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Abstract: Yam (Dioscorea spp.) productivity is constrained significantly by the lack of a formal seed
system. Vegetative propagation, through tuber setts as ‘seed’ yams, encourages the recycling of
virus-infected planting materials, contributing to high virus incidence and yield losses. Efforts are
ongoing to increase the production of high-quality seed yams in a formal seed system to reduce virus-
induced yield losses and enhance the crop’s productivity and food security. Specific and sensitive
diagnostic tests are imperative to prevent the multiplication of virus-infected materials contributing to
a sustainable seed yam certification system. During routine indexing of yam accessions, discrepancies
were observed between the results obtained from the reverse transcription loop-mediated isothermal
amplification (RT-LAMP) test and those from reverse transcription polymerase chain reaction (RT-
PCR); RT-LAMP failed to detect Yam mosaic virus (YMV) in some samples that tested positive by
RT-PCR. This prompted the design of a new set of LAMP primers, YMV1-OPT primers. These primers
detected as little as 0.1 fg/µL of purified RNA obtained from a YMV-infected plant, a sensitivity
equivalent to that obtained with RT-PCR. RT-LAMP using YMV1-OPT primers is recommended for all
future virus-indexing of seed yams for YMV, offering a rapid, sensitive, and cost-effective approach.

Keywords: yam; seed systems; yam mosaic virus; virus diagnostics; isothermal amplification;
RT-LAMP; West Africa

1. Introduction

Yam mosaic virus (YMV) is a prevalent virus of yam [1–4], an important staple food crop
in many parts of the world [5]. It belongs to the genus Potyvirus and has a single-stranded,
positive-sense RNA genome that is approximately 9.6 kb long and encodes a single large
polyprotein, which is cleaved into smaller proteins [6–9]. YMV is widely distributed in
tropical and subtropical yam-growing regions, particularly in West Africa, the West Indies,
and the Caribbean [3,4,10]. It commonly infects D. rotundata, D. cayenensis-rotundata, and
D. alata [3,11]. The virus is transmitted through vegetative propagation of infected yam
materials or by aphid vectors in a non-persistent manner, causing various symptoms,
including mosaic patterns on leaves, stunted growth, and reduced yields [3]. YMV has
been reported to cause about 40% yield loss in yam fields [12,13] and hamper the exchange
of valuable germplasm for the crop’s improvement.

Yam plays a vital role in food security, income generation, and nutrition for smallholder
farmers, especially in West Africa, which produces over 95% of the world’s total yam
production [3,5,14]. An infection with YMV in the field threatens the food security and
livelihoods of West Africans. The absence of a formal seed yam certification system
and farmers selecting small tubers from their harvest for planting the following season
encourage the propagation of infected materials, which has been instrumental to the spread
of YMV in yam-growing regions [15–17].
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The use of virus-free planting materials is the most effective method to control the
spread of viruses infecting yam [18,19]. Several methods have recently been developed to
boost the production of virus-free seed yams, including single-node vine cuttings, tissue
culture, hydroponics, and aeroponic systems [16,20,21]. The development of sensitive and
cost-effective diagnostics is paramount to guarantee the production of virus-free seed yams
for a sustainable formal seed system [22,23]. These diagnostics methods must address
virus detection challenges, including false-negative results arising from reduced virus titre
associated with clonally propagated crops [8]. Furthermore, the genomic variability of
YMV makes the detection of all putative isolates/variants challenging [24].

Methods used for the detection of YMV include enzyme-linked immunosorbent assay
(ELISA), reverse transcription polymerase chain reaction (RT-PCR), immunocapture-RT-PCR
(IC-RT-PCR), and isothermal assays such as recombinase polymerase amplification (RPA)
and reverse transcription loop-mediated isothermal amplification (RT-LAMP) [3,22,23,25–28].
RPA and RT-LAMP offer similar and greater sensitivities, respectively, compared to RT-
PCR, with more benefits, including speed, cost-efficiency, in-field diagnosis, and ease of
establishment in resource-challenged laboratories, and are considered advantageous for
the routine detection of YMV [22,23,29].

Routine indexing of yam plants for YMV in our laboratories identified discrepancies
between the RT-LAMP [23] and RT-PCR [25] tests. RT-LAMP gave false-negative results for
some samples, which were confirmed positive for YMV by RT-PCR and Sanger sequencing.
False-negative results could permit the multiplication of infected plant materials in the seed
systems, discrediting the integrity of quality seeds distributed to farmers [19,28]. Further, it
could pose severe challenges to plant health by spreading viruses or novel variants to new
regions through the exchange of infected germplasms [28]. This prompted the development
of a new set of LAMP primers which are described in this article and were found to increase
not only the specificity but also the sensitivity of YMV detection compared to existing YMV
LAMP primers [23].

