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Abstract: COVID-19, which broke out globally in 2019, is an infectious disease caused by a novel
strain of coronavirus, and its spread is highly contagious and concealed. Environmental vectors play
an important role in viral infection and transmission, which brings new difficulties and challenges to
disease prevention and control. In this paper, a type of differential equation model is constructed
according to the spreading functions and characteristics of exposed individuals and environmental
vectors during the virus infection process. In the proposed model, five compartments were considered,
namely, susceptible individuals, exposed individuals, infected individuals, recovered individuals,
and environmental vectors (contaminated with free virus particles). In particular, the re-positive
factor was taken into account (i.e., recovered individuals who have lost sufficient immune protection
may still return to the exposed class). With the basic reproduction number R0 of the model, the
global stability of the disease-free equilibrium and uniform persistence of the model were completely
analyzed. Furthermore, sufficient conditions for the global stability of the endemic equilibrium of
the model were also given. Finally, the effective predictability of the model was tested by fitting
COVID-19 data from Japan and Italy.

Keywords: COVID-19 infection; asymptomatic infection/re-positive; environmental vector; stability;
data fitting

1. Introduction

In 2019, an unexplained novel coronavirus disease (COVID-19) suddenly broke out,
which triggered an unprecedented public health crisis in the world. On 11 March 2020, the
World Health Organization (WHO) declared COVID-19 as a global pandemic. COVID-19
is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) [1]. SARS-CoV-2 is regarded as the third zoonotic coronavirus emerging
in the current century, after SARS-CoV in 2002 and the Middle East respiratory syndrome
coronavirus (MERS-CoV) in 2012 [2,3]. Common signs of COVID-19 infection include
respiratory symptoms, fever, cough, shortness of breath, and difficulty of breathing, and
in more serious cases, it can lead to pneumonia, severe acute respiratory syndrome, renal
failure, and even death due to alveolar damage, posing a serious threat to human life [4,5].
Among the low-risk people who died of COVID-19, 70% of them had one or more organ
dysfunctions within 4 months of the initial symptoms of COVID-19, and experienced organ
damage, fatigue, muscle weakness, difficulty of sleeping, anxiety, or depression after the
acute phase [6,7]. On a global scale, as of 24 May 2022, countries around the world have
reported more than 500 million confirmed cases of COVID-19 to the WHO, including
6.2 million deaths cases [8].

It is encouraging that in the past two years, with the joint efforts of scientists from
many countries, a series of important research achievements have been made in the field of
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drugs for COVID-19 treatment, improving the effectiveness of vaccines, which have greatly
contributed to protecting people’s health and lives [9,10].

In particular, differential equations and statistics have been widely used to construct
various types of compartmental models and make rapid and effective predictions about
infection trends, epidemic patterns, and key factors in the spread of infectious diseases. In
addition, mathematical models based on differential equations provide a theoretical basis
and optimal strategies for the prevention and treatment of infectious diseases [11–27].

It is known that environmental vectors play an important role in virus infection and
transmission, and bring new difficulties and challenges to the prevention and control
of the disease. For example, a study reviewing 22 types of coronaviruses revealed that
viruses such as SARS-CoV, SARS-CoV, MERS-CoV, and endemic human coronaviruses can
persist for up to 9 days on inanimate surfaces such as metal, glass, or plastic [28]. Another
experimental study found that SARS-CoV-2 can be detected on aerosols for up to 3 h, on
copper for up to 4 h, on cardboard for up to 24 h, and on plastic and stainless steel for up to
3 days [29]. Moreover, SARS-CoV-2 can also be detected in domestic wastewater [30,31]. In
recent years, many scholars have conducted extensive research on infectious disease models
with media effects [32–40]. In addition, many scholars have considered the possible factor
of re-positives and designed a new model based on the traditional SEIR-type to analyze
the spread of the epidemic [41,42], which can also be seen in previous studies [43–50].
According to previous studies, re-positives and environmental vectors significantly impact
COVID-19 dynamics and evolution, and need to be investigated widely in order to uncover
the strength of disease severity and infectiousness. It has not yet been extensively explored
using mathematical modeling studies. Therefore, it is necessary to use differential equation
modeling methods to help understand the mechanism of environmental vectors and re-
positive factors in virus transmission.

The authors of [41] consider the situation of re-infection, where recovered people may
return to being considered infected people (including symptomatic and asymptomatic
infected people), and these infected people can release virus particles into the environment.
In order to simplify the model, we let exposed people to include lurkers and asymptomatic
infected people. We assume that asymptomatic infected people are infectious, and that all
infected people must undergo the incubation period.

In addition to the factors mentioned in [41], the following three types of factors
are also considered: the first is that exposed individuals are still contagious, and exposed
individuals can transmit viruses deposited on the surface of materials to healthy individuals
through inanimate substances (public lift buttons, mail packages, etc.); the second is that the
birth population is not zero, the mortality rate of different populations is also different, and
recovered individuals may return to becoming susceptible individuals due to immune loss;
the third is that we consider the recovered of re-positives to return to becoming exposed
people.

Let the variables S(t), E(t), I(t), and R(t) represent the numbers of susceptible indi-
viduals, exposed individuals, infected individuals, and recovered individuals at time t,
respectively, and M(t) represent the number of free virus particles accumulated in envi-
ronmental vectors. The block diagram of the interactions among S, E, I, R, and M is shown
below (Figure 1).

