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Abstract: Modeling the windborne transmission of aerosolized pathogens is challenging. We adapted
an atmospheric dispersion model named the Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model to simulate the windborne dispersion of porcine reproductive and respiratory
syndrome virus (PRRSv) between swine farms and incorporated the findings into an outbreak
investigation. The risk was estimated semi-quantitatively based on the cumulative daily deposition
of windborne particles and the distance to the closest emitting farm with an ongoing outbreak. Five
years of data (2014:2018) were used to study the seasonal differences of the deposition thresholds of
the airborne particles containing PRRSv and to evaluate the model in relation to risk prediction and
barn air filtration. When the 14-day cumulative deposition was considered, in winter, above-threshold
particle depositions would reach up to 30 km from emitting farms with 84% of them being within
10 km. Long-distance pathogen transmission was highest in winter and fall, lower in spring, and
least in summer. The model successfully replicated the observed seasonality of PRRSv, where fall
and winter posed a higher risk for outbreaks. Reaching the humidity and temperature thresholds
tolerated by the virus in spring and summer reduced the survival and infectivity of aerosols beyond
10–20 km. Within the data limitations of voluntary participation, when wind was assumed to be the
sole route of PRRSv transmission, the predictive performance of the model was fair with >0.64 AUC.
Barn air filtration was associated with fewer outbreaks, particularly when exposed to high levels of
viral particles. This study confirms the usefulness of the HYSPLIT model as a tool when determining
seasonal effects and distances and informs the near real-time risk of windborne PRRSv transmission
that can be useful in future outbreak investigations and for implementing timely control measures.

Keywords: pig diseases; spatial epidemiology; Lagrangian models; aerial dispersion; HYSPLIT;
airborne; epidemiology of PRRSv

1. Background

Porcine reproductive and respiratory syndrome virus (PRRSv) is recognized as the
costliest endemic swine pathogen affecting the U.S. with an estimated cost of more than
$664 million per year due to production losses, treatment costs, and excessive mortality [1,2].
Transmission of PRRSV between farms is primarily through/mediated by animal move-
ment [3], contact with infected gilts and sows [4,5], and airborne/windborne transmission
of aerosolized particles [6,7]. Two recent reviews by Anderson et al., 2017 [8] and Arruda
et al., 2019 [9] identified many knowledge gaps related to the aerosol transmission of PRRSv,
including the challenge in assessing the windborne local area transmission of aerosolized
particles containing viable PRRSv in a near real-time manner and allotting the level of risk.

Virus-containing aerosols in animal disease settings could result from the sneezing
or coughing of infected animals, dried feces, dust, feed, and debris that includes hair
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containing the pathogen [10,11]. Windborne transmission occurs when aerosol particles
from infected sources generate a plume that can move in horizontal, vertical, and both
horizontal and vertical directions and reaches a recipient host. Many authors have studied
such dispersal in PRRSv and have revealed that windborne transmission could be a possible
transmission route for PRRSv. Dee et al. [6] and Otake et al. [7] observed how far PRRSv
moved from an infected farm and found viral particles a long distance away from the
infected farm (4.7 km and 9.1 km, respectively). Survival of PRRSv released into the air is
largely related to atmospheric conditions and aerosol characteristics. Meteorological and
environmental factors, including directional winds of low velocity with sporadic gusts,
low temperatures, high relative humidity, and low sunlight levels, are also suggested to
influence the survival of PRRSv in air [4,6,9]. Therefore, when modeling the windborne dis-
persion of the virus-containing aerosols, the consideration of virological, epidemiological,
and meteorological factors is critical.

Atmospheric dispersion models (ADMs), such as the Hybrid Single-Particle La-
grangian Integrated Trajectory (HYSPLIT) model, enable the simulation of the windborne
transmission in a near real-time manner [12]. ADMs are computer models that run these
ADM algorithms to simulate atmospheric dispersion as well as the chemical and physi-
cal processes of aerosolized particles and gases (i.e., plume) to calculate the aerosolized
particles deposited at various downwind locations. HYSPLIT was developed jointly by
the Air Research Laboratory of the National Oceanic and Atmospheric Administration
(NOAA: https://www.noaa.gov; accessed on 1 January 2019, College Park, MD, USA)
and the Australian Bureau of Meteorology [13–18]. The HYSPLIT model is available
free to registered and non-registered users through the NOAA Air Resource Laboratory
(https://www.ready.noaa.gov/HYSPLIT.php; accessed on 20 January 2020) in web, desk-
top, or LINUX-based formats.