2. Materials and Method
2.1. Plant Material, Total RNA Extraction, and Crude Sample Preparation

Yam (D. rotundata and D. alata) leaf tissues used in this study were obtained from
plants grown in glasshouses at the Natural Resources Institute (NRI), United Kingdom,
the Centre for Scientific and Industrial Research-Crops Research Institute (CSIR-CRI) in
Ghana, and yam field surveys conducted in Benin, Cameroon, Togo, and Nigeria (Table 1).
Total RNAs were extracted from leaf tissues using the Spectrum Plant Total RNA Kit
(Sigma-Aldrich, Saint Louis, MO, USA), according to the manufacturer’s recommendations.
The concentration and purity of extracted yam RNAs were measured using a NanoDrop
2000 spectrometer (ThermoScientific, Waltham, MA, USA).

The detection of YMV from crude extracts was carried out using the protocol described
by Silva et al. [27]. One leaf disc was immersed in 300 µL of freshly prepared PEG buffer (6%
w/v polyethylene glycol (PEG)−200 in 20 mM NaOH). The tubes were vortexed briefly and
incubated for 5 min at room temperature. Crude extracts were used directly as templates
in RT-LAMP assays.

Table 1. Yam samples used in this study.

Sample ID Collection Origin Dioscorea spp.

Ben1 Benin D. rotundata
Cam1 Cameroon D. rotundata
Cam2 Cameroon D. rotundata
Cam3 Cameroon D. rotundata
Cam4 Cameroon D. rotundata
Gh1 Ghana D. rotundata
Gh2 Ghana D. rotundata
Gh3 Ghana D. rotundata
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Table 1. Cont.

Sample ID Collection Origin Dioscorea spp.

Gh4 Ghana D. rotundata
Gh5 Ghana D. rotundata
Gh6 Ghana D. rotundata
Gh7 Ghana D. rotundata
Gh8 Ghana D. rotundata
Gh9 Ghana D. rotundata
Gh10 Ghana D. rotundata
Gh11 Ghana D. rotundata
Gh12 Ghana D. rotundata
Gh13 Ghana D. rotundata
Gh14 Ghana D. rotundata
Gh15 Ghana D. rotundata
Gh16 Ghana D. rotundata
Gh17 Ghana D. rotundata
Gh18 Ghana D. alata
Gh19 Ghana D. rotundata
Gh20 Ghana D. rotundata
Gh21 Ghana D. alata
Gh22 Ghana D. alata
Gh23 Ghana D. rotundata
Gh24 Ghana D. rotundata
Gh25 Ghana D. rotundata
Gh26 Ghana D. rotundata
Gh27 Ghana D. rotundata
Gh28 Ghana D. rotundata
Gh29 Ghana D. rotundata
Gh30 Ghana D. rotundata
Gh31 Ghana D. rotundata
Gh32 Ghana D. rotundata
Gh33 Ghana D. rotundata
Gh34 Ghana D. rotundata
Gh35 Ghana D. rotundata
Gh36 Ghana D. rotundata
Gh37 Ghana D. rotundata
Nig1 Nigeria D. rotundata
Nig2 Nigeria D. rotundata
Nig3 Nigeria D. rotundata
Nig4 Nigeria D. rotundata
Nig5 Nigeria D. rotundata
Nig6 Nigeria D. rotundata
Nig7 Nigeria D. rotundata
Nig8 Nigeria D. rotundata
Nig9 Nigeria D. rotundata

Nig10 Nigeria D. rotundata
Nig11 Nigeria D. rotundata
Nig12 Nigeria D. rotundata
Nig13 Nigeria D. rotundata
Nig14 Nigeria D. rotundata
Nig15 Nigeria D. rotundata
Tog1 Togo D. rotundata
Tog2 Togo D. rotundata
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2.2. The Detection of YMV by RT-PCR and Phylogenetic Analysis