Figure 1. The block diagram of the interactions among S, E, I, R, and M.
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According to the above block diagram of the interaction between these state variables,
we have the following five-dimensional ordinary differential equation model:

Ṡ(t) =Λ− β1S(t)I(t)− β2S(t)E(t)− γ3S(t)M(t) + µ4R(t)− dS(t),

Ė(t) =β1S(t)I(t) + β2S(t)E(t) + γ3S(t)M(t) + µ3R(t)− (d + d1 + µ1)E(t),

İ(t) =µ1E(t)− (d + d2 + µ2)I(t),

Ṙ(t) =µ2 I(t)− (d + µ3 + µ4)R(t),

Ṁ(t) =γ1E(t) + γ2 I(t)− ρM(t).

(1)

The biological meanings of each parameter in model (1) are shown in Table 1 below:

Table 1. Biological meanings of the parameters in model (1.1).

Parameter Description Unit

β1 Infection rate of infected individuals /10,000 persons × day
β2 Infection rate of exposed individuals /10,000 persons × day

γ1
Rate of virus release into the environment by exposed
individuals

10,000 viruses/10,000
persons × day

γ2
Rate of virus release into the environment by infected
individuals

10,000 viruses/10,000
persons × day

γ3 Infection rate due to environmental vectors /10,000 viruses × day

ρ
Rate of decay or clearance of free virus particles in
environmental vectors /day

Λ Population input rate 10,000 persons/day
µ1 Rate at which exposed individuals become infected /day
µ2 Recovery rate of infected people /day
µ3 Rate of re-positives /day

µ4
Rate at which recovered individuals without immune
protection return to the susceptible class /day

d Natural death rate /day
d1 Death rate of exposed individuals caused by virus /day
d2 Death rate of infected individuals caused by virus /day

Considering the biological meaning, all the parameters in Table 1 are non-negative
constants, Λ > 0, d > 0, and ρ > 0.

The main purpose of the paper can be divided into two parts. Firstly, the local and
global stability of the equilibria and uniform persistence of model (1) are analyzed in detail
by using the basic reproduction number. Secondly, model (1) is applied to data fitting
of COVID-19 from Japan and Italy, which shows the effectiveness and predictability of
the model. Furthermore, the paper conducts a sensitivity analysis of the parameters in
model (1) using data from Italy, which allows us to identify the main factors related to
disease transmission (for example, the infection rate of infected individuals (β1), infection
rate of exposed individuals (β2), rate of virus release into the environment by infected
individuals (γ2), infection rate due to environmental vectors (γ3), rate of decay or clearance
of free virus particles in environmental vectors (ρ), rate at which exposed individuals
become infected (µ1), recovery rate of infected people (µ2), rate of re-positives (µ3), and the
rate at which recovered individuals without immune protection return to the susceptible
class (µ4)).

2. Stability and Uniform Persistence

The initial condition of model (1) is

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, M(0) = M0, (2)

where S0, E0, I0, R0, and M0 are non-negative constants.
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It is easy to prove that the solution (S(t), E(t), I(t), R(t), M(t)) of model (1) with the
initial condition (2) is existent, unique, non-negative, and ultimately bounded in [0,+∞),
and satisfies

lim sup
t→∞

(S(t) + E(t) + I(t) + R(t)) ≤ Λd−1, lim sup
t→∞

M(t) ≤ (γ1 + γ2)Λ(dρ)−1.

2.1. Basic Reproduction Number and Classification of Equilibria

Model (1) always has the disease-free equilibrium Q0 = (S0, 0, 0, 0, 0), where S0 = Λd−1.
By the method of the next generation matrix [51,52], we obtain the basic reproduction
number of model (1), as follows:

R0 = ρ
(

FV−1
)
=

Λ(d + µ3 + µ4)[(ρβ2 + γ1γ3)(d + d2 + µ2) + µ1(ρβ1 + γ2γ3)]

dρ[(d + d1 + µ1)(d + d2 + µ2)(d + µ3 + µ4)− µ1µ2µ3]
.

where

F =


β2Λ

d
β1Λ

d 0 γ3Λ
d

0 0 0 0
0 0 0 0
0 0 0 0

, V =


d + d1 + µ1 0 −µ3 0
−µ1 d + d2 + µ2 0 0

0 −µ2 d + µ3 + µ4 0
−γ1 −γ2 0 ρ

.

It is not difficult to see that R0 can be written as R0 = R1 +R2 +R3, where

R1 =
µ1(d + µ3 + µ4)β1S0

(d + d1 + µ1)(d + d2 + µ2)(d + µ3 + µ4)− µ1µ2µ3
,

R2 =
(d + d2 + µ2)(d + µ3 + µ4)β2S0

(d + d1 + µ1)(d + d2 + µ2)(d + µ3 + µ4)− µ1µ2µ3
,

R3 =
[µ1γ2 + γ1(d + d2 + µ2)](d + µ3 + µ4)γ3S0

ρ[(d + d1 + µ1)(d + d2 + µ2)(d + µ3 + µ4)− µ1µ2µ3]
.

According to the expressions of R1, R2, and R3, it can be clearly seen that the value of
the basic reproduction number R0 directly depends on the infection rate of the infected
individuals (β1), the infection rate of exposed individuals (β2), and the infection rate due to
environmental vectors (γ3).

