
Citation: Connor, R.; Shakya, M.;

Yarmosh, D.A.; Maier, W.; Martin, R.;

Bradford, R.; Brister, J.R.; Chain,

P.S.G.; Copeland, C.A.; di Iulio, J.;

et al. Recommendations for Uniform

Variant Calling of SARS-CoV-2

Genome Sequence across

Bioinformatic Workflows. Viruses

2024, 16, 430. https://doi.org/

10.3390/v16030430

Academic Editor: Alexander

Gorbalenya

Received: 5 December 2023

Revised: 12 February 2024

Accepted: 16 February 2024

Published: 11 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Recommendations for Uniform Variant Calling of SARS-CoV-2
Genome Sequence across Bioinformatic Workflows
Ryan Connor 1,† , Migun Shakya 2,†, David A. Yarmosh 3,4 , Wolfgang Maier 5 , Ross Martin 6,
Rebecca Bradford 3,4 , J. Rodney Brister 1, Patrick S. G. Chain 2 , Courtney A. Copeland 7, Julia di Iulio 8 ,
Bin Hu 2 , Philip Ebert 9, Jonathan Gunti 1, Yumi Jin 1, Kenneth S. Katz 1, Andrey Kochergin 1, Tré LaRosa 7,
Jiani Li 6, Po-E Li 2 , Chien-Chi Lo 2 , Sujatha Rashid 3, Evguenia S. Maiorova 6, Chunlin Xiao 1, Vadim Zalunin 1,
Lisa Purcell 8 and Kim D. Pruitt 1,*

1 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health,
Bethesda, MD 20894, USA; connorrp@ncbi.nlm.nih.gov (R.C.); jamesbr@ncbi.nlm.nih.gov (J.R.B.);
jonathan.gunti@nih.gov (J.G.); jinyu@ncbi.nlm.nih.gov (Y.J.); kskatz@ncbi.nlm.nih.gov (K.S.K.);
andrey.kochergin@nih.gov (A.K.); xiao2@ncbi.nlm.nih.gov (C.X.); vadim.zalunin@nih.gov (V.Z.)

2 Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; migun@lanl.gov (M.S.);
pchain@lanl.gov (P.S.G.C.); bhu@lanl.gov (B.H.); po-e@lanl.gov (P.-E.L.); chienchi@lanl.gov (C.-C.L.)

3 American Type Culture Collection, Manassas, VA 20110, USA; dyarmosh@atcc.org (D.A.Y.);
rbradford@atcc.org (R.B.); srashid@atcc.org (S.R.)

4 BEI Resources, Manassas, VA 20110, USA
5 Galaxy Europe Team, University of Freiburg, 79085 Freiburg, Germany; maierw@informatik.uni-freiburg.de
6 Clinical Virology Department, Gilead Sciences, Foster City, CA 94404, USA; ross.martin@gilead.com (R.M.);

jiani.li23@gilead.com (J.L.); evguenia.svarovskaia@gilead.com (E.S.M.)
7 Deloitte Consulting LLP, Rosslyn, VA 22209, USA; cocopeland@deloitte.com (C.A.C.);

flarosa@deloitte.com (T.L.)
8 Vir Biotechnology Inc., San Francisco, CA 94158, USA; jdiiulio@vir.bio (J.d.I.); lpurcell@vir.bio (L.P.)
9 Eli Lilly and Company, Indianapolis, IN 46225, USA; ebertpj@lilly.com
* Correspondence: pruitt@ncbi.nlm.nih.gov
† These authors contributed equally to this work.

