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Abstract: Infectious diseases such as SARS-CoV-2 pose a considerable threat to public health. Con-
structing a reliable mathematical model helps us quantitatively explain the kinetic characteristics of
antibody-virus interactions. A novel and robust model is developed to integrate antibody dynamics
with virus dynamics based on a comprehensive understanding of immunology principles. This
model explicitly formulizes the pernicious effect of the antibody, together with a positive feedback
stimulation of the virus–antibody complex on the antibody regeneration. Besides providing quan-
titative insights into antibody and virus dynamics, it demonstrates good adaptivity in recapturing
the virus-antibody interaction. It is proposed that the environmental antigenic substances help
maintain the memory cell level and the corresponding neutralizing antibodies secreted by those
memory cells. A broader application is also visualized in predicting the antibody protection time
caused by a natural infection. Suitable binding antibodies and the presence of massive environ-
mental antigenic substances would prolong the protection time against breakthrough infection. The
model also displays excellent fitness and provides good explanations for antibody selection, antibody
interference, and self-reinfection. It helps elucidate how our immune system efficiently develops
neutralizing antibodies with good binding kinetics. It provides a reasonable explanation for the lower
SARS-CoV-2 mortality in the population that was vaccinated with other vaccines. It is inferred that
the best strategy for prolonging the vaccine protection time is not repeated inoculation but a directed
induction of fast-binding antibodies. Eventually, this model will inform the future construction of an
optimal mathematical model and help us fight against those infectious diseases.

Keywords: SARS-CoV-2; antibody dynamics; vaccine; protection time; mathematical modeling

1. Introduction

The COVID-19 epidemic has caused more than 630 million infections and over 6.5 mil-
lion deaths worldwide by the end of 2022, and it can hardly disappear in a short time
based on observation [1–3]. Until now, vaccination has been the only approach to fighting
SARS-CoV-2 infections. As the global promotion of the SARS-CoV-2 vaccine continues,
we are gaining a better understanding of the antibodies triggered by vaccines and natural
infections. It is gradually becoming apparent that antibodies against SARS-CoV-2, whether
acquired from natural infection or triggered by vaccination, decay over time, with a con-
comitant decrease in protective efficiency. Unlike antibodies from vaccinations such as
smallpox [4], antibodies against SARS-CoV-2 do not provide durable protection [5].

A significant portion of the population is reluctant to be vaccinated, according to a
public poll survey [6,7]. The first concern comes from the side effects of vaccination, such as
blood clots [8,9]. The second concern is this deficiency of the long-lasting protection effect
brought by vaccination since many clinical reports indicate that the vaccine’s protection
effect is declining over time [10–13]. Based on the clinical data, a significant decrease in
the immune effect of the vaccine against reinfection has been noticed. The SARS-CoV-2
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vaccine still shows an overall positive effect on protection currently. However, more people
are concerned about how long the protection can be provided by the antibodies triggered
by their immune response [5,14]. There is an urgent need to evaluate the protection time of
neutralizing antibodies quantitatively.

Constructing a reliable mathematical model helps us quantitatively explain the virus
dynamics in the host body, which could provide a reasonable prediction toward those
sensitive concerns faced by the public. Researchers have conducted many studies on virus
infections using computational approaches [15,16].

Specifically, depending on whether the immune response is integrated into the models,
traditional cellular models can be divided into two categories. The first set contains models
that do not include the immune response [17–21], that is, traditional viral kinetic models,
whose following equation can be classically expressed as:

dT
dt

= sT − dT − βTV (1)

dI
dt

= βTV − δI (2)

dV
dt

= pI − cV (3)

where T denotes the target cells or the number of susceptible cells; I denotes the number of
cells where the infection has occurred; and V denotes the number of viruses. This simplified
model is wildly used to study the virus dynamics upon infection. While admitting its
advantages in recapturing the viral dynamics in virus infection, concerns about this model
are proposed. The limitation of this model originates from the absence of a connection
to the body’s immune response. The main driving force behind eliminating the virus is
activating the adaptive immune response by lymphocyte B and T cells, not the depletion
of the susceptible cells. Therefore, the estimation based on those depletion mechanisms is
skeptical, as it would return a much smaller initial susceptible cell number. The number of
susceptible cells should be higher than the number estimated by several orders. Mandating
the estimation would inevitably lead to underestimating T0, where T0 represents the
number of initial susceptible cells. The T0 term is similar to the initial number of susceptible
people when the SIR (susceptible, infection, recovery) model is used to predict the epidemic
trend [22,23]. The estimated T0 values vary greatly due to the differences in the fitting data,
which significantly reduces their reliability.

The second set consists of models that consider the immune response, where the clas-
sical expression of the model considering antibody binding is displayed as follows [24–30]:

dT
dt

= χD − βTV (4)

dI1

dt
= βTV − kI1 (5)

dF
dt

= ωV − αF (6)

dD
dt

= δI2 − χD (7)

dI2

dt
= kI1 − δI2 (8)

dA
dt

= f V − hA (9)

dV
dt

=
p

1 + ε1F
I2 − cV − γ TV − κAV (10)
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where T denotes the overall number of susceptible cells; A denotes the number of antibodies;
V denotes the amount of virus; D denotes the number of dead cells; F denotes the amount
of interferon in nonspecific immunity; I1 denotes the number of cells infected in class 1
(cells infected without viral multiplication); and I2 denotes the number of cells infected in
class 2 (cells infected with viral multiplication). This model effectively combines antibody
dynamics with viral changes. It performs well in recapturing and explaining the dynamic
interaction between the virus and the host immune system. However, the kinetic properties
of antibodies have not been explicitly integrated into this model. Different antigen-binding
antibodies will exhibit different kinetics, and this diversity in binding behavior is an
essential factor influencing the host-pathogen interaction. The difference in the antibody
binding capacity would lead to a significant variation in the virus dynamics. However, this
classical model does not explicitly formulize the antibody term.

Although mathematical modeling of antibody kinetics has been significantly advanced
and developed in recent years, there is still great potential to be further improved. Therefore,
a new mathematical model of antibody dynamics is proposed by us. This model displays
good fitness in explaining some puzzling phenomena, especially in the case of SARS-CoV-2
infection, with improvements to previous models in several aspects.

First: New immunology responses are formulized and integrated into this model
based on biochemistry principles. We explicitly formulize the virtual effect of antibodies on
eliminating pathogenic microorganisms while noticing the stimulation effect of pathogenic
antigens on antibodies [31]. This positive feedback stimulation is explicitly represented in
a mathematical function as well.

Second: The dynamic model developed hypothesizes that environmental factors
maintain memory cell levels. The natural attenuation of antibody levels can be recaptured
in this model. Furthermore, their discontinuous decay trend can also be captured with the
introduction of environmental antigens. Antigen-like substances in the environment can
maintain a specific concentration of B cells or T cells at a certain level. This can explain why
some vaccines can provide lifelong protection.