In a previous study, which used a two-week period between March and April 2017,
we estimated that aerosolized particles emitted from an infected farm could reach suscep-
tible farms within 25 km with 53.66% being within 10 km [12]. However, the previous
case study did not determine the model validity and did not incorporate the tolerance
levels of temperature, UV tolerance, and humidity into the simulations, and the potential
seasonal variations and the protective (or lack thereof) effect of the installation of barn air
filters were not determined. Moreover, the software user interface used by Kanankege
et al., 2022 [12] was not widely available compared to the NOAA HYSPLIT modelling
software. Therefore, in this study, we used 4 years of epidemiological data (2014–2018)
available from the Morrison Swine Health Monitoring Project (MSHMP) of the Univer-
sity of Minnesota [19,20] (https://vetmed.umn.edu/centers-programs/swine-program/
outreach-leman-mshmp/mshmp; accessed on 20 June 2021) to address the above gaps and
further investigate the deposition thresholds of the airborne particles containing PRRSv. As
performed for the previous study, we hypothesize that the local windborne spread of PRRSv
is semi-quantifiable in relation to the predisposing meteorological and seasonal factors. Our
primary goal was to compare the deposition of windborne aerosolized particles containing
PRRSv across the four seasons. Additionally, a secondary objective was to test whether
particle or full air filtration could protect farms against windborne transmission using this
semi-quantitative estimation. We propose that the study presented here further confirms
the use of ADMs in modeling and investigating between-farm windborne transmissions of
PRRSv as well as other comparable respiratory pathogenic viruses.

2. Data and Methods
2.1. ADM Modelling Platform

The long-distance, between-farm windborne dispersion of PRRSv was modeled using
the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which has
been previously used to model the trajectories and dispersion of air pollutants [17–22].
The source code of HYSPLIT can be compiled onto a variety of operating systems and
computing environments, including Microsoft Windows, Apple OSX, and LINUX. The
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graphical user interface (GUI) is available on Windows and OSX and allows for less
computing-experienced users to easily use HYSPLIT. However, using a built-in GUI for
large datasets is not a good idea because uploading or downloading large numbers of
files over the web is slow, and if it fails before completion, the entire upload or download
process must be restarted. The LINUX executable, on the other hand, enabled us to analyze
hundreds of data sets at once in a reasonable amount of time. For example, HYSPLIT
is a spatial explicit model that requires an input file that includes a geographic location,
simulation time, and date. With the graphical-based tool, only one file is created and
accepted to execute; however, the LINUX executable is enabled to process multiple input
files by iterating in parallel. Based on this advantage, we used HYSPLIT on the LINUX
platform for this study.

2.2. HYSPLIT–LINUX Model Inputs

To execute the HYSPLIT models in LINUX, three input files, called SETUP.CFG
(File S1), ASCDATA.cfg (File S2), CONTROL (File S3), and meteorological data, are re-
quired. A name change of the input files is not allowed, and files must be in the same
directory to run properly. The control file is divided into five sections: initial setup, pol-
lutant parameters, grid setup, sampling setup, and particle parameters. An example of
the three files is included as supplement files. The emission simulations were set to start
at 5 a.m. every day for a period of 24 h, and the depositions were measured daily (i.e.,
every 24 h). The parameters relevant to PRRSv, including the epidemiological features
of the virus and the survival of the aerosolized virus in relation to key meteorological
features, were incorporated according to Kanankege et al., 2022 [12]. Specifically, these
included the aerosol particle diameter, density, release height and quantity, estimates for
the maximum time the virus could remain infective in the air, and estimated decay. In
the absence of PRRSv specific values, such as the virus decay in wind, the relevant values
that were used in existing and validated wind models for Foot and Mouth Disease virus
(FMDV) were used [21,22]. HYSPLIT provides additional parameters that can be modified
to explicitly model the windborne spread of FMDV [23]. The meteorological parameters for
FMDV included the air temperature (default value: 24 Celsius), relative humidity (default
value: 60%), and viral decay constant (120 min). The relative humidity was adapted to
50% because this was suggested by previous studies [24,25]. The air temperature threshold
was set to 30 Celsius based on an earlier study [24] and the fact that the concentration of
virus particles decreases when the temperature is less than 30 Celsius. Finally, the viral
half-life parameter was disabled, but the maximum time in air was set to 72 h from the
source term parameter. A dispersal window of two weeks, during which the incursion
event, i.e., as a result of receiving a sufficient number of aerosolized particles containing the
virus and, therefore, an outbreak in a susceptible farm was most likely to have occurred,
was assumed. Further details on the data collection, choice of parameter values, and choice
of the two-week period are provided in the previous study [12]. Forward dispersion model
runs were performed using the TAPPAS Web API with direct access to HYSPLIT running
on a high-performance cloud-computing server. The objective of the forward runs was to
assign the risk of PRRSv introduction based on the deposition of particles on all farms. The
metric used to assess the potential amount of virus being deposited on susceptible farms
was the cumulative 14-day deposition.