Abstract: Genomic sequencing of clinical samples to identify emerging variants of SARS-CoV-2 has
been a key public health tool for curbing the spread of the virus. As a result, an unprecedented
number of SARS-CoV-2 genomes were sequenced during the COVID-19 pandemic, which allowed
for rapid identification of genetic variants, enabling the timely design and testing of therapies and
deployment of new vaccine formulations to combat the new variants. However, despite the technolog-
ical advances of deep sequencing, the analysis of the raw sequence data generated globally is neither
standardized nor consistent, leading to vastly disparate sequences that may impact identification
of variants. Here, we show that for both Illumina and Oxford Nanopore sequencing platforms,
downstream bioinformatic protocols used by industry, government, and academic groups resulted in
different virus sequences from same sample. These bioinformatic workflows produced consensus
genomes with differences in single nucleotide polymorphisms, inclusion and exclusion of insertions,
and/or deletions, despite using the same raw sequence as input datasets. Here, we compared and
characterized such discrepancies and propose a specific suite of parameters and protocols that should
be adopted across the field. Consistent results from bioinformatic workflows are fundamental to
SARS-CoV-2 and future pathogen surveillance efforts, including pandemic preparation, to allow for a
data-driven and timely public health response.

Keywords: SARS-CoV-2; variant calling

1. Introduction

Genomic sequencing has been used to address public health crises for more than a
decade [1]. The Center for Disease Control noted its utility in screening for heritable and
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infectious disease as early as 2014, and now it is applicable to public health applications
ranging from tracking a specific pathogen to developing vaccines against them [2]. Likewise,
during the COVID-19 pandemic, there was an unprecedented level of sequencing of Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genomes. There have been
over 15.1 million SARS-CoV-2 sequence submissions from over 10.2 million samples in
the National Institute of Health (NIH), National Library of Medicine (NLM), National
Center for Biotechnology Information (NCBI) open access repositories GenBank [3], and the
Sequence Read Archive (SRA) [4] as of 1 December 2023. While many public health agencies
and their partners around the world have been sequencing the virus at unprecedented
levels and making the data available via public sequence repositories like GISAID and
GenBank [5], the useful integration of this data from diverse data generators critically
depends on consistent analytical methods and transparency in how the data was processed
prior to public release [6,7]. For example, in mid-2020, single mutations in the spike protein
distinguished different clades of the virus [8]. Any artifactual differences due to upstream
processing could have significant impacts on epidemiologic interpretation, the public health
response, or simply add to public confusion around the pandemic. Finally, regulatory
agencies including the Food and Drug Administration (FDA) required submission of Next
Generation Sequencing (NGS) data and the interpretation by pharmaceutical companies
for new drug applications and monitoring of the virus throughout the therapeutic lifecycle.
Therefore, accurate and reproducible detection of mutations in SARS-CoV-2 sequencing
data is critical for effective management of the SARS-CoV-2 pandemic, and the development
of vaccines and antiviral drugs.

A typical bioinformatic workflow for generating SARS-CoV-2 genome starts with
identifying mutations, which can be either Single Nucleotide Polymorphisms (SNPs) or
Insertions/Deletions (Indels), which are inferred based on raw NGS data mapping to a
reference sequence [9]. One of the resulting products of this comparison is a consensus
genome, which is then used for many downstream applications, including phylogenomic
studies and tracking genomic variants, all of which are critical for public health decision-
making. Thus, understanding the differences between different bioinformatic workflows is
critical, as downstream analytics, like identifying SARS-CoV-2 variants, typically assume
consistency and error-free genomes, which is usually not true for sequences across the
full public dataset. Notably, the assumptions and constraints relevant to workflows that
call these mutations and consensus genomes differ from one tool to another. Despite mil-
lions of genomes having been deposited in public databases by thousands of institutions
using multiple different tools, there has not yet been a comprehensive analysis of bioin-
formatic workflows that call mutations and generate consensus genomes from raw reads.
Such comparison of processing workflows, which include read aligners, variant callers,
and sequencing instruments, has been assessed by various studies for human genome
data [10–16], resulting in best practices for germline [17] and somatic variant detections [18].
While there have been several efforts to optimize workflows specifically for SARS-CoV-2
thus far [19], including those for which representatives participated in the current study,
general recommendations or best practices remain absent during the last pandemic, and
are still needed for any future ones.