Third: The antigen–antibody binding process is represented as reversible in our model.
Instead of using the equilibrium constant, the binding dynamic is described in both the
binding and reverse dissociation reactions.

Based on the basic principles of immunology, we established the theoretical hypoth-
esis of antibody kinetics. The results and methods sections illustrate specific principles
and rationales in detail. In the end, this antibody kinetic model proposes some possible
mechanisms underlying some real-world scenarios:

I. How are memory cells maintained?
II. How does our immune system screen for antibodies with a strong binding affinity?
III. Why do people who get influenza and other vaccines have a lower mortality rate

from SARS-CoV-2?
IV. How can we effectively calculate the duration of protection of a specific antibody?
V. Why are some recovered patients retested as positive cases without infections from

other people?
VI. Why do vaccinations show considerable differences in protection efficiency?
VII. How can we improve the protective efficiency and duration of vaccines?

2. Materials and Methods
2.1. Mathematical Representation of the Antibody Production Process

A simple mathematical representation of the immune response is described in the
diagram in Figure 1 below.
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Figure 1. A simple diagram of host-virus interaction.

Here, x denotes the number of antibody–antigen (virus) complexes, y denotes the total
number of antibodies, and z denotes the number of viruses. Six processes are displayed
in our model. The first reaction represents the virus’s proliferation or replication with a
reaction constant k1. The second reaction represents the binding reaction between virus and
antibody, with a forward reaction constant k2 and reverse constant k−2. The third reaction
represents removing the antibody–virus complex with a reaction constant k3 with the help
of natural killer (NK) cells [32]. The fourth reaction represents the induction of a new
antibody by the antibody–virus complex with a kinetic constant k4. In immunology, those
virus–antibody complexes are on the surface of B-cells since the antibodies are initially
produced by B-cells and will attach to the plasma membrane of B-cells. Those complexes
would further bind to the helper cells because the antibody has another structure binding
region toward those receptors. Those helper cells will present the antigen part, a virus
in this case, to the T-cells. The physical placement should be such that B-cells bind to
those helper cells and further present themselves close to T-cells. The T-cells will handle
those antigen substances; if those substances are not self-originated, they will secrete signal
molecules to promote the proliferation or division of B-cells that attach to them. Therefore,
B-cells finally proliferate, along with the antibodies their B-cells generate. The fifth reaction
represents the degradation of the virus with a constant k5. The sixth reaction represents the
degradation of antibodies with a rate constant k6.

The differential equations based on those reactions are derived as below:
We established the following equations to represent the proliferation process of antibodies:

dx
dt

= k2yz − k−2x − k3x, (11)

dy
dt

= k−2x − k2yz + k4x − k6y, (12)

dz
dt

= k−2x − k2yz − k5z + k1z. (13)

2.2. Mathematical Modeling including Environmental Antigens

The equations introduced in Section 2.1 describe antibody dynamics in the presence of
the associated virus. In reality, other environmental antigens can induce antibody coupling
and production. To further account for this possibility, we add a new set of equations as
shown in Figure 2 below:
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Where p denotes antigen-like substances in the environment that are supposed to
be constant; q denotes antibodies bound to antigen-like substances in the environment.
Reaction 7 represents the binding reaction between antibodies and environmental antigenic
substances with a forward constant k7 and a reverse constant k−7. Reaction 8 represents the
removal of the antibody–antigen complex q with a reaction rate k3. Reaction 9 represents the
induction of a new antibody by q. Therefore, a new set of equations is derived as follows:

dx
dt

= k2yz − k−2x − k3x, (14)

dy
dt

= k−2x − k2yz + k4x − k6y − k7 py + k−7q + k4q, (15)

dz
dt

= k−2x − k2yz − k5z + k1z, (16)

dp
dt

= 0, (17)

dq
dt

= k7 py − k−7q − k3q. (18)

The antibody level will eventually drop to zero based on the first model described
in Equations (11)–(13). Since the decaying coefficient k6 is more significant than zero, the
antibody will finally fade away quickly. However, as we all know, some antibodies can
persist in the human body for a long time and provide lifelong protection. It forms the
basis for a vaccine. Therefore, “environmental antigen-like substances” are introduced into
the second model. They could be food-resourced, air-resourced, or even self-resourced.
The presentation of those substances to T-cells would give weak signals to proliferate the
memory B-cells or T-cells. The detailed physical background is introduced in Section 3.1.

2.3. A Simplified Model Simulating the Proliferation of Antibodies with Different Binding Kinetic
Characteristics by the Immune System

dxi
dt

= Kionyiz − Kioffxi − k3xi, (19)

dyi
dt

= Kio f f xi − Kionyiz + k4xi − k6(yi − wi), (20)

dz
dt

= ∑n
i = 1(Kioffxi − Kionyiz)− k5z + k1z. (21)

Here, xi denotes the amount of the i-th antibody that binds to the viral antigen, yi
denotes the total number of the i-th antibody, wi is a constant that indicates the threshold
for maintaining the i-th antibody by the antigen-like substances in the environment. Kion
denotes the binding constant of the free antibody i and the viral antigen. Kioff denotes the
reaction coefficient for the dissociation reaction of the antibody i viral complex. After we
finish the second model, we want to show how our immune system selects good-binding
antibodies. Therefore, we introduce the third model. The third model is a combination of
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the first model and second model. The difference between the third and second models
is that they do not explicitly integrate environmental factors. Since each kind of antibody
will have a corresponding environmental counterpart, it would be too complicated if
we explicitly integrated all of them. Therefore, we use a simplified term wi to represent
the minimal antibody level threshold maintained by its corresponding environmental-
antigenic substances. Each antibody has different binding kinetics toward the virus. The
modeling result demonstrates the dynamic process by which our immune system selects
those fast-binding antibodies over slower ones.

The above three models are numerically solved by MATLAB using the ode15s func-
tion [33].

3. Results
3.1. Physical Mechanism behind This Approach and the Underlying Relationships among the
Three Models

Our antibody model is based on the following four rationales.
The first is the stimulus of the antibody–antigen complex on the regeneration of its

corresponding antibody. The T-cells will induce the proliferation of the B-cells through the
antigen-presenting process. Eventually, the corresponding antibody can be reproduced
following the magnification of antibody-generating B-cells [34]. Although this regulation is
critical in initializing the adaptive immune response, it was not explicitly represented in
previous studies [24–30]. The k4x term in Equation (12) expresses this positive feedback
regulation. Integrating feedback regulation into the classical representation of biological
reactions allows us to simulate reactions more comprehensively. Specifically, when we
refer to the concentration alternation of antibody and virus, the change of antibody in
Equation (12) should be k−2x − k2yz − k6y, if we use chemical reactions to describe it.
However, in this way, we ignore the virus–antibody complex’s stimulation of the regen-
eration of antibodies. In immunology, those virus–antibody complexes will proliferate
the corresponding antibody with the help of T-cells after an antigen presentation [35].
Therefore, we use an external k4x term to model this positive feedback effect.