The maximum altitude was set to 10,000 m above the ground level (m-AGL), i.e., once
the top of the model is defined, the aerosolized particles that reach the top are reflected, i.e.,
bounced back into the model during the simulations. Both ‘dry’ (gravitational) and ‘wet’
(rainfall) deposition were permitted. These deposition parameters include velocity, average
weight, A-Ratio, D-Ratio, effective Henry’s constant, in-cloud, and below-cloud [26,27].
In the model runs, the vertical velocity of the particles was defined with meteorological
data. For the simplicity of the analysis, the emitting farms were considered to excrete
the same amount of the virus every hour throughout the model run time. The particles
were transported with the mean wind plus a random component of motion to account
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for atmospheric turbulence making the cluster of particles expand in time and space. All
other settings, such as horizontal and vertical mixing coefficients, were used at the default
settings of HYSPLIT. Further details on Lagrangian models [28], dry deposition of airborne
viruses [29], and the dry and wet deposition of atmospheric gases and modeling dry and
wet deposition on HYSPLIT are found elsewhere [14,18]. The limitations of HYSPLIT and
similar ADMs are discussed elsewhere [30,31].

To utilize this tool, users need to be familiar with LINUX and the coordinates of
the farms they wish to analyze. By following the methods and control setup outlined in
our study, users can easily connect to the tool and input the necessary file combinations
and latitude–longitude data. The supplement provides further details on the tool’s setup
and usage, facilitating the collective analysis of farm data. By incorporating this tool into
outbreak investigations, stakeholders can gain timely information on PRRSv transmission
dynamics, aiding in targeted interventions and control measures.

2.3. Disease Data and the Partitioning of the Study Area

As conducted in the previous study [12], farms with an ongoing PRRSv outbreak were
considered as emitting farms, and the farm locations and filtration data were acquired
from MSHMP (database https://vetmed.umn.edu/centers-programs/swine-program/
outreach-leman-mshmp/mshmp; accessed on 20 June 2021 [12]). For this study, the data
were collected from 167 swine farms in Minnesota, which comprised commercial (54%),
farrow-to-wean (20%), farrow-to-finish (15%), multiplier (6%), boar stud (1%), sow (2%),
and other (2%) types (see Figure 1). These farms had pig populations ranging from 30 to
6000 with an average of 1975 pigs per farm. The study period was selected to be from
15 January 2014 to 26 December 2018. We defined an outbreak as farms that were detected
as positive for PRRSv and were experiencing and reporting an ongoing status of the disease
on the premises in the relevant week regardless of the PRRSv lineages. Given that the
farms may enter, exit, or not submit data for certain weeks, the total number of farms in the
monitoring for each week is expected to vary.

Viruses 2023, 15, x FOR PEER REVIEW 4 of 14 
 

 

average weight, A-Ratio, D-Ratio, effective Henry’s constant, in-cloud, and below-cloud 
[26,27]. In the model runs, the vertical velocity of the particles was defined with 
meteorological data. For the simplicity of the analysis, the emitting farms were considered 
to excrete the same amount of the virus every hour throughout the model run time. The 
particles were transported with the mean wind plus a random component of motion to 
account for atmospheric turbulence making the cluster of particles expand in time and 
space. All other settings, such as horizontal and vertical mixing coefficients, were used at 
the default settings of HYSPLIT. Further details on Lagrangian models [28], dry 
deposition of airborne viruses [29], and the dry and wet deposition of atmospheric gases 
and modeling dry and wet deposition on HYSPLIT are found elsewhere [14,18]. The 
limitations of HYSPLIT and similar ADMs are discussed elsewhere [30,31]. 