To address this issue, as part of the National Institutes of Health’s (NIH) Accelerating
COVID-19 Therapeutic Interventions and Vaccines Tracking Resistance and Coronavirus
Evolution (ACTIV TRACE) initiative [20], the Foundation for NIH (FNIH) convened
seven groups that have developed their own bioinformatic workflows across government,
industry, and academia to compare and contrast several different approaches to SARS-CoV-
2 NGS data analysis, thus capturing a variety of use cases. The goal of the collaboration was
to identify conditions under which variant call results were likely to be agreed upon across
workflows and sequencing platforms, using real-world data. Accordingly, the group first
identified a shared test dataset against which the results of their respective workflows were
compared. Then, all the differences between workflows were used to identify specifications
under which consistent results across workflows could be assured. Importantly, the focus
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of the effort was to identify cross industry, academic, and government guidelines for
SARS-CoV-2 deep sequencing analysis.

2. Results
2.1. Datasets

In order to focus this study on workflows, two datasets were provided to each of seven
participating teams, including BEI Resources, Galaxy, Gilead Sciences, Los Alamos National
Laboratory (LANL), Eli Lilly and Company, National Center for Biotechnology Information
(NCBI, NIH), and Vir Biotechnology. The sequence records were retrieved from the NCBI
SRA, which contains raw sequencing data, and afforded these teams the ability to run
independent workflows on the same raw data. The two datasets were provided to the teams,
and were selected based on the availability of Illumina and Oxford Nanopore (ONT) data
sequenced from same sample. Dataset 1 consisted of 413 sequence records, representing
155 samples, and was used to conduct the initial analysis comparing each workflow’s
protocol. These samples were from February 2020 to May 2021, and generally represented
the Alpha lineage. A subsequent test dataset, Dataset 2, consisted of 419 sequence records,
representing 210 samples, and was used to compare concordance across workflows. Dataset
2 sequences were deposited at the start of the Omicron wave, representing samples obtained
from April 2021 to April 2022. There are six BioSamples and twelve accessions (two different
sequencing platforms per platform) that are included in both datasets. Datasets are available
from https://github.com/ncbi/ACTIVTRACEvariants/ (accessed on 4 December 2023).

2.2. SARS-CoV-2 Bioinformatic Workflow Overview

The test dataset consists of genomes generated with Illumina and ONT. Illumina
sequencing is primarily short-read, sequencing-by-synthesis platform [21], while ONT is
a long-read technology with an electric current used to read the bases through a protein
nanopore [22]. Each of these platforms varies in terms of accuracy and ability to identify
rare base/insertion/deletions, which needs to be considered during the development of
workflows and complicates the generation of comparable results across platforms. Vari-
ant calling workflows from academic, industry, and government groups follow a similar
generic bioinformatics workflow for processing SARS-CoV-2 genomes (Figure 1). These
steps include data retrieval from SRA, pre-processing (with NCBI’s workflow not doing
primer-trimming, and NCBI, Galaxy, Vir, and LANL’s EDGE-COVID19 workflows not per-
forming host-removal as part of the analyses at the time of analysis), QC of raw reads (with
trimmomatic particularly common among Illumina workflows), alignment/reads mapping
to a reference genome (with minimap2 being especially common among ONT workflows),
variant calling, and variant filtering (post-processing). A more detailed comparison of each
workflow’s software and parameters is summarized in Supplementary Table S1. Of note,
in agreement with the variety of software available for each, we found a much greater
diversity in software used for Illumina platform data (Figure 1A) than ONT (Figure 1B),
further supporting the generalizability of our results.

https://github.com/ncbi/ACTIVTRACEvariants/
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Figure 1. Flow chart of the platforms from each participating organization’s workflows at the time
of analysis. Shown are the schematics for (A) Illumina platform variant calling and (B) Oxford
Nanopore Technologies (ONT) variant calling. For each sequencing platform, the main steps of
variant calling are captured in each box, including: read retrieval, host removal, read trimming,
alignment, variant calling, variant filtering, and variant normalization. For each step, the software
used by each workflow is noted.

2.3. Data Pre-Processing Impacts on Variant Calling

Many workflows did not call same SNPs. Initially, when all the reported SNPs and indels
were considered, the workflows differed significantly, so a minimum Allele Frequency (AF:
frequency of a specific SNP) of at least 15% was considered moving forward. Still, despite
this threshold, the initial results showed less than 27% agreement for SNPs in Dataset1.
Surprisingly, no indels were called by all seven of the workflows.