The second is the kinetic relationship between antibodies and antigens. This antigen–
antibody binding is represented in the second process in the first diagram. The model is
endowed with more dynamic characteristics with the introduction of a reversible reaction.

The third is the pernicious effect of antibodies on antigens, which is expressed as the
−k3x term in Equation (11). It has been recognized that the antibody–antigen complex can
be efficiently removed with the help of functional immune cells such as NK (natural killer)
cells [32].

The fourth is the introduction of environmental antigenic substances. We hypothesize
that the environmental antigen contributes to the maintenance of memory cells. The
declination of induced neutralizing antibodies is ubiquitous in almost all virus infections,
such as Zika [36], Dengue [29], and SARS-CoV-2 [37]. However, this declination is always
discontinuous after their concentration drops to a stable level. This is contributed by
the existence of memory cells [38]. Immunologists regarded the long-lasting B-cells or
T-cells as “memory cells.” Experiments gradually demonstrated that although the so-called
“memory cells” are some specific forms of immune cells [39,40], they have similar half-
lives as normal CD8+ cells [41]. Therefore, maintaining antibody levels in “memory cells”
should be explained as a state of equilibrium between decay and regeneration. We suppose
this final equilibrium state derives from environmental antigen-like substances. Due to
the presence of cross-interaction [42], the neutralizing antibody, no matter how specific
it is, could have weak binding with other macromolecules in the solution. Those weak
binding partners are defined as “environmental antigen-like substances” in our model;
they could be food-resourced, air-resourced, or self-resourced. The presentation of those
substances to T cells would give weak proliferation signals to neighboring cells. Therefore,
a lower bound for specific neutralizing antibodies is present due to the positive feedback
regulation of environmental antigenic substances. This hypothesis could explain why some



Viruses 2023, 15, 586 7 of 24

antibodies persist in the body at detectable levels for a long time. We propose that the
presence of environmental antigenic substances allows us to produce lifelong immunity to
some pathogens.

The antibody level will eventually drop to zero based on the first model described
in Equations (11)–(13). This implies that the antibody would finally fade in a short time.
However, some antibodies can persist in the human body for a long time and provide
lifelong protection, which is why we use vaccines. Following the last rationale, a second
model is constructed to integrate environmental antigenic substances. The protein sequence
of environmental antigen-like substances is ordinarily close to our own body and less
antigenic, leading to a weak T-cell proliferation signal. An equilibrium state can be reached
when the decay of memory cells is equal to their new synthesis. A good fit between the two
scenarios further improves the reliability of this model. The first is that those environmental
antigen-like molecules would help maintain the antibody at a certain level. This scenario
can be easily recaptured in our second model. Our model can also explain the second
scenario: environmental antigen-like substances cannot naturally elevate the antibody
level to the final equilibrium concentration. Environmental antigenic substances can only
help maintain the antibody level instead of triggering the increment. An exception is the
allergy reaction, which happens under extreme conditions with the massive presence of
environmental antigenic substances, especially when they have a strong binding affinity.
Our second model can also recapture this phenomenon by increasing p and k7 values.

Although the absolute equilibrium of specific antibodies is challenging to simulate
mathematically, the presence of environmental antigen-like substances dramatically atten-
uates the antibody decay rate. The simulation results are shown in Figure 3. The decay
rate of antibodies is closely related to the concentration of the antigen-like substance in
the environment. The high concentration of the environmental antigenic substance would
lead to a slow decay speed. The antibody decay rate is significantly slower (shown in
the solid yellow curve) when there are massive environmental antigen-like substances,
as shown in Figure 3A. The antibody level attenuation is also significantly influenced
by the binding kinetics between environmental antigen and its corresponding antibody.
The antibody decay rate is significantly slower (shown in the dashed yellow line) when
k3 sets a considerable value in Figure 3B. It represents a better binding kinetics between
environmental antigen-like substance and its corresponding antibody.

It is common sense that environmental antigenic substances alone can hardly trigger
antibody proliferation without pathogenic antigens. Numerical simulations also indicate
that antigen-like substances in the environment hardly stimulate antibody proliferation.
One scenario in which environmental antigen-like substances do not trigger antibody
growth is recaptured in Figure 4A. The insufficient capacity of environmental antigens to
induce antibody magnification derives from their poor binding affinity toward antibodies.
In most cases, the presence of antigen-like substances in the environment will not directly
stimulate antibody proliferation but will significantly attenuate the decay rate after antibody
proliferation, as shown in Figure 4A. The situation can be altered when the antigen-like
substances are sufficient or their binding affinities toward some antibodies are powerful.
Antigen-like substances in the environment can also stimulate antibody levels, as shown in
Figure 4B. This might help elucidate the underlying mechanism of allergy. A significant
difference between environmental antigen-like substances and pathogenic antigens is that
the former are deficient in self-replication. However, their concentrations are maintained at
a relatively stable level due to constant replenishment from the environment.
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Figure 3. Antibody and virus dynamics modeling using different p(0) value. p(0) represents the
concentration of environmental antigens. The virus-antibody dynamics are modeled under different
environmental antigen concentrations (A) and different environmental antigen attributes (B). As
shown in (A), the antibody decay rate is significantly slower (shown in solid yellow curve) when there
is a large amount of environmental antigen-like substances. The parameter set we used is: x(0) = 0,
y(0) = 100, z(0) = 10, p(0) = 1000 or p(0) = 1,000,000, k1 = 0.1, k2 = 1 × 10−5, k−2 = 1 × 10−14, k3 = 1,
k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−8, k−7 = 1 × 10−14. As shown in (B), the antibody decay rate is
significantly slower (shown in solid yellow curve) when k8 sets a large value which corresponds to
a better binding kinetics between environmental antigen-like stuff and its corresponding antibody.
The parameter set we used is: x(0) = 0, y(0) = 100, z(0) = 10, p(0) = 1,000,000, k1 = 0.1, k2 = 1 × 10−5,
k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−8 or k7 = 1.8 × 10−8, k−7 = 1 × 10−14.
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Figure 4. Antibody dynamics modeling with different k7 values. (A) One scenario where environ-
mental antigen-like substances do not trigger antibody growth. As shown in (A), the antibody does
not engage proliferation due to the presence of environment antigen-like molecules. The parameter
set we used is: x(0) = 0, y(0) = 100, z(0) = 0, p(0) = 1,000,000, k1 = 0.1, k2 = 1 × 10−5, k−2= 1 × 10−14,
k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−8, k−7 = 1 × 10−14. (B) One scenario where environ-
mental antigen-like substances do trigger antibody proliferation. As shown in (B), the antibody does
engage proliferation due to the presence of environment antigen-like molecules. The parameter set
we used is: x(0) = 0, y(0) = 100, z(0) = 0, p(0) = 1,000,000, k1 = 0.1, k2 = 1 × 10−5, k−2 = 1 × 10−14,
k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−7, k−7 = 1 × 10−14. The antibodies might significantly
increase when the environmental antigenic substances bind strongly with them. This always induces
allergic reactions.
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3.2. Characteristics of Immune Response after Infected with Different Virus Strains