To utilize this tool, users need to be familiar with LINUX and the coordinates of the 
farms they wish to analyze. By following the methods and control setup outlined in our 
study, users can easily connect to the tool and input the necessary file combinations and 
latitude–longitude data. The supplement provides further details on the tool’s setup and 
usage, facilitating the collective analysis of farm data. By incorporating this tool into 
outbreak investigations, stakeholders can gain timely information on PRRSv transmission 
dynamics, aiding in targeted interventions and control measures. 

2.3. Disease Data and the Partitioning of the Study Area 
As conducted in the previous study [12], farms with an ongoing PRRSv outbreak 

were considered as emitting farms, and the farm locations and filtration data were 
acquired from MSHMP (database https://vetmed.umn.edu/centers-programs/swine-
program/outreach-leman-mshmp/mshmp; accessed on 20 June 2021; [12]). For this study, 
the data were collected from 167 swine farms in Minnesota, which comprised commercial 
(54%), farrow-to-wean (20%), farrow-to-finish (15%), multiplier (6%), boar stud (1%), sow 
(2%), and other (2%) types (see Figure 1). These farms had pig populations ranging from 
30 to 6000 with an average of 1975 pigs per farm. The study period was selected to be from 
15 January 2014 to 26 December 2018. We defined an outbreak as farms that were detected 
as positive for PRRSv and were experiencing and reporting an ongoing status of the 
disease on the premises in the relevant week regardless of the PRRSv lineages. Given that 
the farms may enter, exit, or not submit data for certain weeks, the total number of farms 
in the monitoring for each week is expected to vary. 
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Depositions over two weeks from outbreak farms was considered a sufficient period
to result in an infection at a down-wind farm, as conducted in our previous study [12].
There were a total of 259 outbreaks, i.e., cases of emitting farms, in the 5-year study period:
between 15 January 2014 and 26 December 2018. This resulted in 3626 simulations of particle
emission and deposition (i.e., 14 days × 259 = 3626) (see Table S1 in the Supplemental
Material). In the study area at a given two-week period, there were between 16 and
56 emitting farms.

2.4. Wind Data

Meteorological data are one of the required components for using HYSPLIT to simulate
and analyze the transport and dispersion of air pollutants. The HYSPLIT program can be run
with a variety of meteorological data, including reanalysis data from the National Centers for
Environmental Prediction (NCEP), which was used for this study [33] (ftp://arlftp.arlhq.noaa.
gov/pub/archives/reanalysis, accessed on 10 August 2022). When using NCEP reanalysis
data, HYSPLIT calculates the movement of pollutants over time using information from the
reanalysis dataset on atmospheric winds and temperatures. This enables a realistic simulation
of pollutant transport and dispersion while accounting for the effects of weather patterns
and variability.

2.5. HYSPLIT–LINUX Model Outputs

The key outputs of the models are quantitative maps of the dispersed particles on
the terrain over a two-week period (plume deposition per square area mass/m2), i.e.,
the ‘footprint’ of aerosol deposition. The usual HYSPLIT deposition output results in
the mass of gases and particles (i.e., plume) per square meter. The daily and cumulative
deposition values over the 14-day period were regarded as alternative approximate risk
values indicating the likelihood of the introduction of the virus into susceptible farms. The
maximum particles deposited at each of the susceptible farm locations were extracted by
intersecting the farm locations with the output maps using the s2_closest_feature from
the s2 R package [34]. The particles deposited at each susceptible farm during the two-
week period were used to represent the “exposure hazard” (i.e., potential for pathogen
introduction via aerosols).