Host RNAs when not removed can result in wrong mutation. Although most depositors
likely take steps to remove the host contaminate sequences from sequencing data, traces of
human sequence data may still be present, and contribute to differences in variant calling
results. We conducted an analysis across workflows, and determined that not all workflows
were excluding possible human host-reads at the time of analysis. Detection of host read
data was done via the SRA Taxonomy Analysis Tool (STAT) [23] and alignment to human
reference. Figure 2A shows a number of spurious calls when host-read data is not removed;
note the region between 3050 and 3090 in particular, with host-derived reads at the bottom,
including some spurious variant calls. This results in an artificial reduction in the observed
frequency of true calls, as the host reads identified in Figure 2A artificially inflate the
frequency of the reference allele, as indicated by the matching color at each position.
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 Figure 2. The impact of host contamination removal and primer trimming. (A) The removal of host
reads from RNAseq SARS-CoV-2 sequencing result, SRA run SRR12245095, reduced the potential for
false-positive variant calls. In the top panel, additional mutations were present in aligned reads between
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positions 3049–3076 of NC_045512 when host reads were not removed. After excluding host reads
(bottom panel), reads containing the mutations were no longer observed. (B) Allele frequencies of
variants called after trimming primer sequences from aligned reads (corrected allele frequencies) are
plotted against allele frequencies of the same variants called without primer trimming (uncorrected
allele frequencies). Primer trimming increases the allele frequencies of most within-primer binding
sites variants. Blue lines represent the allele-frequency thresholds used in this study to filter variant
calls (allele frequency; AF ≥ 0.15) and to call consensus variants (AF ≥ 0.5).

Primer sequences, when not removed, can decrease the frequency of true variant calls. All of
the data that were analyzed as part of this paper, and most of the available SARS-CoV-2
genomes, were sequenced by amplifying overlapping regions across the genome. Thus,
many of the downstream workflows include a step where the primers are trimmed from
the reads before calling mutations, as untrimmed sequences could artificially influence the
variant calling results, and thus agreement across our pipelines here. However, workflows
differed significantly on how the primers were trimmed from the sequenced reads. As
seen in Figure 2B, failure to trim primer sequence from reads results in a reduction in
the reported frequency of many variants in primer binding sites. This can reduce variant
frequency below the threshold for consideration, which in our case was 15%, or below
the threshold for incorporation into a consensus sequence, which is typically 50%. Primer
trimming increases the AFs of 61 within-primer binding site variants above the threshold for
retaining them, and enables the calling of six additional consensus variants. Unfortunately,
as was the case for the data retrieved for the dataset here, the information on the primer
sets used for sequencing was not readily available, which complicated the analysis. While
in some environments, the availability of high quality samples does not require de-hosting,
as, in general, both host contaminant sequence removal and primer trimming are necessary
to ensure accuracy and consistency of deep sequencing results.

2.4. A Parsimony Normalization Method to Standardize Variant Reporting across All Workflows
Allowed Vis-a-Vis Comparison of Variants

The comparison of results across all seven workflows was also complicated by differ-
ences in how SNPs and indels are reported by each workflow, which was most pronounced
in the case of indels. To address this, two steps were taken. First, the SPDI algorithm [24],
used as part of the dbSNP (https://www.ncbi.nlm.nih.gov/snp/, accessed on 4 December
2023) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/, accessed on 4 December 2023)
databases at NCBI (as of the time of publishing), for human genetic variants, was adapted
for use with SARS-CoV-2 deep sequencing. While the implementation of the SPDI algo-
rithm greatly reduced the number of observed discrepancies due to formatting, especially
for deletions (e.g., ATCG1CG vs. TCG2T vs. CG3-, all normalized to TCG2T), insertion
differences remained (e.g., ATC2ATCTAG vs. C2CTAG vs. -3TAG). Second, to address the
consistency in calling indels across workflows, a Parsimony algorithm was developed (see
Section 4) to ensure the number of preceding and subsequent bases around an event were
consistent, and that the events were left-aligned to a common starting position. Addition-
ally, sequence records, for which less than 50% of the reference genome was covered or for
which the average depth of coverage was less than 100X, were excluded, along with the
analysis of single-end read data, since not all workflows supported this analysis. Finally, as
many of the indel discrepancies that could not be resolved with the combination of SPDI
and Parsimony approaches were found to be in homopolymer regions (of length at least
4 bp), the homopolymer regions were also excluded (Supplemental Figure S1). Together,
these approaches help minimize the possibility that the remaining indel discrepancies
were artifactual, and increased the likelihood that they represented genuine differences
between workflows. This also highlights that simply cleaning data prior to processing is
not sufficient to ensure broad workflow agreement in variant calling results.