The detection of YMV by RT-PCR was carried out using the primer pair YMV CP 1F
and YMV UTR 1R (Table 2), which amplifies a 586 bp region comprising a partial coat
protein (CP) gene and the 3’ UTR region of the YMV genome [25]. The RNA quality was
confirmed by amplifying the yam actin gene, as described by Silva et al. [22]. RT-PCR assays
were set up as 20 µL reactions containing 0.2 µM of each primer (Sigma Aldrich), 0.25 mM
of each dNTP (ThermoScientific), 1.25 U DreamTaq DNA Polymerase (ThermoScientific),
2.5 U AMV-reverse transcriptase (Promega, Madison, WI, USA), 1X DreamTaq Green
Buffer containing 2 mM MgCl2 (ThermoScientific), and 2 µL RNA as template. Thermal
cycling conditions were 50 ◦C for 10 min, followed by 95 ◦C for 4.5 min, and 35 cycles
of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and a final extension of 72 ◦C for
10 min. RT-PCR products were analysed by electrophoresis on agarose gels [2% (w/v)
agarose in Tris-borate-EDTA (0.5 × TBE) buffer (pH 8.0)] and viewed under UV light using
a gel doc system (SynGene, Cambridge, UK). PCR products were purified and Sanger-
sequenced by the Source BioScience sequencing service (Cambridge, UK). The nucleotide
sequences generated from the PCR products were analysed and assembled using Geneious
Prime®® 2023.0.1 (Biomatters Ltd., Auckland, New Zealand). Sequences were used for
similarity BLAST searches in the National Centre for Biotechnology Information (NCBI)
GenBank databases.

Table 2. YMV primers used in this study.

Test Primer Name Position * Sequence (5’–3’) Orientation # Reference

RT-LAMP

YMV1-OPT-F3 9120–9138 ATGATGCATTTCAGTGACG F

This study

YMV1-OPT-B3 9307–9305 TTGTTTCCAATAGCTGCTG R

YMV1-OPT-FIP (F1C + F2) F1C: 9199–9219 ARTCCCTCAARTTGCGCTGAA- R
F2: 9144–9163 GAAGCGTACATTGAATTGCG F

YMV1-OPT-BIP (B1C + B2) B1C: 9240–9259 TTYGAYTTCTTAGARATAAC- F
B2: 9287–9304 TTCATCTGATGGTGGGCY R

YMV1-OPT-LF 9164–9187 GGCATATACGGTTCTTTTGAGTTC R
YMV1-OPT-LB 9269–9286 TCCAGTTCGAGCGCGTGA F

RT-LAMP

F3 9038–9055 GACAATGATGGACGGTGC F

[23]

B3 9228–9248 GAAGTCAAACGCATATCTAGC R

FIP (F1C + F2) F1C: 9109–9134 ACTGAAATGCATCATTATCTGAC
GAA- R

F2: 9059–9076 GCAAGTGGAATACCCATT F

BIP (B1C + B2) B1C: 9144–9171 GAAGCATACATTGAATTGCGGAA
CTCAA- F

B2: 9206–9244 TGAGTAATCCCTCAAGTTG R
LF 9079–9103 GGTTTGGCATTTTCTATGATCGGTT R
LB 9186–9205 CCCCGATACGGTATTCAGCG F

RT-PCR
YMV-CP 1F 9026–9045 ATCCGGGATGTGGACAATGA F

[26]YMV-UTR 1R 9590–9608 TGGTCCTCCGCCACATCAAA R

F3 and B3—Forward and reverse outer primers, respectively; FIP and BIP—Forward and reverse internal primer,
respectively; LF and LB—Forward and reverse Loop primers, respectively. * Alignment position of primers with
the reference YMV complete genome sequence (GenBank ref ID. NC_004752.1). # F and R—Forward and reverse
orientation, respectively.

Thirty YMV coat protein (CP) sequences, representing YMV phylogenetic groups
classified by Bousalem et al. [24] and Mendoza et al. [9], were downloaded from NCBI
and aligned with 36 YMV CP sequences obtained from this study (Table 3) to generate
a percentage similarity matrix using Multiple Alignment using Fast Fourier Transform
(MAFFT) v7.490 in Geneious Prime®® 2023.0.1. The aligned sequences were used for
phylogenetic analysis using the Neighbor-Joining (NJ) method in Molecular Evolutionary
Genetics Analysis across Computing Platforms (MEGA X) v10.2.6 software [30]. The
reliability of the tree branches was evaluated by bootstrap test in 1000 replicates.
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Table 3. YMV isolates used for phylogenetic studies.

Group* Isolate Sample Origin Dioscorea spp. Accession
Number Reference

I

BFC 56 Burkina Faso D. cayenensis-rotundata AJ244052 [24]
C1/C3 Burkina Faso D. cayenensis-rotundata AJ244053 [24]

BFC 51/C11 Burkina Faso D. cayenensis-rotundata AJ244050 [24]
BFC 54 Burkina Faso D. cayenensis-rotundata AJ244051 [24]

II

CKA1/C11 Ivory Coast D. cayenensis-rotundata AJ244059 [24]
CID3/C12 Ivory Coast D. cayenensis-rotundata AJ244058 [24]

POGNON/C1 Guadeloupe island D. cayenensis-rotundata AJ244064 [24]
U42596 Ivory Coast D. cayenensis-rotundata NC004752 [31]