For the same type of virus, highly virulent strains have high replication activity [43].
Infection with highly virulent variants will lead to a prominent peak viral load and can
exhibit strong transmissibility per time unit. However, its infection cycle is typically short.
These infection dynamics are defined as acute infections in clinical performance [44]. The
cytokine storm induced by a quickly elevated antibody level is responsible for the acute
response [45]. Weak virulent strains have the opposite behaviors, which could lead to
chronic infection in clinical settings. It does not typically induce a quick immune response,
resulting in a more extended infection cycle. All those situations can be recaptured using
our model, which is displayed in Figure 5.
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Figure 5. Different immune behaviors toward variants with different replication activities. The
parameter set we used is: x(0) = 0, y(0) = 100, z(0) = 10, p(0) = 1000, k1 = 0.06 or 0.1, k2 = 1 × 10−5,
k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−8, k−7 = 1 × 10−14. As shown in this
figure, the antibody response is milder when the host is infected by a less toxic strain (smaller k1

value 0.06). The peak viral load is also less compared to its high toxic counterpart (bigger k1 value
0.1). This indicates that even for the same virus infection, the immune response would vary greatly
due to the differences in viral replication capacity of different variants.

It can be noticed from Figure 5 that, under the exact initial viral invasion dosage, the
infection caused by a less virulent strain has a more extended latency phase. Its peak viral
load is significantly lower than a more virulent strain. The maximal level of the yellow
line is significantly lower than that of the dashed blue line, indicating that the antibody
production induced by the weak virus infection is significantly lower than that induced by
a virulent strain. It is also reflected in Figure 5 that the infection cycle caused by the weak
virus is remarkably longer than its strong counterpart.

3.3. How the Immune System Screens for Highly Binding Antibodies

Our immune system can automatically detect suitable binding antibodies and se-
lectively proliferate them. Simulating the antibody screening process by mathematical
modeling remains challenging for computational biology researchers. This study provides
a preliminary attempt to elucidate this process. Our model suggests a strong correlation
between the proliferation potential of a specific antibody and its binding kinetics. An-
tibodies with fast binding rates would obtain rapid proliferation, while those with low
binding rates proliferate slower. Thus, the antibodies with fast binding rates can grow
faster and dominate in the final antibodies’ composition, although various antibodies are
triggered to proliferate during infection. Generally, antibodies with fast binding capacity
have a more robust binding affinity. However, this relationship is not absolute. Binding
affinity is the ratio of forward binding to reverse dissociation [46]. Infected individuals
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would have antibodies with good binding kinetics after infection [47,48]. Those antibodies
display individual differences in binding affinity, with some antibodies having relatively
stronger binding affinity [49]. We propose that the dominant factor affecting the efficiency
of antibodies is not their absolute binding affinity Kd but the binding reaction constant k2.
Both k2 and k2 have physical meaning in Equation (12): k2 stands for the forward reaction
constant, while k2 represents the reaction constant of the reverse one. The dissociation
constant Kd = k2/k−2 can be used to evaluate the concentration of each component in
an equilibrium state. Kd can also be transformed into the binding energy between those
two macromolecules and thus is an important indicator that describes the binding affinity
between two molecules [50].

As shown in Figure 6, the antibody with the fastest binding rate (solid blue line in this
figure) demonstrates a maximal proliferation magnitude. This selection will eventually lead
to a high proportion of fast-binding antibodies in the final antibody composition. Although
these five antibodies have the same binding affinity of Kd = 1 × 10−9, their proliferations
vary because of the differences in their binding speeds, and the antibody with the faster
binding rate will gradually dominate. This example illustrates that the driving force in
antibody reproduction is its binding speed, not its binding affinity. A different k2 value and
k−2 value is applied to keep the dissociation constant Kd as a fixed number. It is subversive
to claim that the immune system would like to select those fast-binding antibodies rather
than tightly binding antibodies. Experimental researchers always seek an antibody with
an excellent binding affinity [47–49]. However, our model indicates that a solid-binding
antibody might not perform well in preventing reinfection. Its kinetic behavior is more
critical than its static binding affinity.
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Figure 6. Dynamics of different antibodies with different kinetic attributes. The parameter sets we
used are: x(0) = 0, y(0) = 1, z(0) = 1, w = 1, k1 = 0.1, k2 = 1 × 10−5, k−2 = 1 × 10−14, k3 = 1, k4 = 2,
k5 = 0.02, k6 = 0.02, for antibody 1; k2 = 9 × 10−6, k−2 = 9 × 10−15 for antibody 2; k2 = 8 × 10−6,
k−2 = 8 × 10−15 for antibody 3; k2 = 7 × 10−6, k−2 = 7 × 10−15 for antibody 4; k2 = 6 × 10−6,
k−2 = 6 × 10−15 for antibody 5. It is demonstrated in this figure that the faster-binding antibodies
engage amplification at a greater magnitude. In this way, the immune system selects those specific
neutralizing antibodies.



Viruses 2023, 15, 586 11 of 24

3.4. High Concentrations of Weakly Binding Antibodies Can Provide Effective Protection

It has been statistically discovered that vaccination with other vaccines, such as the
influenza vaccine, can also provide some degree of protection against SARS-CoV-2 [51–54].
The third model is utilized to explain this phenomenon. Those parameters used in Figure 7
are defined in Section 2.3.
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Figure 7. High concentrations of weakly binding antibodies can provide effective protection. A plot
of the inhibitory capacity of a specific concentration of weakly binding antibodies against infection
is presented. Two types of antibodies are presented in this figure: antibody 1 has a strong binding
capacity (K1on = 1 × 10−5) while antibody 2 has a relatively weak binding capacity (K2on = 5 × 10−6).
Two scenarios are simulated: both antibodies have low initial concentrations in case 1; weakly
binding antibody has a high initial level in case 2. The parameter sets we used are: x1(0) = x2(0) = 0,
y1(0) = y2(0) = 1, z(0) = 1, w1 = w2 = 1, K1on = 1 × 10−5, K1off = 1 × 10−14, K2on = 5 × 10−6,
K2off = 1 × 10−14, k3 = 1, k4 = 2, k5 = k6 = 0.02, k1 = 0.1 for case 1; y2(0) = 100 for case 2. It can be seen
that the peak viral load and antibody level are significantly lower in case 2, which corresponds to a
milder immune response. It indicates that the elevated weakly binding antibodies could also provide
protection against severe infection.

Figure 7 illustrates that the presence of weakly binding antibodies can produce an
inhibitory capacity against the virus. The concentration of the weakly binding antibody
increases from one in case 2 to a thousand in case 1. The maximal value of the dashed
yellow line is smaller than that of the solid blue line, indicating a more substantial inhibition
effect on virus reproduction. It can be noticed that the maximal level of the solid-binding
antibody also decreases with the enhanced initial level of the weakly binding antibody.
A particular concentration of weakly binding antibodies can simultaneously inhibit the
proliferation of strongly binding, efficient antibodies in the host.