2.6. Data Analysis: Seasonality and Barn Air Filtration

In this retrospective modeling exercise, it is challenging to determine an infectious
dose that is sufficient to cause the windborne disease. To determine a threshold deposition
for infection, we presumed that farm-to-farm aerosol infection is uncommon, and only the
higher deposition values might result in a farm becoming infected by this route. To estimate
this, we produced histograms of the deposition values for three metrics and applied natural
breaks/Jenks classification [35] for the cumulative, median, and maximum daily deposition.
The frequency distributions were divided into three classes using two natural breaks
(i.e., Jenks). We presumed under the assumption that a minimal exposure dose would
likely not lead to infection. To transition from merely identifying the exposure hazard to
assessing the potential risk of acquiring the infection, we implemented an infection dose
threshold [35]. As discussed in the Kanankege et al., 2022 [12] study on HYSPLIT applicable
parameters for PRRSv, in the absence of field data relevant to the farms in the study, we
determined these thresholds by examining the histograms of the cumulative, median daily,
and maximum daily concentrations. Applying these thresholds to the susceptible farms
that were classified as a ‘Farm at risk’, we thus were able to classify them as receiving or
not receiving a potentially sufficient infecting dose. The distance to the farms at risk from
the closest emitting farm that is upwind was calculated. In this distance calculation, a
farm may be categorized as at risk under the threshold for cumulative deposition over the
14-day period. To compare the deposition of airborne particles containing PRRSv across
the seasons, the cumulative 14-day deposition on a farm was summarized by four seasons.
The seasons were defined as spring (3/21 through 6/20), summer (6/21 through 9/20), fall
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(9/21 through 12/20), and winter (12/21 through 3/20) [36]. After 14 days of deposition
and applying natural break thresholds to the three-deposition metric of 14-day cumulative,
median, and maximum daily deposition, the following values were determined as the
deposition thresholds. Natural break of the distribution of the depositions were used to
assign the threshold to determine high-risk farms, i.e., farms were classified as high-risk
farms if their exposure to the particles exceeded the first threshold value, indicating a
sufficient number of particles to pose a risk for airborne introduction of the pathogen.

To determine whether air-filtration systems could effectively reduce the risk of infec-
tion among pigs and prevent the spread of the virus, we incorporated the filtration status
of the farm when further analyzing particle deposition and new cases. While the filtration
status of some farms changed over time, the analysis included filtered (n = 49), partial
(n = 15), not filtered (n = 56), and unknown (n = 47) farms. Farms with unknown filtration
status were excluded from this comparison, and the transmission was considered primarily
due to windborne transmission.

2.7. Model Cross-Validation: AUC, Sensitivity, and Specificity

The receiver operating characteristic (ROC) curve and the area under the curve (AUC)
are widely used in various research domains to evaluate the performance of predictive
models. The ROC curve is a graphical representation of the relationship between the
sensitivity (true positive rate) and specificity (true negative rate) of a model at different
decision thresholds. The AUC is a summary statistic that quantifies the overall performance
of the model across all possible decision thresholds, ranging from 0.5 (chance performance)
to 1.0 (perfect discrimination). To evaluate the performance of the predictive models, the
result of the 14-day cumulative concentration of the farms with and without a new outbreak
was used. Out of 269 total instances, those that had at least one newly infected farm were
chosen, resulting in 118 cases for analysis. The 14-day plume concentration value for only
uninfected farms was extracted and identified new outbreak status for each farm. Then, all
the 14-day cumulative concentration data were grouped by season, and we compared the
farms with a new outbreak to those without using an incremental threshold for each of the
four seasons.

3. Results
3.1. HYSPLIT–LINUX Deposition Thresholds and Seasonality

The deposition thresholds determined at the first natural break of the particle deposi-
tion varied by season (Figure 2 and Table 1). Across all three indices of 14-day cumulative
deposition, median daily deposition, and maximum daily deposition, both spring and
summer had higher deposition thresholds compared to fall and winter. Yet, the particle
travel distances with wind were shorter in both spring and summer (Table 2). Whereas, in
the fall and winter, the deposition thresholds were low but exhibited greater particle travel
distances (Table 2). This resulted in the highest numbers of above-threshold cumulative
and median particle deposition at distances away from an emitting farm to occur in the
winter months (i.e., December–March), making winter the highest risk period for long
distance windborne transmission of PRRSv (Table 2). This was followed by fall, spring, and
summer with the least risk for long-distance transmissions via wind.
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Table 1. Particle deposition thresholds for three indices: the 14-day cumulative, median daily, and
maximum (mass/m2), and the number of farms ≥ the threshold at each season for all simulations
over the 5-year study period.