III

CAM1/C1 Benin D. cayenensis-rotundata AJ244054 [24]
B1/c1 Benin D. cayenensis-rotundata AJ244048 [24]

CBE6b/C3 Benin D. cayenensis-rotundata AJ244056 [24]
B14 Cameroon D. cayenensis-rotundata AJ244049 [24]

Ben1 Benin D. rotundata OR004217 This study
Cam4 Benin D. rotundata OR004218 This study
Gh2 Ghana D. rotundata OQ677012 This study
Gh3 Ghana D. rotundata OQ677013 This study
Gh15 Ghana D. rotundata OQ677004 This study
Gh17 Ghana D. rotundata OQ677006 This study
Gh18 Ghana D. alata OQ677007 This study
Gh19 Ghana D. rotundata OQ677008 This study
Gh20 Ghana D. rotundata OQ677009 This study
Gh23 Ghana D. rotundata OQ677011 This study
Gh27 Ghana D. rotundata OR004219 This study
Gh29 Ghana D. rotundata OR004229 This study
Gh30 Ghana D. rotundata OR004220 This study
Gh32 Ghana D. rotundata OR004223 This study
Gh33 Ghana D. rotundata OR004225 This study
Gh35 Ghana D. rotundata OR004222 This study
Gh36 Ghana D. rotundata OR004224 This study
Nig3 Nigeria D. rotundata OR004228 This study
Nig4 Nigeria D. rotundata OR004221 This study
Nig6 Nigeria D. rotundata OR004226 This study
Tog2 Togo D. rotundata OR004227 This study

IV

SOA Ai/C1 Burkina Faso D. alata AJ244065 [24]
SOA2/C2 Burkina Faso D. alata AJ244066 [24]

CAM2/C31 Cameroon D. cayenensis-rotundata AJ244055 [24]
174/C1 Benin D. cayenensis-rotundata AJ244046 [24]

V
G5/C10 French Guiana D. trifida AJ244062 [24]
G13/C1 French Guiana D. trifida AJ244061 [24]

GY/INRA/C11 French Guiana D. trifida AJ244045 [24]

VI
CGU1/C18 Guadeloupe island D. cayenensis-rotundata AJ244057 [24]

GR/SAVANE/C4 Guadeloupe island D. cayenensis-rotundata AJ244063 [24]

VI
CGU2/C4 Guadeloupe island D. cayenensis-rotundata AJ244044 [24]
AID 10/5 Puerto Rico D. alata AJ244043 [24]

VII 608 Nigeria D. cayenensis-rotundata AJ244047 [24]

VIII DIVIN Guadeloupe Island D. cayenensis-rotundata AJ244060 [24]

IX CAM2 Cameroon D. cayenensis-rotundata AJ244042 [24]

X YMV_DR2 Brazil D. cayenensis-rotundata OK239701 [9]
YMV_DR1 Brazil D. cayenensis-rotundata OK239701 [9]

YMV_I4 Brazil D. cayenensis-rotundata OL739290 [9]

XI Nig2 Nigeria D. rotundata OR004232 This study

XII Tog1 Togo D. rotundata OR004230 This study
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Table 3. Cont.

Group* Isolate Sample Origin Dioscorea spp. Accession
Number Reference

XIII Cam3 Cameroon D. rotundata OR004231 This study

XIV Gh21 Ghana D. alata OQ677010 This study
Cam2 Cameroon D. rotundata OR004209 This study
Gh5 Ghana D. rotundata OQ677014 This study
Gh28 Ghana D. rotundata OR004210 This study
Gh34 Ghana D. rotundata OR004211 This study
Nig1 Nigeria D. rotundata OQ677015 This study
Nig5 Nigeria D. rotundata OR004213 This study
Nig10 Nigeria D. rotundata OR004212 This study
Nig11 Nigeria D. rotundata OR004215 This study
Nig12 Nigeria D. rotundata OR004216 This study
Nig13 Nigeria D. rotundata OR004214 This study
Nig14 Nigeria D. rotundata OQ677016 This study

YMV-NG Nigeria D. rotundata MG711313 [9]

Group*-YMV phylogenetic group following classification by Bousalem et al. [24], Mendoza et al. [9] and
this study.

2.3. New LAMP Primer Design for YMV Detection

A multiple sequence alignment of 125 YMV CP sequences (downloaded from the
NCBI GenBank database on 5 April 2021) was carried out using the Mafft Alignment v7.450
in Geneious Prime®® 2021.1.1 (Biomatters Ltd., Auckland, New Zealand). A consensus
sequence based on the alignment was used to design new LAMP primers using the Primer
Explorer V5 software (http://primerexplorer.jp/e/) and visual adjustment of the primers’
position to avoid mismatches.