Assuming that (S, E, I, R, M) can be any equilibrium of model (1), it has the following
equations: 

Λ− β1SI − β2SE− γ3SM + µ4R− dS = 0,
β1SI + β2SE + γ3SM + µ3R− (d + d1 + µ1)E = 0,
µ1E− (d + d2 + µ2)I = 0,
µ2 I − (d + µ3 + µ4)R = 0,
γ1E + γ2 I − ρM = 0.

(3)

By solving the equations (3), it is easy to obtain that when R0 > 1, model (1) has a
unique endemic equilibrium Q∗ = (S∗, E∗, I∗, R∗, M∗), where

S∗ =
ρ(d + d1 + µ1)(d + d2 + µ2)(d + µ3 + µ4)− ρµ1µ2µ3

µ1(ρβ1 + γ2γ3)(d + µ3 + µ4) + (ρβ2 + γ1γ3)(d + d2 + µ2)(d + µ3 + µ4)
=

Λ
R0d

,

E∗ =
(d + d2 + µ2)(d + µ3 + µ4)

µ1µ2
R∗, I∗ =

(d + µ3 + µ4)

µ2
R∗,

R∗ =
(

1− 1
R0

)
µ1µ2Λ

(d + d1 + µ1)(d + d2 + µ2)(d + µ3 + µ4)− (µ1µ2µ3 + µ1µ2µ4)
,

M∗ =
γ1(d + d2 + µ2)(d + µ3 + µ4) + µ1γ2(d + µ3 + µ4)

µ1µ2ρ
R∗.
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2.2. Global Stability of the Disease-Free Equilibrium

It is clear that the set

Ω =
{
(E, I, R, M) | E, I, R, M ≥ 0, S + E + I + R ≤ S0, M ≤ (γ1 + γ2)Λ(dρ)−1

}
is attractive and positively invariant with respect to model (1). Thus, this leads to the
following theorem:

Theorem 1. If R0 < 1, the disease-free equilibrium Q0 of model (1) is globally asymptotically
stable with respect to Ω.

Proof. Firstly, let us show that the disease-free equilibrium Q0 is locally asymptotically
stable. For convenience, let d + d1 + µ1 = a1, d + d2 + µ2 = a2, and d + µ3 + µ4 = a3.
Hence, a1a2a3 − µ1µ2µ3 > 0.

Using simple calculations, we can determine that the characteristic equation of model
(1) at the disease-free equilibrium Q0 is (λ + d)g(λ) = 0, where

g(λ) =− γ3Λ
d

(λ + a3)[µ1γ2 + γ1(λ + a2)] + (λ + ρ)(λ− β2Λ
d

+ a1)(λ + a2)(λ + a3)

− (λ + ρ)[
µ1β1Λ

d
(λ + a3) + µ1µ2µ3].

Clearly, λ1 = −d is a negative root. Let us further show that when R0 < 1, all the
roots of the equation g(λ) = 0 have negative real parts. Suppose that λ = x + iy (x ≥ 0) is
an eigenvalue of the equation g(λ) = 0.

Then, the equation g(λ) = 0 can be rewritten in the following equivalent form:

1 =
µ1γ2γ3Λ

d(λ + ρ)(λ + a1)(λ + a2)
+

γ1γ3Λ
d(λ + ρ)(λ + a1)

+
β2Λ

d(λ + a1)
+

µ1β1Λ
d(λ + a1)(λ + a2)

+
µ1µ2µ3

(λ + a1)(λ + a2)(λ + a3)
.

Taking the modulus on both sides of the above equality, it becomes

1 =| µ1γ2γ3Λ
d(λ + ρ)(λ + a1)(λ + a2)

+
γ1γ3Λ

d(λ + ρ)(λ + a1)
+

β2Λ
d(λ + a1)

+
µ1β1Λ

d(λ + a1)(λ + a2)

+
µ1µ2µ3

(λ + a1)(λ + a2)(λ + a3)
|

≤| µ1γ2γ3Λ
d(λ + ρ)(λ + a1)(λ + a2)

|+ | γ1γ3Λ
d(λ + ρ)(λ + a1)

|+ | β2Λ
d(λ + a1)

|+ | µ1β1Λ
d(λ + a1)(λ + a2)

|

+ | µ1µ2µ3

(λ + a1)(λ + a2)(λ + a3)
|

≤µ1γ2γ3Λ
dρa1a2

+
γ1γ3a2Λ
dρa1a2

+
β2ρa2Λ
dρa1a2

+
µ1β1ρΛ
dρa1a2

+
µ1µ2µ3

a1a2a3

=
Λ(µ1γ2γ3 + µ1β1ρ + γ1γ3a2 + β2ρa2)

dρa1a2
+

µ1µ2µ3

a1a2a3

=
(a1a2a3 − µ1µ2µ3)

a1a2a3
R0 +

µ1µ2µ3

a1a2a3

=R0 + (1−R0)
µ1µ2µ3

a1a2a3
.

Note that a1a2a3 − µ1µ2µ3 > 0 and R0 < 1, meaning that the above inequality is not
valid. This proves that when R0 < 1, all the roots of the equation g(λ) = 0 have negative
real parts. Hence, the disease-free equilibrium Q0 is locally asymptotically stable.
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Next, we show that the disease-free equilibrium Q0 is globally attractable. In fact, for
t ≥ 0, model (1) implies

Ė(t) ≤ β1S0 I(t) + β2S0E(t) + γ3S0M(t) + µ3R(t)− (d + d1 + µ1)E(t),
İ(t) ≤ µ1E(t)− (d + d2 + µ2)I(t),
Ṙ(t) ≤ µ2 I(t)− (d + µ3 + µ4)R(t),
Ṁ(t) ≤ γ1E(t) + γ2 I(t)− ρM(t).