This example suggests that vaccinated people will always have better protection
against reinfection than non-vaccinated people, regardless of the mutation of the virus.
However, when we aim to stimulate the production of high levels of firmly bound an-
tibodies through vaccination, the presence of weakly bound antibodies might interfere
with this process. The vaccination effect on each individual might vary due to the weak
antibody inference. Some individuals can induce sufficient fast-binding antibodies, while
others cannot, due to differences in their initial antibody library. The simulation results
indicate antibody interferences might be greatly enhanced in people vaccinated against
other viruses. This explains why some vaccines may occasionally lead to a higher overall



Viruses 2023, 15, 586 12 of 24

mortality rate [14,55]. Keeping a relatively high antibody level for a specific pathogen, such
as SARS-CoV-2, will shelter more people from infection. However, it might also have the
side effect of decreasing the efficiency of other vaccines. The long-term effect of repeated
booster vaccinations on SARS-CoV-2 needs a comprehensive study.

3.5. Calculation of the Protection Time Brought by Natural Infection

The prediction of protection time remains to be elucidated using a computational
approach. The calculation of protection time is presented in this section with the application
of a numerical approach. Figure 8 illustrates how we calculate the protection time upon
natural infection. Details about how we calculate the protection time are described below:
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Figure 8. An illustration of protection time calculation. The parameter set we used is: x(0) = 0,
y(0) = 100, z(0) = 10, p(0) = 10,000, k1 = 0.1, k2 = 1 × 10−7, k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02,
k6 = 0.02, k7 = 1 × 10−8, k−7 = 1 × 10−14. Incubation time is calculated as the time interval between
virus entrance and the production of antibodies. The viruses would engage a proliferation earlier
than the antibodies. The patient is still asymptomatic even though the virus has reached a high level.
Symptoms such as fever would appear when the antibody–virus complexes reach beyond a specific
threshold. The second infection is marked with a green arrow. It can be seen in this figure that a
second infection could occur when the IgG level drops below a certain level. It does not necessarily
require a zero IgG level when a breakthrough infection happens.

First, we model the dynamic behaviors of all components (virus, virus–antibody
complex, antibody). An initial number is assigned to each component before the first
infection. For instance, z(0) = 1 stands for one invading virus. The virus number would
vanish to zero soon after the antibody booms. The virus number dropped to zero after the
166th simulation time point, as illustrated in Figure 8.

After the antibody completely removes the virus, the second invasion is performed.
The initial virus number would be manipulated to a non-zero integer at each following
time unit, starting from 166 to 800. The early invasion would not lead to virus proliferation
because the antibody level at that time was still high. However, the protection effect
will gradually fade as the antibody level decreases. The earliest invasion that could lead
to a virus proliferation is at the 326th time point in Figure 8. It is a time point when a
breakthrough infection can happen. The time between the first infection and this time point
is the protection duration brought by the first infection. Therefore, the protection time
can be roughly estimated from 166th to 326th. We can also notice that the maximal viral
load in the second infection is significantly lower than in the first infection. This indicates
that the reinfection or breakthrough infection typically has a milder symptom than the



Viruses 2023, 15, 586 13 of 24

first, although it will occur with a higher chance as time goes on. The protective effect will
decrease as time increases, as shown in Figure 9 in the next section.
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Figure 9. Protection time calculation when the antibody has a specific binding kinetic constant k2. It can
be inferred from this figure that a fast-binding neutralizing antibody would provide a longer protection
time when we compared (A) with (C). The protection time against severe infection can also be prolonged,
given the faster binding kinetics when comparing (B) to (D). (A) Protection time calculation when the
antibody has a weak binding kinetic constant k2 = 1 × 10−6. The parameter set we used is: x(0) = 0,
y(0) = 100, z(0) = 10, q(0) = 1 × 106, k1 = 0.1, k2 = 1 × 10−6, k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02,
k6 = 0.02, k7 = 1 × 10−9, k−7 = 1 × 10−14. (B) Maximal virus load at different infection points when
the antibody has a binding kinetic constant k1 = 1 × 10−6. The parameter set used is the same as (A).
(C) Protection time calculation when the antibody has a strong binding kinetic constant k2 = 1 × 10−5.
The parameter set we used is: x(0) = 0, y(0) = 100, z(0) = 10, q(0) = 1 × 106, k1 = 0.1, k2 = 1 × 10−5,
k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02, k7 = 1 × 10−9, k−7 = 1 × 10−14. (D) Maximal virus
load at different infection points when the antibody has a binding kinetic constant k2 = 1 × 10−5. The
parameter set used is the same as (C).

3.6. Factors Affecting the Duration of Antibody Protection: Concentration of the Environmental
Antigen-like Substance, Viral Replication Capacity, and Antibody Binding Kinetics

Based on Equation (16), the virus will magnify itself when the k−2x − k2yz − k5z + k1z,
term is larger than zero. The analytic solution on the reinfection possibility is difficult to
derive, although the antibody level and the virus replication capacity directly influence
this term. A high concentration of environmental antigenic substances p and an excellent
binding kinetic k7 can help maintain the antibody at a relatively high level, thus providing
an extended protection time. Meanwhile, the antibody kinetic features could also greatly
influence the protection time, which is shown in Figure 9. A lifelong protective effect can
happen when a virus has a weak replication capacity (small k1 value), a high concentration
of environmental antigen-like substances (large p-value), and a fast-binding antibody with
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an enormous k2 value. Typical examples of this category are the smallpox virus [4], tetanus
bacillus [56], and so on. In contrast, other viruses, such as influenza and SARS-CoV-2,
may not be able to trigger a super-long protection time [5]. Meanwhile, for influenza and
SARS-CoV-2 infections, there is a considerable variation in the protective time after natural
infection or vaccination [57,58]. This variation is mainly attributed to the difference in their
corresponding antibody kinetics.

As claimed in the previous section, the binding kinetic constant k2 is much more
important than the binding affinity Kd. Figure 9 illustrates how k2 influences the protection
time in different infection cases.