Deposition
Index Season

Threshold at
Natural Break 1
(mass/m2)

High-Risk
Farms above
Threshold over
All Simulations

Number of
Unique Farms
at High-Risk

Cumulative
14-day
deposition

Fall 9.43 × 10−6 130 40

Winter 8.13 × 10−6 236 47

Spring 2.04 × 10−5 114 30

Summer 2.30 × 10−5 64 19

Median daily
deposition

Fall 4.37 × 10−7 77 30

Winter 4.07 × 10−7 168 40

Spring 8.22 × 10−7 89 31

Summer 5.75 × 10−7 100 30

Maximum daily
deposition

Fall 4.81 × 10−6 104 32

Winter 3.88 × 10−6 110 34

Spring 6.11 × 10−6 198 52

Summer 5.89 × 10−6 190 48

Table 2. Distance to high-risk farms from an emitting farm by season.

1. Cumulative 14-day deposition.

Number of high-risk farms

Season 5 km 5–10 km 10–20 km 20–30 km >30 km

Fall 62 (48%) 43 (33%) 25 (19%) 0 0

Winter 146 (62%) 51 (22%) 36 (15%) 3 (1%) 0

Spring 89 (78%) 12 (11%) 13 (11%) 0 0

Summer 59 (92%) 3 (5%) 2 (3%) 0 0

2. Median daily deposition.

Number of high-risk farms

Season 5 km 5–10 km 10–20 km 20–30 km >30 km

Fall 42 (54%) 25 (33%) 8 (10%) 2 (3%) 0

Winter 95 (56%) 48 (29%) 22 (13%) 3 (2%) 0

Spring 65 (73%) 10 (11%) 14 (16%) 0 0

Summer 69 (69%) 22 (22%) 9 (9%) 0 0

3. Maximum daily deposition.

Number of high-risk farms

Season 5 km 5–10 km 10–20 km 20–30 km >30 km

Fall 38 (37%) 35 (34%) 31 (30%) 0 0

Winter 69 (63%) 16 (14%) 22 (20%) 3 (3%) 0

Spring 106 (54%) 52 (26%) 38 (19%) 2 (1%) 0

Summer 120 (63%) 33 (17%) 29 (15%) 5 (3%) 3 (2%)
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According to the 14-day cumulative deposition data, during the winter season, par-
ticles were found to reach distances of up to 30 km with 62% of them being within 5 km.
In the fall season, particles reached up to 20 km with 48% within 5 km. For the spring
season, particles reached up to 20 km with 78% within 5 km. Similarly, during the summer
season, particles reached up to 20 km with 92% within 5 km. While occasional long-distance
depositions beyond 20 km were observed in the summer season according to the maximum
daily index (Table 2), the cumulative deposition analysis indicated that only 8% of particles
persisted beyond 5 km. This is because the simulations would cease the particles’ existence
when the temperature or humidity thresholds of PRRSv were reached. In contrast, the fall
and winter seasons exhibited a cumulative deposition above the threshold at distances of
10 km and beyond. The fall season had the highest percentage (19%) followed by winter
(16%). Consequently, these observations indicate that the fall and winter seasons may
pose a higher risk for long-distance pathogen transmission compared to the spring and
summer seasons.

3.2. The Effect of Barn Air Filtration

The analysis showed that the probability of having a PRRSv outbreak was similar
between filtered and non-filtered farms when the farm was not exposed to a critical level of
the virus in the air (as defined by the threshold) (61.5% vs. 63%, Figure 3). This could be due
to various factors, such as virus transmission through movements or re-emergence of the
virus in an already infected farm. However, when the farm was exposed to a critical level
of PRRSv in the air, the probability of having an outbreak was almost four times higher for
non-filtered farms compared to filtered farms (3.7/0.96 = 3.85; red circled in Figure 3). The
findings suggest that farms that implemented filtration measures had a lower incidence
of reported PRRSv outbreaks compared to farms that were only partially or not filtered,
particularly when exposed to high levels of viral particles, and were, therefore, considered
to be at high risk.
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Figure 3. Decision tree analysis comparing the farms at risk, outbreaks, and barn filtration. Farms
receiving depositions above threshold were ‘at risk’. Figure adapted from [37].