Let Y = (y1, y2, y3, y4)
T , and consider the comparison system dY

dt = (F−V)Y. As the
condition R0 = ρ

(
FV−1) < 1 means that all eigenvalues of matrix F−V have negative real

parts, the trivial solution of the comparison system is asymptotically stable. Therefore, it
follows that E(t) ≤ y1(t)→ 0, I(t) ≤ y2(t)→ 0, R(t) ≤ y3(t)→ 0 and M(t) ≤ y4(t)→ 0
for t→ +∞. Furthermore, from the first equation of model (1), it is easy to obtain S(t)→ S0
for t → +∞. This proves that the disease-free equilibrium Q0 is globally attractive with
respect to the set Ω.

2.3. Uniform Persistence and Global Stability of the Endemic Equilibrium

In the subsection, there is the following Theorem 2 for the uniform persistence of
model (1).

Theorem 2. If R0 > 1, then model (1) is uniformly persistent, and each positive solution
(S(t), E(t), I(t), R(t), M(t))T of model (1) with the initial condition (2) satisfies

lim inf
t→∞

S(t) ≥ Λd
Λ[β1 + β2 + γ3(γ1 + γ2)ρ−1] + d2 ≡ v1, lim inf

t→∞
E(t) ≥ δE∗e−Ta1 ≡ v2,

lim inf
t→∞

I(t) ≥ µ1

a2
v2, lim inf

t→∞
R(t) ≥ µ1µ2

a2a3
v2, lim inf

t→∞
M(t) ≥

(
γ1

ρ
+

γ2µ1

a2ρ

)
v2,

where δ > 0 and T > 0 , and satisfies

q ≡
(

β1v2

a2
+ β2 +

γ1γ3

ρ
+

γ2γ3µ1

a2ρ

)
δE∗ + d,

Λ
q

> S∗, S∆ ≡ Λ
q

(
1− e−Tq

)
> S∗.

To complete the proof of Theorem 2, the key point is to show that the estimation
lim inf
t→+∞

E(t) ≥ v2 holds. The detailed proof is similar to [53–56] and has been omitted here.

From a biological point of view, Theorem 2 indicates that as long as the basic repro-
duction number R0 > 1, the disease infection cannot be eliminated and will permanently
exist.

Next, let us consider the global asymptotic stability of the endemic equilibrium Q∗

of model (1). To simplify model (1), it is assumed that the death rate of the exposed and
infected individuals caused by the virus is zero, i.e., (H1) d1 = d2 = 0.

Let N(t) = S(t) + E(t) + I(t) + R(t), then for t ≥ 0, we have Ṅ(t) = Λ − dN(t),
which implies lim

t→+∞
N(t) = S0. On the hyperplane N = S0, model (1) can be transformed

into the following equivalent four-dimensional system:
Ṡ(t) =Λ− β1S(t)I(t)− β2S(t)E(t)− γ3S(t)M(t) + µ4(S0 − S(t)− E(t)− I(t))− dS(t),

Ė(t) =β1S(t)I(t)+β2S(t)E(t)+γ3S(t)M(t)+µ3(S0−S(t)−E(t)− I(t))−(d+µ1)E(t),

İ(t) =µ1E(t)− (d + µ2)I(t),

Ṁ(t) =γ1E(t) + γ2 I(t)− ρM(t).

(4)

In addition, the following conditions are also used:
(H2) µ2 + µ3 − 2µ1 − µ4 > 0, d + µ1 + µ3 − (2β1 + 2β2)S0 − ρ− 2µ4 > 0, d + µ2 −

µ1 > 0, γ1 ≥ γ2, 2µ4 ≥ µ1 + µ3.
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By using a similar method to what was used in [57–59], we have Theorem 3.

Theorem 3. If the conditions (H1)–(H2) hold, then, when R0 > 1, the endemic equilibrium Q∗

of system (4) is globally asymptotically stable with respect to Ω.

Proof. For system (4), the Jacobian matrix J and second additive compound matrix J[2] are
given by

J =


−β1 I − β2E− γ3M− d− µ4 −β2S− µ4 −β1S− µ4 −γ3S

β1 I + β2E + γ3M− µ3 β2S− d− µ1 − µ3 β1S− µ3 γ3S
0 µ1 −d− µ2 0
0 γ1 γ2 −ρ


and

J[2] =



M11 β1S− µ3 γ3S β1S + µ4 γ3S 0
µ1 M22 0 −β2S− µ4 0 γ3S
γ1 γ2 M33 0 −β2S− µ4 −β1S− µ4
0 q 0 M44 0 −γ3S
0 0 q γ2 M55 β1S− µ3
0 0 0 −γ1 µ1 M66

,

where
M11 = −β1 I − β2E− γ3M− d− µ4 + β2S− d− µ1 − µ3,
M22 = −β1 I − β2E− γ3M− d− µ4 − d− µ2,
M33 = −β1 I − β2E− γ3M− d− µ4 − ρ,
M44 = β2S− 2d− µ1 − µ3 − µ2,
M55 = β2S− d− µ1 − µ3 − ρ,
M66 = −d− µ2 − ρ,
q = β1 I + β2E + γ3M− µ3.