The second infection time is marked in Figure 9A, which starts around the 275th time
unit. The protection time can be roughly estimated to be between 125th and 275th time unit.
The protection time is significantly extended (100th to 1080th time unit) in Figure 9C when
a better binding antibody is introduced. A virus loading threshold for the severe case is
arbitrarily set as 6.4 × 105 marked by the red arrow in Figure 9B. The protection time against
severe infection can be derived based on Figure 9B,D, which is the time interval between
those two green lines. Figure 9D demonstrates that the severe infection would happen after
the 975th time unit with the same severe threshold. The protection time can be roughly
estimated to range from 125th to 975th time unit. This protection phase is much longer
compared to Figure 9B. This example demonstrates that an excellent binding antibody will
protect people longer than the weak one. It indicates that the protection time brought by
infection or vaccination could significantly vary for different individuals. The primary
reason lies in the differences in the binding kinetics of antibodies–virus interaction. Another
important discovery in this modeling is that people who generate suitable antibodies with
fast binding kinetics rarely display significant symptoms in the first infection, which can
be reflected in the smaller virus peak loading amount in the first infection in Figure 9C
compared to Figure 9A. It is suggested that those fast-binding antibodies typically exist
in patients without intense infection symptoms. Repeated vaccination might be limited
in reshaping the composition of the final antibody reservoir, i.e., it does not significantly
alter the binding activity of the antibodies. Therefore, targeted improvement of antibody
binding activity against certain viruses is the key to extending vaccine protection in the
long term. The heterogeneity of the individual antibody library might cause significant
differences in the binding activity of antibodies to the same viral infection or vaccination,
leading to a significant variation in protection duration. Therefore, we may need to change
the vaccination strategy. Vaccination should induce the production of antibodies with
high binding activity instead of a random incitation. The targeted induction of specific
antibodies using gene editing provides a potential solution [59–61].

3.7. Parameter Estimation in Real Scenario

According to the data from clinical experiments, we can further fit the specific param-
eters to obtain the dynamic characteristics of antibodies within certain populations. The
core content of this model is to accurately simulate the trend of mutual change between
antibodies and viruses, so it is not required to add units to the mathematical model. By
adjusting different parameters, especially the mean, and variance of the parameters, we can
get the characteristics of the antibody dynamics behavior of a population. By comparing the
available statistical data, we can estimate the distribution of antibody dynamics parameters
of the whole population. Although these parameters have no direct physical meaning,
they can more accurately reflect the decline of immunity in different individuals and the
possibility of reinfection at different times.

We treat the concentration of the environmental antigenic substance as a constant
value. The primary alternation is the difference in the binding capacity of the antibody in
different individuals, which is defined as k2 in our model. The binding kinetic between
the environmental antigenic substance and the antibody, defined as k7 in our model,
varies among different people. The antibody kinetic performance characteristics of the
population obtained using the above parameter combination are shown in Figure 10A.
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It was demonstrated that IgG antibody levels to the SARS-CoV-2 nucleocapsid waned
within months, according to six months of data from a longitudinal seroprevalence study
of 3217 UK healthcare workers [62]. The simulation result has a good match with this
clinical report. The main factor determining the peak antibody concentration is k2, while
the driving force determining the antibody waning speed comes from k7. The change in the
overall antibody level of the population over time is shown in Figure 10A, and the change
in the overall protective efficacy is shown in Figure 10B. According to this model, we can
judge that in the absence of virus mutation, the overall protective efficacy of an initial 100%
efficacy of the COVID-19 vaccine in a human population (10,000 human simulations) would
drop to 97.21% after 100 days, 65.44% after 150 days, 39.28% after 200 days, and 28% after
240 days. The simulation results in Figure 8B are consistent with the clinical data on vaccine
effectiveness. Based on a cohort study among US veterans, for the period 1 February 2021 to
1 October 2021, vaccine effectiveness against infection (VE-I) declined over time (p < 0.01 for
time dependence), even after adjusting for age, sex, and comorbidity. VE-I declined for all
vaccine types, with the most significant declines for Janssen, followed by Pfizer-BioNTech
and Moderna. Specifically, in March, VE-I was 86.4% for Janssen, 89.2% for Moderna, and
86.9% for Pfizer-BioNTech. By September, VE-I had declined to 13.1% for Janssen, 58.0% for
Moderna, and 43.3% for Pfizer-BioNTech [63]. According to a retrospective cohort study on
the effectiveness of the mRNA BNT162b2 vaccine, effectiveness against infections declined
from 88% (95% CI 86–89) during the first month after complete vaccination to 47% after five
months. Among sequenced infections, vaccine effectiveness against infections of the delta
variant was high during the first month after complete vaccination (93%) but declined to
53% after four months [64]. Similar trends were observed in the cohort study conducted in
Qatar [65].

3.8. Recovered Patients with Retest Positive for SARS-CoV-2

In SARS-CoV-2 infections, we noticed some rare occurrences of reinfections by patients
themselves [66]. This recurrent positivity is not caused by the invasion of environmental
viruses but by the re-proliferation of internal viruses [67]. The self-reinfection may lead
to a second epidemic outbreak, making it more challenging to prevent and control the
epidemic. The scenario of self-reinfection is a frequent phenomenon in virus infection.
Many people suffer from recurrent respiratory infections [68]. It is also typical when HBV
or HCV infection occurs [69]. Our model suggests a possible mechanism underlying this
phenomenon. The patient will experience reinfection under certain parameter sets, as
shown in Figure 11.

This example above shows that it is difficult to completely eliminate a specific pathogen
in the presence of fast-binding antibodies. However, the peak viral load during the infection
is small, as shown in the solid red line in Figure 11A. This will lead to a relatively mild
symptom. The peak viral load in Figure 11A is significantly lower than the typical infection
cases illustrated in Figures 8 and 9.

The low virus load does not have an intense stimulation on antibody production.
Therefore, it is impossible to eliminate the virus from the body due to insufficient antibody
quantity. The virus will regain the opportunity to proliferate when the antibody level
decreases later. The patient may display a positive nucleic acid test result again. Multiple
virus resurgences are marked in the dashed green cycle after the first infection, as displayed
in Figure 11A. However, the infections in those cases are generally less symptomatic and
even asymptomatic. A more extreme case is a long-term chronic infection, such as the
appearance of a long-positive patient [70]. Like self-reinfection, an equilibrium state can be
reached if the antibody–antigen interaction is moderate in those long-positive patients. In
this case, pathogens would not be eliminated but maintained at a relatively stable level,
forming a chronic infection. The low concentration of pathogenic antigens only provides a
limited driving force for promoting antibody reproduction. The antibody and the virus
will remain relatively low for a long time, as reflected in Figure 11B.
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Figure 10. (A) the dynamic behavior of antibodies in the overall population through time. (The blue
zone around mean curve stands for 95% confidence interval). It can be seen that the IgG level would
significantly decline after reaching a peak level. However, its degradation does not follow a simple
mathematical formula. Its descent rate would gradually decline and be maintained at a relatively
stable level after 200 days. (B) The protection performance of antibodies in the overall population
through time. It can be seen in this figure that the protection efficiency of induced neutralizing
antibodies would be maintained at a relatively high level in the first 100 days. Its protection efficiency
would engage a rapid decline after the first three months.



Viruses 2023, 15, 586 17 of 24

Viruses 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 

phenomenon. The patient will experience reinfection under certain parameter sets, as 

shown in Figure 11. 

