results 

3.4.1. Prevalence Estimates 

Thirty-nine studies investigated the prevalence of AIVs in wild birds in South Korea 

(Figure 3). Overall, the pooled prevalence was estimated to be 1.57% (95% CI: 0.98, 2.51) 

with high between-study heterogeneity (I2 = 100%). Subgroup analyses were performed 

to investigate the source of heterogeneity using different variables that could potentially 

affect the prevalence rates among individual studies. Regarding bird species, the highest 

prevalence was detected in the Anseriformes species (4.34% (95% CI: 1.44, 12.30)), fol-

lowed by a group of non-reported species (1.20% (95% CI: 0.74, 1.94)). The lowest preva-

lence was detected among Charadriiformes and other species (rather than Anseriformes 

and Charadriiformes), with a prevalence of 0.19% (95% CI: 0.03, 1.33) and 0.22% (95% CI: 

0.04, 1.20), respectively. However, the heterogeneity was still high within the Anser-

iformes (I2 = 98%) and non-reported (I2 = 100) subgroups, whereas no heterogeneity was 

observed within the Charadriiformes and other species subgroups (I2 = 0 for each). Based 

on the sample type, the highest prevalence of 4.59% (95% CI: 0.76, 23.07) was detected in 

carcasses, followed by 1.58% (95% CI: 1.06, 2.36) and 1% (95% CI: 0.36, 2.75) in feces and 

cloacal swabs, respectively. The lowest prevalence, 0.63% (95% CI: 0.56, 0.71) and 0.97% 

(95% CI: 0.73, 1.28), was reported in mixed samples and non-reported sample types, re-

spectively. The variables of sample size, sampling season, detection method, and publica-

tion status, had no significant influence on the prevalence rates (p > 0.05). All the variables 

assessed are presented in Table 1. 

Figure 2. Risk-of-bias assessment of eligible studies on prevalence (a) and seroprevalence (b) of avian
influenza viruses in wild birds of South Korea using the Joanna Briggs Institute (JBI) critical appraisal
tools for prevalence studies.



Viruses 2023, 15, 472 7 of 16

3.4. Meta-Analysis Results
3.4.1. Prevalence Estimates

Thirty-nine studies investigated the prevalence of AIVs in wild birds in South Korea
(Figure 3). Overall, the pooled prevalence was estimated to be 1.57% (95% CI: 0.98, 2.51)
with high between-study heterogeneity (I2 = 100%). Subgroup analyses were performed
to investigate the source of heterogeneity using different variables that could potentially
affect the prevalence rates among individual studies. Regarding bird species, the highest
prevalence was detected in the Anseriformes species (4.34% (95% CI: 1.44, 12.30)), followed
by a group of non-reported species (1.20% (95% CI: 0.74, 1.94)). The lowest prevalence
was detected among Charadriiformes and other species (rather than Anseriformes and
Charadriiformes), with a prevalence of 0.19% (95% CI: 0.03, 1.33) and 0.22% (95% CI: 0.04,
1.20), respectively. However, the heterogeneity was still high within the Anseriformes
(I2 = 98%) and non-reported (I2 = 100) subgroups, whereas no heterogeneity was observed
within the Charadriiformes and other species subgroups (I2 = 0 for each). Based on the
sample type, the highest prevalence of 4.59% (95% CI: 0.76, 23.07) was detected in carcasses,
followed by 1.58% (95% CI: 1.06, 2.36) and 1% (95% CI: 0.36, 2.75) in feces and cloacal swabs,
respectively. The lowest prevalence, 0.63% (95% CI: 0.56, 0.71) and 0.97% (95% CI: 0.73,
1.28), was reported in mixed samples and non-reported sample types, respectively. The
variables of sample size, sampling season, detection method, and publication status, had
no significant influence on the prevalence rates (p > 0.05). All the variables assessed are
presented in Table 1.

Table 1. Results of subgroup analysis (prevalence rates) based on six potential effect modifiers.