2.4. Detection of YMV by RT-LAMP

The same RNAs analysed by RT-PCR were used as templates in RT-LAMP. Two sets of
primers were used (Table 2). Each RT-LAMP reaction was carried out in three replicates.
The RT-LAMP assays were set up as 25 µL reactions containing 1X isothermal master mix
(OptiGene, Horsham, UK), 0.2 µM forward and reverse outer primers (F3 and B3), 1.6 µM
forward and reverse internal primers (FIP and BIP), 0.4 µM forward and reverse loop
primers (LF and LB), and 2 µL of RNA template or crude extract. The assays were run in a
Genie III LAMP machine (OptiGene) at 65 ◦C for 45 min. The subsequent melting process
from 98 ◦C to 80 ◦C was carried out with a ramp rate of −0.05 ◦C/s.

2.5. Sensitivity Test for the Improved YMV RT-LAMP Assay

Purified total RNA (100 ng/µL) from a YMV-infected yam plant (Nig14) was serially
diluted in RNA (100 ng/µL) from a YMV-negative plant (Nig15). Ten-fold serial dilutions
down to 10−9 were tested by RT-LAMP and RT-PCR in duplicate assays. The sensitivity of
the improved RT-LAMP for detecting YMV from crude RNA extracts was also evaluated.
Similar to the purified total RNA, crude RNA extract from Nig14 was diluted ten-fold
down to 10−6 with the crude extract from Nig15 and tested by RT-LAMP.

3. Results
3.1. Indexing of YMV by RT-PCR and RT-LAMP Assays

During routine testing of yam plants for YMV detection, discrepancies were found
between the standard RT-PCR test and the RT-LAMP developed by Nkere et al. [23]. Three
of six samples that tested positive by RT-PCR (Figure 1A), namely Gh3, Gh5, and Nig1,
and that showed mild symptoms of YMV infection (Figure 2) tested negative by RT-LAMP
(Figure 1B). The PCR products from Gh5 and Nig1 were sequenced (GenBank accession
OQ677014 and OQ677015) and showed 99.1% and 98.9% identity, respectively, to Yam
mosaic virus isolate DrCDI1, GenBank AJ305449. In addition to the negative RT-LAMP

http://primerexplorer.jp/e/
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results with samples Gh3, Gh5, and Nig1, there were also late amplification times (>30 min)
obtained for samples Gh1 and Gh2 (Figure 1B).
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Figure 1. The detection of YMV in Dioscorea rotundata samples. (A)-The detection of YMV and actin
by the reverse transcription polymerase chain reaction (RT-PCR) [22,25], M-100 bp Gene ruler DNA
ladder size 100–3000 (ThermoFisher Scientific), Well 1-Gh1, 2-Gh2, 3-Gh3, 4-Gh4, 5-Gh5, 6-Nig1,
+ = YMV-positive control and NTC = non-template control; (B)-The detection of YMV by reverse
transcription loop-mediated isothermal amplification (RT-LAMP) using primers by Nkere et al., 2018;
NTC-Non-template control; +ve = YMV-positive control.
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These unsatisfactory RT-LAMP results prompted the design of new LAMP primers
to increase the specificity of the assay for YMV detection. New YMV LAMP primers
(YMV1-OPT, Figure 3) were designed and used to test the same samples previously tested
by RT-PCR and RT-LAMP using the Nkere et al. [23] primers. The new RT-LAMP using
YMV1-OPT primers, subsequently referred to as the improved RT-LAMP test, detected
YMV from all six samples within 15 min (Figure 4).
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3.2. Evaluation of Improved YMV RT-LAMP Assay Specificity

RNA extracts from leaves of 14 D. alata plants were tested by RT-PCR for YMV and
YMMV, another potyvirus infecting yam. Of these, 9/14 tested positive for YMMV only,
1/14 positive for YMV only, and 1/14 positive for both YMV and YMMV. PCR products of
the YMV-positive samples were Sanger-sequenced by the Source BioScience sequencing
service (Cambridge, UK), which confirmed the presence of YMV.

The same 14 D. alata RNAs were used to test the specificity of the improved RT-LAMP
test. The assay detected YMV from the two YMV-positive samples, DA Nig1 and CTRT127,
detected by RT-PCR (Table 4). All other samples were negative for YMV, confirming that
there was no cross-reactivity of the YMV1-OPT primers with YMMV or the host plant.

Table 4. The detection of YMV from Dioscorea alata samples by RT-PCR and RT-LAMP assays.