Let

P = P(S, E, I, M) =



1
E 0 0 0 0 0
0 1

E 0 0 0 0
0 0 0 1

E 0 0
0 0 1

M 0 0 0
0 0 0 0 1

M 0
0 0 0 0 0 1

M


,

using f to represent the vector form of system (4). Then, Pf is the directional derivative of

P(x) along the direction of f . It follows that Pf P−1 = diag
{
− Ė

E ,− Ė
E ,− Ė

E ,− Ṁ
M ,− Ṁ

M ,− Ṁ
M

}
,

and

Q(S, E, I, M) =Pf P−1 + PJ[2]P−1

=



M11 − Ė
E β1S− µ3 β1S + µ4

γ3SM
E

γ3SM
E 0

µ1 M22 − Ė
E −β2S− µ4 0 0 γ3SM

E
0 q M44 − Ė

E 0 0 − γ3SM
E

γ2E
M

γ2E
M 0 M33 − Ṁ

M −β2S− µ4 −β1S− µ4

0 0 γ2E
M q M55 − Ṁ

M β1S− µ3

0 0 − γ1E
M 0 µ1 M55 − Ṁ

M


.
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The matrix Q(S, E, I, M) can be written in block form: Q(S, E, I, M) = (Qij)4×4, where

Q11 = M11 −
Ė
E

, Q12 = (β1S− µ3, β1S + µ4), Q13 =

(
γ3SM

E
,

γ3SM
E

)
, Q14 = 0,

Q21 = (µ1, 0)T , Q22 =

(
M22 − Ė

E −β2S− µ4

q M44 − Ė
E

)
, Q23 =

(
0 0
0 0

)
,

Q24 =

(
γ3SM

E
,−γ3SM

E

)T
, Q31 =

(
γ2E
M

, 0
)T

, Q32 =

(
γ2E
M 0
0 γ2E

M

)
,

Q33 =

(
M33 − Ṁ

M −β2S− µ4

q M55 − Ṁ
M

)
, Q34 = (−β1S− µ4, β1S− µ3)

T , Q41 = 0,

Q42 = (0,−γ1E
M

), Q43 = (0, µ1), Q44 = M66 −
Ṁ
M

.

Hence, we have the following estimation (for an example, see [57–59]),

σ(Q(S, E, I, M)) ≤ sup{g1, g2, g3, g4},

where g1 = σ1(Q11) + |Q12|+ |Q13|+ |Q14|, g2 = σ1(Q22) + |Q21|+ |Q23|+ |Q24|, g3 =
σ1(Q33) + |Q31| + |Q32| + |Q34|, g4 = σ1(Q44) + |Q41| + |Q42| + |Q43|.

∣∣Qij
∣∣(i 6= j, i, j =

1, 2, 3, 4) are matrix norms with respect to the l1 vector norm, and σ1 denotes the Lozinski ß̆
measures with respect to the l1 norm. Furthermore, it is easy to obtain that

σ(Q11) =− β1 I − β2E− γ3M− 2d− µ4 + β2S− µ1 − µ3 −
Ė
E

,

σ(Q22) ≤− µ2 − 2d− Ė
E
+ max{−µ4, 2β2S + µ4 − µ1 − µ3},

σ(Q33) ≤− ρ− d− Ṁ
M

+ max{−µ4, 2β2S + µ4 − µ1 − µ3},

σ(Q44) =− d− µ2 − ρ− Ṁ
M

, |Q12| = β1S + µ4, |Q13| =
γ3SM

E
,

|Q14| = 0, |Q21| = µ1, |Q23| = 0, |Q24| =
2γ3SM

E
, |Q31| =

γ2E
M

,

|Q32| =
γ2E
M

, |Q34| < 2β1S + µ4, |Q41| = 0, |Q42| =
γ1E
M

, |Q43| = µ1.

From condition (H2) and system (4), we have

max{−µ4, 2β2S + µ4 − µ1 − µ3} = 2β2S + µ4 − µ1 − µ3,

and

Ė
E
=

β1SI
E

+ β2S +
γ3SM

E
+

µ3R
E
− (d + µ1) >

β1SI
E

+ β2S +
γ3SM

E
− (d + µ1),

Ṁ
M

=
γ1E
M

+
γ2 I
M
− ρ >

γ1E
M
− ρ ≥ γ2E

M
− ρ.
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Hence, we have

g1 =− β1 I − β2E− γ3M− 2d− µ4 + β2S− µ1 − µ3 −
Ė
E
+ β1S + µ4 +

γ3SM
E

<− β1 I − β2S− γ3M− β1SI
E
− d− µ3 + β1S

<
β1Λ

d
− d− µ3 ≡ −θ1,

g2 ≤− µ2 − 2d− µ3 −
Ė
E
+ 2β2S + µ4 − µ1 + µ1 +

2γ3SM
E

<− µ2 − d− µ3 +
γ3SM

E
+ β2S− β1SI

E
+ µ1 + µ4

<
Ė
E
+ 2µ1 + µ4 − µ2 − µ3 ≡

Ė
E
− θ2,

g3 <− ρ− µ3 − d− Ṁ
M

+ 2β2S + µ4 − µ1 +
2γ2E

M
+ 2β1S + µ4

<
γ2E
M
− ρ + ρ− µ3 + (2β1 + 2β2)S + 2µ4 − d− µ1

<
Ṁ
M

+ (2β1 + 2β2)
Λ
d
+ ρ + 2µ4 − d− µ1 − µ3 ≡

Ṁ
M
− θ3,

g4 =− d− µ2 − ρ− Ṁ
M

+
γ1E
M

+ µ1

<µ1 − d− µ2 ≡ −θ4.