Variables Prevalence Estimates (95%) I2 (%) τ2 Psubgroup

1. Bird species <0.01 a

Anseriformes 4.34 [1.44; 12.30] 98 3.2233

Charadriiformes 0.19 [0.03; 1.33] 0 0

Other species 0.22 [0.04; 1.20] 0 1.9568

Not reported 1.20 [0.74; 1.94] 100 2.1236

Overall prevalence 1.14 [0.72; 1.82] 99 2.8912

2. Sample type <0.01 a

Feces 1.58 [1.06; 2.36] 99 1.2236

Carcass 4.59 [0.76; 23.07] 95 7.1496

Cloacal swabs 1.00 [0.36; 2.75] 100 2.6837

Mixed samples 0.63 [0.56; 0.71] 0 0

Not reported 0.97 [0.73; 1.28] 96 0.039

Overall prevalence 1.7 [1.10; 2.64] 100 2.6417

3. Detection method =0.25 b

RT-PCR 1.98 [1.11; 3.53] 100 2.3799

HA-test 1.06 [0.59; 1.90] 95 0.5665

rRT-PCR 0.75 [0.32;1.75] 85 0.8644

Virus isolation 1.25 [0.14; 10.25] 88 2.0493

Overall prevalence 1.54 [0.99; 2.38] 100 2.0266

4. Sample size =0.05 b

Less than 1000 3.28 [1.20; 8.68] 97 3.3332

More than 1000 1.10 [0.74; 1.65] 100 1.1152

Overall prevalence 1.57 [0.99; 2.47] 100 2.1073
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Table 1. Cont.

Variables Prevalence Estimates (95%) I2 (%) τ2 Psubgroup

5. Sampling season =0.48 b

Fall to winter 1.94 [0.80; 4.61] 98 3.1168

Not reported 1.35 [0.82; 2.20] 100 1.4628

Overall prevalence 1.57 [0.99; 2.47] 100 2.1073

6. Publication status =0.82 b

Published 1.63 [0.80; 3.27] 100 3.07

Non-published 1.47 [0.95; 2.28] 100 0.7476

Overall prevalence 1.57 [0.99; 2.47] 100 2.1073
a The difference in prevalence estimates between subgroups was statistically significant. b There was no significant
difference in prevalence estimates between subgroups.
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3.4.2. Seroprevalence Estimates

Ten studies assessed the seroprevalence of AIVs in wild birds in South Korea. The
pooled seroprevalence estimate was 15.91% with a 95% CI of 5.89–36.38 (Figure 4). Between-
study heterogeneity was significantly high (I2 = 100%). To identify the reasons for hetero-
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geneity, we conducted subgroup analysis using bird species, detection method, sample size,
publication status, and sampling season as potential effect modifiers. All variables had a
significant influence on seroprevalence rates, except for publication status (Table 2). Re-
garding bird species, the highest seroprevalence was detected in the Anseriformes species
(30.45% (95% CI:18.97, 45.03)), followed by the Charadriiformes and non-reported species
with seroprevalence estimates of 2.95% (95% CI: 0.24, 27.43)) and 2.85% (95% CI: 1.17, 6.76),
respectively. The lowest seroprevalence was detected among other bird species (rather
than Anseriformes and Charadriiformes), with an estimate of 2.83% (95% CI: 0.40, 17.26).
Heterogeneity was still high within all subgroups (I2 > 90%), except for the Charadriiformes
species (I2 = 49%). Based on the detection method, the highest seroprevalence, 31.47%
(95% CI: 20.47, 45.02), was detected by ELISA, whereas the lowest seroprevalence of 2.46%
(95% CI: 1.12, 5.31) was indicated by the HI test. The sample size also demonstrated a
significant association with the seroprevalence rate, with the highest seroprevalence (30.93%
(18.48, 46.93)) observed in studies with less than 1000 samples compared with 5.03% (1.25,
18.20) observed in those with more than 1000 samples (p < 0.01). Subgroup analyses also
revealed that the highest seroprevalence was detected among studies that collected samples
from fall to winter (36.48% (24.05, 51.01)) than in studies that did not report the sampling
season (10.48% (3.46, 27.66)) (p < 0.02). Regarding the publication status, no significant
difference in seroprevalence was observed between the published (9.07% (1.91, 33.78)) and
non-published studies (19.85% (7.52, 43.01)) (p < 0.37). The results of the subgroup analysis
are presented in Table 2.

Table 2. Results of subgroup analysis (seroprevalence rates) based on five potential effect modifiers.