 

(A) 

 

(B) 

Figure 11. (A) Self-reinfection scenario. The parameter sets we used are: x(0) = 0, y(0) = 1000, z(0) = 

1, w = 1000, 𝑘1  =  0.1,  𝑘2  = 1 × 10−5, 𝑘−2  = 1 × 10−14, 𝑘3 = 1, 𝑘4 = 2, 𝑘5 = 0.02, 𝑘6 = 0.02. Reinfec-

tions are represented as repeated waves in this figure. It indicates that the viruses could re-prolifer-

ate when the antibodies cannot completely eliminate them. The viruses start to proliferate when the 

antibodies drop to a certain level, leading to self-reinfection in this case. (B) Scenario of chronic 

infection. The parameter sets we used are: x(0) = 0, y(0) = 1000, z(0) = 1, w = 1000, 𝑘1 =  0.1,  𝑘2  = 3 × 

10−5, 𝑘−2  = 1 × 10−5, 𝑘3 = 1, 𝑘4 = 2, 𝑘5 = 0.02, 𝑘6 = 0.02. In this case, pathogens would not be elim-

inated but maintained at a relatively stable level, forming a chronic infection. The low concentration 

of pathogenic antigens only provides a limited driving force for promoting antibody reproduction. 

This example above shows that it is difficult to completely eliminate a specific path-

ogen in the presence of fast-binding antibodies. However, the peak viral load during the 

infection is small, as shown in the solid red line in Figure 11A. This will lead to a relatively 

mild symptom. The peak viral load in Figure 11A is significantly lower than the typical 

infection cases illustrated in Figures 8 and 9. 

Figure 11. (A) Self-reinfection scenario. The parameter sets we used are: x(0) = 0, y(0) = 1000, z(0) = 1,
w = 1000, k1 = 0.1, k2 = 1 × 10−5, k−2 = 1 × 10−14, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02. Reinfections
are represented as repeated waves in this figure. It indicates that the viruses could re-proliferate when
the antibodies cannot completely eliminate them. The viruses start to proliferate when the antibodies
drop to a certain level, leading to self-reinfection in this case. (B) Scenario of chronic infection.
The parameter sets we used are: x(0) = 0, y(0) = 1000, z(0) = 1, w = 1000, k1 = 0.1, k2 = 3 × 10−5,
k−2 = 1 × 10−5, k3 = 1, k4 = 2, k5 = 0.02, k6 = 0.02. In this case, pathogens would not be eliminated
but maintained at a relatively stable level, forming a chronic infection. The low concentration of
pathogenic antigens only provides a limited driving force for promoting antibody reproduction.

Pathogenic antigens and environmental antigenic substances all contribute to chronic
inflammation. For chronic infections caused by pathogenic microorganisms, a short-term
boost in antibody levels can be used to accomplish a complete clearance of pathogenic
microorganisms [71]. Chronic infections could permanently disappear or significantly im-
prove after they become acute infections in the clinic. The chronic symptom will disappear
or become invisible after the healing from the acute infection [72]. Conversely, chronic
inflammation caused by environmental factors can be removed by shielding environmental
antigens for a certain period [73]. The blockade of antibody–antigen interaction will de-
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crease the corresponding antibody level, thereby attenuating or eliminating the immune
response. An allergic reaction can be significantly alleviated in the upcoming contact after
this treatment.

4. Discussion

The application of mathematical modeling displays good epidemic forecast capacity
at the population level [22,23,74,75]. Mathematical models are also helpful in quantitatively
elucidating the immune process’s dynamics on an individual level. We are motivated
to develop a new mathematical model that can explicitly model the antibody dynamics
based on those pioneering modeling attempts [17–21,24–30]. A computational antibody
dynamic model is finally proposed, which can help us explain some phenomena mentioned
in the introduction.

I. How are memory cells maintained?

The environmental antigen-like substances maintain memory cells in our model. It
was demonstrated that, in the absence of a pathogen, the environmental antigen could
not directly stimulate antibody proliferation in most cases except in allergic reactions. The
concentration of memory cells is closely correlated to the property and concentration of its
corresponding environmental antigenic substances. Some memory cells against a specific
pathogen can be maintained at a high level for decades. The persistent stimulation by the
environmental antigenic substances, rather than the eternal lifespan, leads to the long-term
existence of those immune memory cells. The existence of super-binding antibodies and
high concentrations of environmental antigens can also trigger allergic reactions.

II. How does our immune system screen for antibodies with solid binding affinity?

Based on the model, antibodies with faster binding kinetics would increase prolifera-
tion. The binding constant is not linearly correlated to the binding affinity. The immune
system tends to select antibodies with fast binding kinetics rather than solid binding
affinity. The underlying mechanism comes from the positive feedback regulation of the
virus–antibody complex. A good binding antibody would lead to a faster generation of
the virus–antibody complex. This complex would further promote the proliferation of its
corresponding antibody.

III. Why do people vaccinated by the influenza vaccine or other vaccines have a lower
mortality rate from SARS-CoV-2 infection?

An interesting phenomenon during the COVID-19 pandemic is that the mortality
rate is significantly lower in people who have received the influenza vaccine and other
vaccines than in their unvaccinated counterparts [51–54]. The non-specific binding antibody
level can be elevated after non-specific vaccination. Although weakly binding antibodies
inhibit the proliferation of firmly binding antibodies in vivo, they can significantly inhibit
virus proliferation and reduce peak viral load. This would lead to a lower mortality
rate and milder symptoms. The potential concerns are also discussed in Section 3.4. A
particular concentration of weakly binding antibodies can inhibit the proliferation of
strongly binding antibodies, as revealed in Figure 7. The rationality of repeated booster
vaccination needs a comprehensive evaluation because it might weaken the immune
response to other pathogens.

IV. How could we effectively calculate the protection duration of a specific antibody?

Concerns are remarkably booming when people realize the protection of the SARS-
CoV-2 vaccine has declined over time. Given the experimental data on viruses and antibod-
ies, the kinetic parameters of this model can be inferred. The protection time of the vaccine
or natural infection can be further deduced. Personalized prediction is also feasible with the
availability of individual antibody behavior. The protection times of different individuals
can be immensely varied, ranging from extraordinarily durable to very transient. Three
factors that influence the protection time are discussed in Section 3.6. The virus’s attributes,
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such as the replication speed, influence the antibody production time. A faster-replicating
virus, for instance, an RNA virus, inclines to have a shorter antibody protection time
after natural infection. Virus immunogenicity against T-cells influences the duration of
antibody protection. Viruses with strong T-cell immunogenicity provide a strong stimulus
for antibody proliferation, exhibiting extended and even lifelong protection. The antibody
binding kinetics also contribute to the difference in its protection performance, as illustrated
in Section 3.6.

V. Why are there cases of self-reinfection?

Self-reinfection prevails in less virulent strains such as the Omicron variant. Our model
provides a plausible mechanism underlying this unusual phenomenon. The individual
might exhibit self-reinfection with the presence of a good binding antibody; repeated
infection can also be displayed when a less virulent strain invades the patient. This can
help explain why Omicron infections are inclined to be asymptomatic and self-reinfect.