Sample ID
RT-PCR RT-LAMP

YMMV YMV YMV

DA Nig1 + + +
DA Nig2 + − −
DA Nig3 − − −
DA Tog2 + − −
DA Tog3 + − −
VU709 + − −
VU711 + − −
VU715 − − −
VU717 + − −
VU724 + − −
VU740 − − −
VU746 + − −

CTRT127 − + +
CTRT268 + − −

YMV-positive control − + +
Non-template control − − −

3.3. Sensitivity of Improved YMV RT-LAMP

The sensitivity of the improved RT-LAMP assay for detecting YMV was compared
to RT-PCR using primers by Mumford et al. [26]. RNA obtained from a YMV-infected D.
rotundata plant was serially diluted ten-fold down to 10−9 using RNA from a YMV-negative
D. rotundata plant. Each dilution was indexed for YMV by RT-PCR and the improved
RT-LAMP assay. YMV positive amplifications were obtained from both assays down to
10−9 (Figure 5A,C). The time required to detect YMV in the most dilute sample (10−9) was
approximately 32 min (Figure 5A). Similarly, serially diluted crude RNA extracts derived
from incubating one YMV-infected leaf disc in PEG buffer were also tested for YMV via the
improved RT-LAMP assay. YMV was detected in the sample RNAs diluted down to 10−2

(Figure 5B).

3.4. Comparison of Conventional RT-PCR and the New RT-LAMP

Purified total RNAs from 53 leaf samples of D. rotundata and D. alata were tested for
YMV using the improved RT-LAMP assay and compared with conventional RT-PCR. A
total of 36 samples tested positive for YMV by both tests (Table 5). With RT-LAMP, positive
amplification signals were obtained in <26 min compared to >150 min required for RT-PCR.
All samples that were negative by RT-LAMP were also negative by RT-PCR. The actin
housekeeping gene was targeted by RT-PCR and used as an internal control to confirm
the good quality of the RNAs, and YMV-negative results were due to a lack of viral RNA
rather than any inhibition of the assay (results not shown).
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Table 5. The detection of YMV in leaves of Dioscorea rotundata and D. alata via reverse transcription
loop-mediated isothermal amplification (RT-LAMP) and reverse transcription polymerase chain
reaction (RT-PCR).

S/N Sample ID Dioscorea spp. RT-PCR
Improved RT-LAMP

YMV Status Time (min:sec)

1 Gh6 D. rotundata − − −
2 Gh7 D. rotundata − − −
3 Gh8 D. rotundata − − −
4 Gh9 D. rotundata − − −
5 Gh10 D. rotundata − − −
6 Gh11 D. rotundata − − −
7 Gh12 D. rotundata − − −
8 Gh13 D. rotundata − − −
9 Gh14 D. rotundata − − −
10 Gh15 D. rotundata + + 13:56
11 Gh16 D. rotundata + + 11:05
12 Gh17 D. rotundata + + 09:53
13 Gh18 D. alata + + 18:16
14 Gh19 D. rotundata + + 11:57
15 Gh20 D. rotundata + + 10:41
16 Gh21 D. alata + + 14:14
17 Gh22 D. alata + + 11:35
18 Gh23 D. rotundata + + 25:02
19 Gh24 D. rotundata − − −
20 Gh25 D. rotundata − − −
21 Gh26 D. rotundata − − −
22 Gh27 D. rotundata + + 08:30
23 Gh28 D. rotundata + + 10:00
24 Gh29 D. rotundata + + 11:15
25 Gh30 D. rotundata + + 09:15
26 Gh31 D. rotundata + + 20:00
27 Gh32 D. rotundata + + 08:30
28 Gh33 D. rotundata + + 09:00
29 Gh34 D. rotundata + + 10:15
30 Gh35 D. rotundata + + 09:30
31 Gh36 D. rotundata + + 10:00
32 Gh37 D. rotundata − − −
33 Nig2 D. rotundata + + 08:15
34 Nig3 D. rotundata + + 10:00
35 Nig4 D. rotundata + + 25:45
36 Nig5 D. rotundata + + 08:00
37 Nig6 D. rotundata + + 10:45
38 Nig7 D. rotundata − − −
39 Nig8 D. rotundata − − −
40 Nig9 D. rotundata − − −
41 Nig10 D. rotundata + + 10:00
42 Nig11 D. rotundata + + 13:00
43 Nig12 D. rotundata + + 09:45
44 Nig13 D. rotundata + + 09:30
45 Nig14 D. rotundata + + 10:05
46 Nig15 D. rotundata − − −
47 Ben1 D. rotundata + + 08:00
48 Tog1 D. rotundata + + 07:15
49 Tog2 D. rotundata + + 10:45
50 Cam1 D. rotundata + + 08:00
51 Cam2 D. rotundata + + 07:30
52 Cam3 D. rotundata + + 12:30
53 Cam4 D. rotundata + + 09:45
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Figure 5. Sensitivity of the improved RT-LAMP and comparison with RT-PCR. (A)-YMV amplification
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total RNA; M-1 kb DNA ladder, size 0.5 kb−10 kb (New England Biolabs); S-Stock RNA (100 ng/µL);
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3.5. Sequence Identity and Phylogenetic Analysis of YMV Amplicons