3.3. Model Cross-Validation: AUC, Sensitivity, and Specificity

To further evaluate the predictive performance of our model, we calculated the AUC
value for each season. Our results showed that our model had the highest predictive
accuracy during the winter season and the lowest during the summer season. The spring
and fall seasons showed intermediate predictive accuracy. Table 3 summarizes the true
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positive, false negative, false positive, true negative, sensitivity, and specificity at the two
natural break thresholds for each season. The threshold for each season with the highest
possible combination value of sensitivity and specificity is also shown in Table 3.

Table 3. Summary of model performance in predicting the risk of PRRSv outbreak at farms by season.

Season AUC

Threshold
(14-Day
Cumulative
Concentration)

Newly Infected Farms
(Spring = 49, Summer = 30,
Fall = 55, Winter = 34)

No Infected Farms
(Spring = 4247, Summer = 2623,
Fall = 5322, Winter = 3169)

Sensitivity Specificity
True
Positive
(TP)

False
Negative
(FN)

False
Positive (FP)

True Negative
(TN)

Spring 0.69

2.04 × 10−5 2 47 65 4182 0.04 0.985

7.31 × 10−6 11 38 443 3804 0.22 0.896

1.98 × 10−6 38 11 1860 2387 0.775 0.562

Summer 0.64

2.30 × 10−5 1 29 14 2609 0.033 0.995

6.56 × 10−6 5 25 180 2443 0.167 0.931

2.22 × 10−6 19 11 797 1826 0.633 0.696

Fall 0.67

9.43 × 10−6 1 54 83 5239 0.018 0.984

3.60 × 10−6 22 33 838 4484 0.40 0.842

2.85 × 10−6 29 26 1227 4095 0.527 0.769

Winter 0.70

8.13 × 10−6 5 29 111 3058 0.147 0.965

3.35 × 10−6 16 18 757 2412 0.470 0.761

2.92 × 10−6 21 13 918 2251 0.617 0.710

4. Discussion

In this semi-quantitative study, we adapted NOAA–HYSPLIT–LINUX to model the
windborne dispersion of aerosolized PRRSv between farms and determined the varying
levels of windborne transmission of PRRSv-containing particles and the influence of barn
air filtration to potentially prevent the disease. In a previous study, which used a two-week
example three-week period between March and April 2017, we estimated that aerosolized
particles emitted from an infected farm could reach susceptible farms within 25 km with
53.66% of the farms being within 10 km. Extending the objectives further, in this 5-year
study, we incorporated virus survival and decay characteristics into the wind models. With
this modeling exercise, we confirm the usefulness of the HYSPLIT models as a tool when
determining seasonal effects and distances, and inform the near real-time risk of windborne
PRRSv transmission that can be useful in future outbreak investigations and for planning
control measures, such as renewal of air filtration or determining the ineffective ones.

Moreover, this tool holds significant potential in determining the risk differences
among seasons. Previous studies have consistently demonstrated seasonal variations in
PRRSv incidence [38,39]. Typically, PRRSv in the Midwest of the USA exhibits higher
incidence rates during fall and winter with reduced activity in spring and summer. The
simulation of airborne transmission in Table 2 provides evidence to support the observation
of seasonality in PRRSv outbreaks. The results indicated that the distance from an emitting
farm to a susceptible farm that could receive an above-threshold ‘infectious’ number of
particles could vastly vary by season. Specifically, when the 14-day cumulative deposition
was considered, summer particles would reach up to 20 km with 92% being with in 5 km,
fall particles would reach up to 20 km with 48% within 5 km, winter particles would reach
up to 30 km with 62% within 5 km, and spring particles would reach up to 20 km with
78% within 5 km. The temperature and humidity during summers influenced the viral
particles; they would not survive or would not be infective long enough beyond 10–20 km
and, therefore, the risk of pathogen introduction was determined to be low compared to
the fall and winter seasons (Table 2). This study also suggested that the farms that were
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at high risk based on the above threshold particle depositions but were filtered tended to
have less reported outbreaks compared to the partially filtered or non-filtered farms.