An extreme case of self-reinfection is a chronic status in which the individual displays
positive nucleic acid results for a long time. The chronic infection of SARS-CoV-2, together
with other chronic infections, can also be explained by this model. It was demonstrated that
a sub-equilibrium state could be maintained under specific parameter combinations with a
relatively low antibody level, thus exhibiting long-term chronic inflammation. The long-
term chronic infection is maintained by the constantly active (even weakly) antigens, which
can come (i) from the non-coding human genome, where there are, for example, proteins of
ancient viruses such as HER-V that produce antibodies a long time after their passage in the
host genome, providing cross-protection against other infectious agents [76–79]; (ii) from
the V(D)J mechanism of the innate immunity which can also give birth to antibodies with a
large spectrum of actively participating to non-specific defenses against pathogens [80–83];
and (iii) from other vaccines (it is for example known that BCG reprograms the innate
immunity [84]).

VI. Why do vaccinations show considerable differences in protection?

According to our antibody kinetic model, the antibody interference effect is the most
important contributing factor to the differences in vaccine protection time, apart from viral
mutations. Large amounts of interfering antibodies can inhibit the production of high
concentrations of fast-binding antibodies after vaccination, causing a decrease in protection
efficiency and protection period. The antibody reservoir’s heterogeneity in the human
population also influences the generation of those fast-binding antibodies. The presence of
good templates could promote the production of fast-binding mature antibodies after a few
rounds of somatic hypermutation. Those fast-binding antibodies could provide extended
protection. Environmental antigenic substances also influence the protection duration by
influencing the antibodies’ decay rate. Clinical reports [85] have demonstrated that age and
gender are statistically associated with differences in antibody response after vaccination.
The IgG antibodies triggered by the SARS-CoV-2 BNT162b2 vaccine significantly varied
among ages. Young people tend to generate more neutralizing antibodies compared to
their elder counterparts. This mainly reflects a variation in k4 values in our model. A faster
antibody generation capacity, equal to a larger k4 value, would confer a stronger immunity
to younger people. However, it does not guarantee that the protection duration in young
people would be longer than that in older people for each individual. As discussed in
Section 3.6, the antibody attributes, together with environmental antigenic substances,
strongly impact the protection time. Suitable antibodies with fast binding constant k2 and
high concentrations of environmental antigenic substances would prolong the protection
time. The clinical report also indicates that females have stronger immunity than males.
However, this trend is as insignificant as the influences of age. In this study, the forecast is
performed to predict the population’s behavior, which does not consider the influences of
age and gender. A more accurate and specific forecast can be performed in a future study
when we integrate age and gender differences into the model. In this case, a different k4
value would be assigned to each subgroup.



Viruses 2023, 15, 586 20 of 24

VII. How can we improve the protective efficiency and duration of vaccines?

Persistent exposure to massive antigenic substances can boost the neutralizing an-
tibody level in a short period. However, the repeated booster can hardly magnify the
proportion of solid-binding antibodies in the final antibody composition. The targeted
induction of antibodies with excellent binding kinetics could provide prolonged protection
against reinfection. Researchers are paving the way in this direction through gene-editing
techniques [59–61]. Another concern with the constant booster shots is that the antibody
interference might diminish the effectiveness of other vaccines, including the expected
vaccines against massively mutated strains of SARS-CoV-2. Therefore, instead of pursuing
a short-term antibody surge, we suggest that researchers aim to induce antibodies with
fast-binding activity.

Besides providing a quantitative explanation of virus–host dynamics during the infec-
tion cycle, this model has several practical applications. One application is to predict the
evolutionary direction of SARS-CoV-2 mathematically. The relationship between virulence
and transmissibility can be simulated. A delicate equilibrium point that optimizes the trans-
missibility can be numerically obtained. Based on this model, we predict that the virulence
of SARS-CoV-2 might further decrease, accompanied by an enhancement of transmissibil-
ity [86]. The second application is to optimize the vaccine inoculum dose mathematically.
The antigen level, which can be represented as the initial inoculum dose, significantly
influences the vaccine’s efficiency. A low dose might not be able to induce sufficient IgG
to provide durable protection. In contrast, a high dose is more inclined to trigger a high
level of IgG. However, it also has a more substantial adverse effect, representing a high
antibody–virus complex level in this model. The high dose also increases its production
cost. Therefore, a mathematical optimization can be performed to evaluate the optimal
inoculum dose before clinical trials. Thirdly, this study could theoretically pave the way for
future vaccine development. The protection duration of antibodies generated by natural in-
fection is explicitly modeled in this study. The modeling of vaccines is different because the
vaccine, independent of its type, does not replicate but is injected with an extremely high
initial viral concentration. Different vaccines would have a different protection duration
against breakthrough infection. vaccination efficiency is very complicated and generally
weaker than the protection brought by a natural infection. The inactivation process for the
inactivated vaccine would truncate its original structure, especially the epitope spots of
spikes and nucleocapsid proteins. Its efficiency might be less than the mRNA vaccine. The
vaccine based on the viral vector also generated deficient antigens compared to the real
virus. After all, two major factors influence the protection duration of different vaccines: the
peak level of neutralizing antibodies and viral mutations. A large dose of inoculum would
trigger more neutralizing antibodies, leading to more extended protection and stronger
adverse effects caused by the immune response. All vaccines would display weakened
or even zero protection against variants with tremendous mutations due to a reduced k2
value in this model. mRNA vaccine is better than the traditional vaccine because it can
gradually generate realistic antigens. The traditional concept for vaccine development, with
the application of an inactivated virus, viral vector, or mRNA, strictly forbids the use of a
live virus. Our model demonstrated that the attenuated virus with proliferation constraints
(smaller k1 value in our model) could induce the immune response and antibody level
in a milder way (shown in Figure 5). Those attenuated live viruses form a solid basis for
asymptomatic infections [87]. There are at least two remarkable advantages of attenuated
live viruses in future vaccine development. Firstly, since our model demonstrates that
the peak antibody level is independent of the initial virus concentration, a minimal dose
of live viruses could elevate specific IgG to a high level. It is also more infectious than
traditional vaccines. This means a large number of populations can be covered with a few
vaccination attempts. Secondly, despite the unlikely inactivation process, the attenuated
virus is structurally identical to the original virus. Therefore, the specificity of neutralizing
antibodies triggered by those attenuated viruses is the same as that of those induced by
natural infections. As demonstrated by our model, an excellent binding capacity could
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induce a more durable protection time. The safety of those attenuated live viruses can also
be guaranteed based on the principle of RNA replication: truncated mRNA cannot produce
fixed offspring (full genome size).

Nevertheless, we also have to admit that our model has many hypotheses and uncer-
tainties. Furthermore, it still lacks an in vivo experiment data fitting process, while many
of the predictions and theories in the article remain to be confirmed experimentally and
statistically in the future.
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