Again, from condition (H2), we can obtain

θ3 < θ1, b̄ = min{θ1, θ2, θ3, θ4} = min{θ2, θ3, θ4} > 0,

and

g1 ≤ −b̄, g2 <
Ė
E
− b̄, g3 <

Ṁ
M
− b̄, g4 ≤ −b̄.

Note that when R0 > 1, system (4) is uniformly persistent. Using a similar argument
as in [59], we find that the endemic equilibrium Q∗ of system (4) is globally asymptotically
stable.

Take Λ = 1000, β1 = 5× 10−7, β2 = 5× 10−7, γ1 = 2× 10−3, γ2 = 2× 10−3, γ3 =
2× 10−3, µ1 = 0.2, µ2 = 0.5, µ3 = 0.1, µ4 = 0.15, d = 0.1, d1 = 0.1, d2 = 0.1, and
ρ = 0.05. Using numerical calculations, we obtain the basic reproduction number R0 =
2.625 > 1, and the inequalities in (H1)–(H2) hold.

3. Applications of the Model in Japan and Italy

In this section, we use model (1) to fit the data of confirmed cases and recovered cases
of COVID-19 in Japan and Italy (data were taken from the Johns Hopkins University Center
for Systems Science and Engineering, https://github.com/CSSEGISandData/COVID-19
accessed on 1 July 2022), and make short-term predictions about disease infection trends.
Meanwhile, based on the basic reproduction number R0 and data in Italy, we carried out a
sensitivity analysis and the main factors related to disease transmission were captured.

3.1. Predicted Cases for Cumulative Confirmed and Recovered Cases Based on Data in Japan
and Italy

First, from [3,60–62] and data published by the World Health Organization (WHO), the
parameters 1

µ1
(incubation period), 1

µ2
(infectious period), 1

µ4
(time of immune protection),

1
d (mean lifetime), and d2 (death rate of the infected individuals caused by the virus) in
model (1) can take the values as shown in Table 2 below. Furthermore, by using data of
COVID-19 in Japan (20 May–18 June 2022) and Italy (12 January–10 February 2022) and the

https://github.com/CSSEGISandData/COVID-19
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least squares method (LSM), the remaining parameters in model (1) take values as shown
in Table 2 below.

Table 2. The estimated values of parameters in the model.

Para-Meter Definitions Value (Japan) Value (Italy) Unit Source

β1 See Table 1 2.744× 10−7 3.195× 10−6 /10,000 persons × day LSM
β2 See Table 1 6.766× 10−7 5.123× 10−6 /10,000 persons × day LSM

γ1 See Table 1 0.6513 0.3966 10,000 viruses/10,000
persons × day LSM

γ2 See Table 1 0.2791 0.6091 10,000 viruses/10,000
persons × day LSM

γ3 See Table 1 1.559× 10−8 5.235× 10−7 /10,000 viruses × day LSM
ρ See Table 1 0.8901 0.5957 /day LSM
Λ See Table 1 0.3916 0.3358 10,000 persons/day LSM
1

µ1

Incubation
period 5.2 5.2 day [3]

1
µ2

Infectious
period 20 20 day [60]

µ3 See Table 1 0.03051 0.09186 /day LSM

1
µ4

Time of
immune

protection
180 180 day [61]

1
d

Mean
lifetime 84× 365 83× 365 day WHO

d1 See Table 1 2.025× 10−4 3.371× 10−4 /day LSM
d2 See Table 1 1.425× 10−3 2.512× 10−3 /day [62]

Based on the parameter values given in Table 2, we obtain Figure 2a,b, which shows
that model (1) fits well with the evolution of cumulative confirmed cases and recovered
cases in Japan from 20 May–18 June 2022. Similarly, we have Figure 3a,b that shows that
model (1) also fits well with the evolution of the cumulative confirmed cases and recovered
cases in Italy from 12 January–10 February 2022.
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Figure 2. (a) The evolution of the cumulative confirmed cases of COVID-19 in Japan from 20 May–18
June 2022. (b) The evolution of the cumulative recovered cases of COVID-19 in Japan from 20 May–18
June 2022.
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Figure 3. (a) The evolution of the cumulative confirmed cases of COVID-19 in Italy from 12 January–
10 February 2022. (b) The evolution of the cumulative recovered cases of COVID-19 in Italy from 12
January–10 February 2022.

Next, we use model (1) and the parameter values given in Table 2 to predict the
cumulative confirmed cases and recovered cases in Japan (from 19–28 June 2022) and Italy
(from 11–20 February 2022). These are shown in Tables 3–6.

From Tables 3–6, it can be seen that the predicted values for confirmed and recovered
cases are within a range of 97 to 103% of the reported data. With the increase in time t, the
relative error also increases.

Table 3. Predicted values and reported data for confirmed cases in Japan.