Barn air filtration was associated with fewer outbreaks, particularly when exposed
to high levels of viral particles. This provides valuable insights into the effectiveness of
filtration systems in swine farming areas. Modeling the risk of windborne transmission
using an ADM like HYSPLIT offers several advantages over short-distance experiments
conducted in the field. An experimental study reported that air-filtration systems were
effective in reducing the aerosol transmission of PRRSv among pigs housed in chambers
connected by an airduct [40]. Another 4-year field study reported that farms with air
filters compared to non-filtered controls were less likely to end up with PRRSv, supporting
further application in the field, especially in pig-dense areas [41]. While field experiments
provide valuable data on localized transmission dynamics, they may not fully capture the
long-range airborne transmission patterns that occur between farms located at a significant
distance from each other. By integrating data from ADM modeling and a comprehensive
dataset of multiple participant farms from a larger area, we can better assess the cumulative
risks associated with long-range transmission and particle deposition as a function of
several outbreak farms down wind and evaluate the efficacy of air-filtration systems in
mitigating these risks. Within the data limitations of voluntary participation, when wind
was assumed to be the sole route of PRRSv transmission, the predictive performance of the
model was fair with the area under the ROC curve (AUC) ranging between 0.64 and 0.70.
The average specificity was 0.84 across the seasons, indicating that the modeling tool could
support “ruling out” the potential of windborne introduction of the pathogen if used in an
outbreak investigation when the farm status of the surrounding farms was available for the
simulation. The average sensitivity was 0.34; however, this is also relatable to the fact that
cross-validation was performed for the specific weeks where there were newly infected
farms, which were limited.

However, it is crucial to understand that atmospheric dispersion modeling alone
cannot conclusively confirm aerosol transmission as the cause of a new outbreak on a farm;
hence, the interpretation of the results should be performed within the context of the study.
Demonstrating through dispersion modeling that a high concentration of the virus could
have been deposited only suggests windborne transmission as a possible pathway for
pathogen introduction. Dispersion modeling is valuable in ruling out aerosol dispersion
between farms as a transmission route when the results indicate deposition is not feasible
or at a low concentration [27]. By solely considering airborne transmission, our study
might have underestimated the complete risk and dynamics of PRRSv transmission in the
population. Future studies should strive to incorporate multiple transmission routes for a
more comprehensive understanding of PRRSv transmission dynamics. We incorporated
important environmental factors, such as temperature, relative humidity, and decay rate, as
they are known to impact the stability and survival of PRRSv particles in the atmosphere.
However, we did not account for other influential factors, such as UV radiation, which can
also influence the viability of virus particles [37,40,42]. There is limited data available on the
sensitivity of PRRSv to UV radiation; yet, neglecting these additional factors may limit the
comprehensive understanding of PRRSv transmission dynamics and could potentially lead
to an underestimation or overestimation of the transmission risks. Another limitation is the
difficulty in estimating farm-to-farm transmission in an endemic setting, especially with a
voluntary testing program. Due to the voluntary nature of the program, it is impossible
to determine the PRRSv status of all farms. PRRSv transmission dynamics involve viral
fadeout and reintroduction, influenced by factors such as larger herds in pig-dense regions
and continuous introduction of infectious stock. To enhance the model prediction accuracy
and risk estimation, having data from all pig farms in a given area would be valuable.
Also, modeling the windborne between-farm transmission of PRRSv in Midwestern and
Southeastern regions of the U.S., where swine farming is prominent, would shed more
light on the effect of different terrain, wind and climatological factors, management, and air



Viruses 2023, 15, 1765 12 of 14

filtration cost-effectiveness on the windborne transmission of PRRSv. Such comprehensive
studies would inform more effective prevention and control strategies.

5. Conclusions

The HYSPLIT model was adapted to simulate the windborne dispersion of PRRSv
and investigate the transmission dynamics between swine farms. The findings provide
valuable insights into the seasonal differences and deposition thresholds of airborne parti-
cles carrying PRRSv. The winter and fall seasons were identified as periods with a higher
risk of long-distance transmission, while spring and summer exhibited lower transmission
potential due to reduced survival and infectivity of aerosols. The model demonstrated
fair predictive performance, indicating its usefulness in informing near real-time risk
assessment of windborne PRRSv transmission and guiding outbreak investigations. Imple-
menting filtration measures showed promise in reducing the incidence of reported PRRSv
outbreaks, especially in the presence of high viral particle levels. Overall, this five-year
simulation study contributes to our understanding of windborne transmission dynamics
and provides valuable insights for implementing effective control measures to mitigate
the spread of PRRSv. Future research should focus on refining the model, incorporating
additional factors that influence transmission, and improving data collection to further
enhance our ability to predict and manage PRRSv outbreaks.
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