The mean pairwise nucleotide identity of Sanger-sequenced PCR products from YMV-
positive samples (n = 36) obtained in this study was 97.1%. Nucleotide pairwise comparison
of these sequences with YMV CP sequences downloaded from NCBI GenBank (n = 30)
revealed 89.2–99% nucleotide identities, higher than the proposed International Commit-
tee on Taxonomy of Viruses (ICTV) criterion of <76–77% nucleotide identity for species
demarcation of potyvirus CP gene [32,33].

Phylogenetic analysis clustered the YMV sequences from this study into six phyloge-
netic groups (Figure 6), with a percentage identity matrix of >97–100% within groups and
<97% between groups (Supplementary Table S1). Isolates Ben1, Cam4, Gh2, Gh3, Gh15,
Gh17, Gh18, Gh19, Gh20, Gh23, Gh27, Gh29, Gh30, Gh32, Gh33, Gh35, Gh36, Nig3, Nig4,
Nig6, and Tog2, from samples collected from Benin, Cameroon, Ghana, Nigeria, and Togo,
clustered in group III, an African group as classified by Bousalem et al. [24]. The other
16 isolates formed five new groups, XI, XII, XIII, XIV, and XV. Isolates Nig2, Tog1, Cam3,
and Gh21 stood out as separate groups labelled as XI, XII, XIII, and XIV, respectively, and
had pairwise nucleotide identities of <97% compared to sequences in other phylogenetic
groups (Figure 6). Isolates Cam2, Gh5, Gh28, Gh34, Nig1, Nig5, Nig10, Nig11, Nig12, Nig13,
and Nig14 clustered together with a YMV reference genome from Nigeria, MG711313 [8] to
form group XV, which also had a pairwise nucleotide identity of <97% with sequences in
other phylogenetic groups (Figure 6).

Sequences of YMV isolates obtained from this study were tested for recombination
using the Recombination Detection Program (RDP) v.4.101. [34]. No recombination was
detected among the YMV sequences.
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Figure 6. A phylogenetic tree based on the partial nucleotide sequence of the coat protein region
of YMV. (H) YMV CP sequences from D. rotundata obtained in this study; (H) YMV CP sequences
from D. alata obtained in this study; (•) YMV CP sequences from D. rotundata downloaded from
NCBI; (•) the sequence of Pepper veinal mottle virus partial CP gene used as an outgroup. The tree
was generated using the neighbour-joining method in MEGA-X with 1000 bootstrap replications.
Branches < 70% were collapsed. The scale bar represents the number of nucleotide substitutions
per site.
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4. Discussion

This study aimed to strengthen virus diagnostics in the seed yam systems by im-
proving existing diagnostic tests because virus detection is crucial for efficient disease
management in clean seed propagation systems, most notably during sanitation programs
(review by Diouf et al. [3]). An RT-LAMP assay improved in both its specificity and sensi-
tivity for YMV, one of the most economically damaging yam viruses globally, has in this
study been developed to assist in the identifying of virus-free yam planting materials.

The false-negative results obtained by previously reported YMV LAMP primers [23]
appear to be due to them having been designed from an alignment of the then available
YMV coat protein sequences not fully encompassing diversity in the primer targeted
regions. Aligning these primers to 125 YMV coat protein sequences revealed mismatches at
the 3′ end of the primers (Supplementary Figure S1). Studies have shown that 3′ terminal
mismatches are detrimental to nucleic acid-based amplifications, resulting in a decreased
amplification copy number or complete inhibition of amplification, hence providing false-
negative results [35–38]. This prompted the need to develop a new YMV LAMP primer set.

The new RT-LAMP primer set, YMV1-OPT, demonstrated higher specificity than the
existing RT-LAMP primer set [23], as it detected YMV from samples that tested nega-
tive with the existing primer set. This is assumed to be due to the YMV1-OPT primers
having been designed to minimise the mismatches to 125 YMV sequences from the Gen-
Bank database and inserting degenerate codes at 3′ ends where mismatches could not be
avoided [39–41].