Data
Cumulative Confirmed Cases (Japan)

Reported Predicted

6.19 917.2745 912.8151
6.20 920.0541 913.6510
6.21 923.5918 914.4373
6.22 927.3191 915.1782
6.23 930.9861 915.8729
6.24 931.5674 916.5263
6.25 933.2259 917.1391
6.26 934.6495 917.7133
6.27 935.6060 918.2511
6.28 936.5433 918.7538

Table 4. Predicted values and reported data for recovered cases in Japan.

Data
Cumulative Recovered Cases (Japan)

Reported Predicted

6.19 897.7861 894.7521
6.20 900.3232 895.9912
6.21 903.6874 897.1613
6.22 905.2890 898.2644
6.23 908.7801 899.3047
6.24 910.2259 900.2809
6.25 914.0274 901.1989
6.26 916.9366 902.0616
6.27 917.9099 902.8693
6.28 918.6873 903.0266
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Table 5. Predicted values and reported data for confirmed cases in Italy.

Data
Cumulative Confirmed Cases (Italy)

Reported Predicted

2.11 1201.3631 1191.4833
2.12 1212.1109 1198.4161
2.13 1220.3330 1203.0440
2.14 1228.5675 1209.3611
2.15 1236.4451 1214.3588
2.16 1242.5474 1218.0709
2.17 1250.5343 1223.4792
2.18 1255.3398 1226.6014
2.19 1260.7098 1230.4304
2.20 1266.1773 1233.9731

Table 6. Predicted values and reported data for recovered cases in Italy.

Data
Cumulative Recovered Cases (Italy)

Reported Predicted

2.11 908.0136 904.2121
2.12 918.9429 911.0671
2.13 927.6892 917.8210
2.14 934.5987 923.4734
2.15 940.2540 928.2089
2.16 946.3380 933.3926
2.17 953.3268 938.6280
2.18 960.2908 942.6809
2.19 966.0380 946.5611
2.20 970.5147 949.2560

Furthermore, we use MAPE (mean absolute percentage error) and RMSPE (root mean
square error) to assess the reliability of model (1) in data fitting (for examples, see [63,64]).
For convenience, we introduce the definitions of MAPE and RMSPE and their evaluation
standard, as follows (Table 7):

MAPE =

n
∑

i=1

∣∣∣ yi−y′i
yi

∣∣∣
n

× 100%, RMSPE =

√√√√√ n
∑

i=1

[
yi−y′i

yi

]2

n− 1
× 100%,

Table 7. MAPE/RMSPE evaluation standard.

MAPE/RMSPE Predictive Ability

<10% Precision prediction
10–20% Good prediction
20–50% Reasonable prediction
>50% Unreasonable prediction

Here, yi and y′i are the reported data and predicted data, respectively, and the positive
integer n is the number of predicted data. Using the data in Tables 3–6, we obtain Table 8.

Table 8. MAPE/RMSPE values and their predictive ability.

Data Type MAPE Predictive Ability RMSPE Predictive Ability

Confirmed cases in Japan 1.40% Precision prediction 1.56% Precision prediction
Reovered cases in Japan 1.08% Precision prediction 1.24% Precision prediction
Confirmed cases in Italy 1.81% Precision prediction 1.99% Precision prediction
Recovered cases in Italy 1.38% Precision prediction 1.55% Precision prediction
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3.2. Sensitivity Analysis Based on the Basic Reproduction Number and Data from Italy

From Theorem 1 and 2 we see that if the basic reproduction number R0 < 1 (or R0 > 1),
the disease infection can be cleared (or will become an endemic disease). Therefore, it is
very necessary to make a sensitivity analysis based on the basic reproduction number R0,
and then capture the main factors related to disease transmission.

The normalized sensitivity index of R0 is defined as γR0
ε ≡ ∂R0

∂ε
ε

R0
. Here, ε can be

regarded as any parameter in R0 [65]. By using Italy’s parameter values in Table 3, we
obtain Table 9 and Figure 4.

Table 9. The normalized sensitivity index based on R0 and data from Italy.

Parameter β1 β2 µ1 µ2 µ3 µ4
Sensitivity

Index 0.5827 0.2993 −0.2501 −0.1816 0.2618 −0.0833

Parameter γ1 γ2 γ3 ρ d1 d2
Sensitivity

Index 0.0200 0.0979 0.1180 −0.1180 −0.0041 −0.0713
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Figure 4. The normalized sensitivity index based on R0 and data from Italy.

From Table 9 and Figure 4, we first observe that the parameters β1 (the infection
rate of infected individuals) and β2 (the infection rate of exposed individuals) are the
most sensitive (and positively correlated) parameters to the basic reproduction number
R0. When β1 increases by 10% while other parameters remain unchanged, R0 increases by
5.827%. Similarly, when β2 increases by 10% while other parameters remain unchanged, R0
increases by 2.993%. Moreover, the parameters µ1 (the rate at which exposed individuals
become infected) and tµ2 (the recovery rate of infected people) also have high sensitivities
(but are negatively correlated) to the basic reproduction number R0. When µ1 increases by
10% while other parameters remain unchanged, R0 decreases by 2.501%. Similarly, when
µ2 increases by 10% while other parameters remain unchanged, R0 decreases by 1.816%.