Variables Seroprevalence Estimates (95%) I2 (%) τ2 Psubgroup

1. Bird species <0.01 a

Anseriformes 30.45 [18.97; 45.03] 100 0.7793

Charadriiformes 2.95 [0.24; 27.43] 49 5.2003

Other species 2.83 [0.40; 17.26] 94 7.0157

Not reported 2.85 [1.17; 6.76] 99 0.6122

Overall prevalence 7.71 [3.33; 16.86] 99 4.3612

2. Detection method <0.01 a

ELISA 31.47 [20.47; 45.02] 97 0.5904

HI test 2.46 [1.12; 5.31] 99 0.475

Overall prevalence 15.90 [6.76; 33.01] 100 2.3668

3. Sample size <0.01 a

Less than 1000 30.93 [18.48; 46.93] 98 0.7001

More than 1000 5.03 [1.25; 18.20] 100 2.1246

Overall prevalence 15.90 [6.76; 33.01] 100 2.3668

4. Sampling season =0.02 a

Fall to winter 36.48 [24.05; 51.01] 98 0.2553

Not reported 10.48 [3.46; 27.66] 100 2.53

Overall prevalence 15.90 [6.76; 33.01] 100 2.3668

5. Publication status =0.37 b

Published 9.07 [1.91; 33.78] 99 2.0361

Non-published 19.85 [7.52; 43.01] 100 2.2482

Overall prevalence 15.9 [ 6.76; 33.01] 100 2.2482
a The difference in seroprevalence estimates between subgroups was statistically significant. b There was no
significant difference in seroprevalence estimates between subgroups.
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Figure 4. Forest plot of 10 studies assessing the seroprevalence of avian influenza virus in the wild
bird populations of South Korea [2,41–43,46,48–51,78].

3.5. Publication Bias

Publication bias occurs when the likelihood of a study being published is influenced by
its findings. In contrast to smaller studies with low effects, larger studies with relatively high
effects are more likely to be published because they are statistically significant. This results
in publication bias. To assess the presence of publication bias, contour-enhanced funnel
plots were generated with the effect sizes on the x-axis and their standard errors on the
y-axis (Figure 5). On visual inspection, the studies were symmetrically distributed on both
sides of the mean effect and demonstrated significant results (p < 0.05). This symmetrical
pattern suggests that a publication bias is unlikely. To avoid subjective inferences from
funnel plot visualizations, Egger’s regression test was applied to quantify the presence
of funnel plot asymmetry. Egger’s regression test yielded p-values of 0.094 and 0.506 for
prevalence and seroprevalence outcomes, respectively, indicating no funnel plot asymmetry;
hence, publication bias was not confirmed.
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4. Discussion

AIVs in wild birds pose a pandemic threat to humans and the poultry industry world-
wide. Previous studies have confirmed the relationship between the wild bird migratory
route and AIV prevalence in South Korea by evaluating the geographical distributions
of HPAI outbreaks and cases of mortality in wild birds [2,79]. Therefore, it is of critical
importance to understand the current status of AI prevalence and seroprevalence in wild
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birds for use as an early warning system. In this study, we performed a systematic review
and meta-analysis to consolidate the data from individual primary studies that evaluated
the prevalence and seroprevalence of AIVs in wild birds in South Korea. The overall
prevalence was estimated to be 1.568% (0.976; 2.510), indicating that approximately 2% of
the wild bird population in South Korea are carriers of AIVs.

According to the census of winter migratory birds conducted in South Korea, approxi-
mately 1.63 million winter birds visited South Korea in 2020 [80]. Of these, 850,000 birds
belonged to the order Anseriformes and accounted for 52% of the total. Based on the results
of this meta-analysis, it can be estimated that approximately 32,600 migratory birds in South
Korea carry AIVs. Chen et al. (2019) discovered that the prevalence and seroprevalence
of AI were 2.5% and 26.5%, respectively, in wild birds in China [81]. The relatively low
prevalence of AIVs in wild birds in South Korea is consistent with the knowledge that South
Korea is not a breeding site, but rather a wintering area for adult wild birds, particularly
waterfowl, such as ducks and geese [17]. On the other hand, the seroprevalence estimate
was 15.911% (5.891; 36.383), suggesting that approximately 16% of the wild bird population
in South Korea has been exposed to AIVs. As the antibody-positive cases included indi-
viduals that had recovered from AIV, the seroprevalence would tend to be relatively high
compared with the prevalence. Another possible explanation for the high seroprevalence
of AIVs in wild birds is that during the migration route, the migratory birds aggregate at
nesting and feeding sites, which results in high rates of contact between birds, facilitating
AIV transmission and a high prevalence of antibodies in the bird population [82,83]. It is,
therefore, likely that wild birds arriving in South Korea will have had repeated exposure
to AIVs, which leads to the persistence of anti-AIV antibodies over long periods in their
bodies. The antibodies detected in wild birds could only be the result of seroconversion
induced by a natural viral infection, as they are not immunized against AIV. Thus, they
could play a critical role in spreading the virus to the surrounding environment, livestock,
and humans.