Multiple primer combinations were evaluated during the design and selection process
of the YMV1-OPT primers (results not shown). Mismatches were avoided at the 3′ ends to
the greatest extent; however, where inevitable, nucleotide mismatches with <20% of the
aligned sequences in one or two positions were tolerated for the outer and loop primers.
Previous studies have shown that mismatches are better tolerated in the outer primers than
inner primers [42,43]. This could be because the inner primers initiate the amplification
process in LAMP assays, hence the need for specificity. The FIP and BIP primers are a
fusion of F1C and F2, and B1C and B2 primers, respectively, with the F2 and B2 regions at
the 3′ ends and F1C and B1C at the 5′ ends. Hence, mismatches at the 3′ ends of the F2 and
B2 primers were replaced with degenerate codes, while those at the F1C and B1C regions
were ignored.

Among the YMV isolates sequenced in this study, 21 clustered with isolates belonging
to group III were reported in previous studies [9,24], while 11 clustered with a YMV
reference genome, MG711313, from Nigeria [8]. According to the classification described
by Bousalem et al. [24], Groups I, II, III, IV, VII, and IX comprise samples collected from
the African region. An in-silico analysis of sequence alignments of the YMV1-OPT primers
with representative sequences of these African groups indicates that the primers will detect
YMV isolates from throughout the West African region. The remaining four YMV isolates,
Gh21, Cam3, Tog1, and Nig2, formed four distinct groups, suggesting new phylogenetic
groups, perhaps associated with isolates from other parts of the world. However, due to
limited resources, only samples obtained from West Africa were used for this study. Further
studies will be required to validate the detection of YMV from other yam-growing regions
of the world using the YMV1-OPT primers.

The inability of RT-PCR to detect YMV from sample 4 (Figure 2) that tested positive by
RT-LAMP could be due to PCR-inhibitory substances co-extracted with the yam RNA since
the yam actin gene was also not detected in the same sample. Mumford and Seal [26] re-
ported that yam tissues contain some PCR-inhibitory substances that could be co-extracted
with the RNA. This suggests a higher tolerance of RT-LAMP to inhibitors than RT-PCR,
which has also been reported in other studies [23,44,45].

Previous studies have shown that RT-LAMP is at least 100 times more sensitive than
RT-PCR [23,46,47]. Nkere et al. [23] reported a sensitivity limit of 1000 fg/µL–100 fg/µL
and 0.1 ng/µL–0.01 ng/µL for YMV LAMP primers, and YMV-F3x and YMV-B3x PCR
primers, respectively. However, in this study, YMV1-OPT primers and YMV CP 1F and
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YMV UTR 1R PCR primers [25] both detected YMV from an infected sample down to the
lowest dilution tested, 0.1 fg/µL (10−9). However, the differences in sensitivities could
be due to variations in the YMV concentration of tested samples. YMV amplification was
observed at ~32 min in the most dilute RNA sample, 0.1 fg/µL, suggesting that 40 min was
sufficient to detect YMV in samples with low virus titre. The improved RT-LAMP assay
also detected YMV from crude RNA extracts diluted down to 10−2, indicating that this
approach can be used for rapid detection and in-field diagnosis of YMV. Overall, these
imply that the YMV1-OPT primers are highly sensitive and valuable for laboratory-based
and in-field detection of YMV.

Highly specific and sensitive diagnostic tests are required for the reliable diagnosis
of plant viruses [22,26,28,48]. However, the development of diagnostic tests is an ongoing
task. Diagnostic primers must be reviewed regularly and updated as new virus isolates
are reported, as this would prevent false-negative results that might arise from potential
diversity in such isolates [24,28,49], as observed in this study. The improved RT-LAMP
assay will enhance the specificity of YMV detection in the production of virus-free seed
yams in West Africa.

5. Conclusions

The routine detection of YMV via RT-LAMP using crude RNA extracts offers a signif-
icant cost and time-saving alternative to RT-PCR assays being used in the seed systems,
which require extensive RNA extraction procedures. Furthermore, amplification products
are visualised by monitoring the fluorescence generated by positive samples in real-time,
thus reducing the likelihood of post-assay contaminations associated with PCR assays. This
study presents an RT-LAMP assay with improved specificity and sensitivity for detecting
YMV, which can be implemented at several stages of the seed multiplication process to
eliminate YMV-positive samples quickly and cost-effectively. The YMV1-OPT primers
designed in this study are being used to develop a ready-to-use YMV commercial kit
(YMV1-OPT Isothermal kit, OptiGene). This will reduce the assay preparation time and the
risk of contamination from the handling process.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15071592/s1, Figure S1: Alignment of YMV coat protein sequences,
highlighting the YMV LAMP primers by Nkere et al. [23]; Table S1: Percentage identity matrix of
sequence alignment used for phylogenetic analysis.
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