On the other hand, we also see from Table 9 and Figure 4 that the basic reproduction
number R0 has a strong dependence (positively/negatively correlated) on environmental
and re-positive factors. Specifically, the parameters µ3 (the rate of re-positives), γ2 (the rate
of virus release into the environment by infected individuals), γ3 (the infection rate due
to environmental vectors), and ρ (the rate at which the free virus particles decay or are
cleared in environmental vectors) are also more sensitive to the basic reproduction number
R0 . When γ2, γ3, and µ3 increases by 10% while other parameters remain unchanged, R0
increases by 0.979, 1.180 and 2.618%, respectively; however, when ρ increases by 10%, R0
decreases by 1.180%.
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This suggests that we should strengthen prevention and control to reduce the trans-
mission rate of the disease, shorten the treatment cycle, increase antibodies by vaccination,
pay attention to environmental sanitation, and reduce the risk of environmental infection.

At the end of this subsection, we present a discussion of the control strategies related
to environmental and re-positive factors using the basic reproduction number R0.

Consider the basic reproduction number R0 as a function R0 = R0(µ3, γ3) with
respect to the parameters µ3 and γ3, and let the values of all the other parameters in the
basic reproduction number R0 be the same as those from Italy in Table 3.

Figure 5a gives the intersection line of the surface R0 = R0(µ3, γ3) and the plane
R0 = 1. Figure 5b shows the contour lines corresponding to the different values of R0. The
contour lines give the range of the parameters, µ3 and γ3, which are directly related to
environmental and re-positive factors. Particularly, the area on the right side of the contour
line with R0 = 1 can be seen as a high-risk area, which means that the disease infection
will exist forever, and the area on the left side of the contour line with R0 = 1 can be seen
as a low-risk area, which means that the disease infection will eventually be cleared. That
is, when the parameter related to environmental factors (γ3) and the parameter related to
re-positives (µ3) have their values in the low-risk area, the disease infection is controllable.
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Figure 5. (a) The intersection line of R0 = R0(µ3, γ3) and R0 = 1. (b) Contour lines corresponding
to different values of R0.

Moreover, Figure 6a,b shows that when the parameters γ3 (the infection rate due to
environmental vectors) or µ3 (the rate of re-positives) decreases, the cumulative number of
infected cases also decreases significantly.
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Figure 6. (a) The evolutionary relationship between the cumulative number of infected cases (I) and
the parameter γ3. (b) The evolutionary relationship between the cumulative number of infected cases
(I) and the parameter µ3.



Viruses 2023, 15, 1201 15 of 18

According to the above figures, the re-positive rate µ3 decreased 10 times, and the
cumulative number of infected cases decreased 48%. This is alarming, and suggests we
need to pay more attention to recovered patients and their potential infectivity. We may
need to re-evaluate hospitals’ discharge criteria and current patient management systems.
Therefore, we stress that caution should be exercised even after recovery from SARS-CoV-2.
We believe that all discharged patients should undergo medical observation and quarantine
for at least 14 days. Longer periods of observation and surveillance may be necessary.
Patients who have been infected with COVID-19 virus in the past should also comply
with epidemiological control measures, such as wearing a mask and keeping distance
from others.

The environment-related parameter γ3 decreased 10 times, and the cumulative number
of infected cases decreased 58%. However, some recent research has shown that there
are many ways of communication for the novel coronavirus, and communication by
environmental vectors is an important link that cannot be ignored. When an infected person
sneezes or coughs, droplets are released that can contaminate surfaces. If a susceptible
person touches these contaminated surfaces and then touches their mouth, nose, or eyes,
they can become infected. If we want to ensure that the virus does not spread on a large
scale, it is very important to sanitize the environment. For normal households, sanitizing
with alcohol and disinfectant water can meet the demand, and families with susceptible
conditions can also purchase ozone disinfection equipment for sanitizing. For places with
local epidemic break-out, professional institutions are needed for sanitization. We have
obtained some crucial epidemiological parameters that need greater emphasis for the
mitigation and control of the COVID-19 pandemic.

4. Conclusions

Inspired by the diversity and complexity of COVID-19 infections, two key factors were
considered in model (1). The first is that environmental vectors polluted by virus particles
may lead to disease infection, and the second is that recovered individuals who have lost
sufficient immune protection may return to the exposed class (i.e., called re-positive). In
the past two years especially, these factors have been increasingly observed in the spread
of COVID-19 infection, and are bringing great challenges and difficulties to the control of
disease infection.

Theorems 1 and 2 give a complete characterization of the global dynamics of model (1).
In other words, when the basic reproduction number R0 < 1, the disease-free equilibrium
Q0 is globally asymptotically stable, meaning that the disease infection will eventually be
cleared. When the basic reproduction number R0 > 1, model (1) is uniformly persistent,
meaning that the disease infection will exist forever and become an endemic disease.
Furthermore, Theorem 3 gives some sufficient conditions for the global asymptotic stability
of the endemic equilibrium Q∗ of model (1). It should be mentioned here that the sufficient
conditions in Theorem 3 are very conservative and can be further improved.

Model (1) was applied to the data fitting of the cumulative confirmed cases and
recovered cases of COVID-19 in Japan (20 May–18 June 2022) and Italy (12 January–10
February 2022), and good predictability of the data was observed.

Furthermore, based on data from Italy (12 January–10 February 2022), it was observed
that the basic reproduction number R0 also had stronger dependence on the parameters
µ3, γ2, γ3, and ρ. This indicates the necessity and practical significance of considering
environmental and re-positive factors in the prevention and control of COVID-19 infection.
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