Of the six variables used in the subgroup analysis, two (bird species and sample type)
showed a significant influence on the prevalence rate of AIVs in wild birds. In contrast,
four variables (bird species, detection method, sample size, and sampling season) showed
a significant relationship with seroprevalence rates. Small studies (less than 1000 samples)
demonstrated higher prevalence and seroprevalence rates than large studies (more than
1000 samples). This could be related to the fact that studies with small sample sizes are
associated with higher effect sizes than bigger studies. Another possible reason is that the
larger studies included in the analysis are mostly the non-published government reports
that collected samples from different provinces of the country as part of a normal AIV
surveillance routine, thus reducing the chance of getting positive samples compared with
small studies that mainly collected samples from specific locations during or after an HPAI
outbreak, thus increasing the probability of getting more positive samples. Regarding the
species of wild birds, the highest AIV prevalence and seroprevalence rates were detected
in the Anseriformes species compared to others. These results are in line with previous
reports that waterfowl are the predominant migratory birds and are primarily associated
with AI occurrence in South Korea [2,16]. Similar findings were also reported in China,
where the highest AIV prevalence (6.8%) and seroprevalence (41.8%) were observed in
the Anseriformes species compared with that in non-Anseriformes species [81]. Based on
the sample type, the highest prevalence rate was revealed in carcasses compared to other
sample types (p < 0.01). One possible reason for these results is that carcass samples were
collected during or shortly after the 2014 HPAI outbreak (H5N8) in South Korean duck and
chicken farms and wild birds found in the Donglim reservoir, Jeonbuk province [2,51,68,69];
most of these carcasses were confirmed to have died from the HPAI virus (H5N8) clade
2.3.4.6 [69,84].

Considering the detection method, the highest seroprevalence was detected by ELISA
rather than the HI test (p < 0.01). This difference in performance could be due to the
low sensitivity of the HI test for detecting AIV antibodies, particularly the H5N1 and
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H3N2 serotypes [85,86]. Furthermore, the highest seroprevalence rate detected during the
fall-to-winter season is consistent with the National Institute of Environmental Research
report “Surveillance and monitoring of wildlife diseases in Korea, 2012,” which states that
the prevalence of AIVs increases from October to December (stage 1), when waterfowl
migrate from the north, and in April (stage 4), when passing migratory birds are moving to
the north [2]. Surprisingly, the results of the subgroup analysis confirmed no significant
influence of the sampling season on the prevalence estimates. However, this should be
interpreted with caution, as many studies included in the assessment of the prevalence
did not clearly report the sampling season, and many studies fell into a subgroup of “not
reported.” Consequently, this could have limited the power of the statistical tests to detect
the significance while it was present. In addition to the above-mentioned moderators,
prevalence rates in birds are likely to vary depending upon the surveillance period, the
sampling region, and whether surveillance was performed in response to an outbreak
or conducted as routine surveillance [11]. As most of the studies included in this meta-
analysis did not provide clear information about these variables, we could not evaluate
their contribution to the observed prevalence and seroprevalence rates. Although the
prevalence and seroprevalence estimates between subgroups were significantly different,
the within-subgroup heterogeneity was substantially high, indicating that none of the
variables could entirely explain the reasons for between-study heterogeneity.

This study had a few limitations. First, there was substantial variation in the prevalence
rates among individual studies. Although we used a couple of moderators to investigate the
source of heterogeneity, only a few studies clearly reported on these variables, and a large
number fell into the “not reported” subgroup. Furthermore, insufficient information was
available to adequately categorize studies based on the reason for surveillance (in response
to an outbreak or as routine surveillance), surveillance period, and sampling region, which
are also relevant covariates that could possibly demonstrate significant relationships with
the observed pooled prevalence estimates. Despite these limitations, the findings of this
meta-analysis provide a more robust estimate of AIV prevalence and seroprevalence in
wild birds in South Korea than that obtained from a single study.

5. Conclusions

In conclusion, this study provides solid evidence for the current prevalence of AIVs
among the South Korean wild bird population. These findings demonstrated that a large
number of wild birds in South Korea, particularly those of the order Anseriformes, are
carriers of AIVs, and others have already been exposed to AI because of the high detection
rate of anti-AIV antibodies. This poses a threat to the poultry industry and, potentially,
to humans in South Korea, due to the critical role of wild birds in the spread of AIV.
Furthermore, migratory wild birds have different flyways, which affect the distribution of
AIVs in different countries. A multi-country surveillance system would provide detailed
information on the prevalence and distribution of AIVs in this region. The evidence from
this study highlights the need to strengthen existing preventive measures and increase
surveillance activities to impede the risk of AIV transmission from wild birds to domestic
poultry and human beings.
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