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/clinvar/
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2.5. Within-Sample Allele Frequency and Per-Position Depth of Coverage Determine the
Consistency of Variant Calls across Workflows

In order to remain agnostic regarding the software used in each workflow, and with
the aim of optimizing agreement between workflow results, as there are no ground-truth
variant calling results for our dataset, the agreement between workflows and across plat-
forms was assessed via Receiver-Operating Characteristic (ROC) analysis. For this purpose,
variants identified by five or more workflows were considered true-positives, while calls
made by fewer than five workflows were considered a false-positive. For this reason, the
area under the ROC curves (ROC AUC) cannot be directly compared between groups. The
rationale is that if a variant call is accurate, it should be found by any workflow (or plat-
form), regardless of the implementation specifics. However, the ROC curves can identify
the inflection point across parameter settings and suggest settings that maximize the true-
positive results (as defined above) within each workflow or platforms, while minimizing the
false-positive variant calls. For the assessment of agreement between sequencing platforms,
variants found on both platforms were considered a true positive, while variants found by
a single platform were considered a false-positive. Thus, false-positives here represent calls
that were not common to workflows or sequencing platforms, but that does not necessarily
mean they are incorrect, only that very few of the workflows considered here found them.
Figure 3 illustrates ROC analyses of the effects of minimum Alternate Allele Depth of
Coverage (ALTDP) and minimum AF on variant calling agreement. (Figure 3A–D) shows
agreement across workflows, while Figure 3E–H considers agreement across sequencing
platforms. The most sensitive discriminator, the parameter for which a sharp inflection
point was identified for most workflows, was found to be ALTDP (Figure 3A,C), while
the best discriminator for results between platforms was found to be AF, as depicted in
(Figure 3F,H). Accordingly, a minimum ALTDP of 50 and a minimum AF of 50% was used
for subsequent analyses, as these parameters minimize disagreement across workflows
and sequencing platforms while retaining the maximum number of shared variant calls.
Additionally, as overall read depth (DP) was also found to perform well for comparison of
results across workflows, a minimum DP of 100 was included, which is further supported
by prior work on synthetic data identifying minimum depth of coverage for calling variants
at low-frequencies [25].
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Figure 3. The effect of Alternate Allele Depth and Alternate Allele Frequency on variant calling
agreement across workflows and platforms. For each panel, calls made by all but one workflow (A–D)
or both platforms (E–H) were considered true-positives, while calls made by only a single workflow
(or technology) were considered false-positives, thus the ROC AUCs cannot be directly compared
between groups. For the right panels, points represent an Allele Frequency (AF) cut-off of 1 at the
lower-leftmost point, and the cut-off decreases by 0.1 along the length of the line. For the left panels,
the points represent a minimum Alternate Allele Depth (AltDP) going from 4,000 at the lower-left
most point to 10 along each line. (A,B) Impact of AltDP and AF, respectively, on Illumina workflow
accuracy and specificity across workflows. (C,D) Impact of AltDP and AF, respectively, on Illumina
workflow accuracy and specificity across platforms. (E,F) Impact of AltDP and AF, respectively, on
ONT workflow accuracy and specificity across workflows. (G,H) Impact of AltDP and AF, respectively,
on ONT workflow accuracy and specificity across platforms.
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2.6. Filtering for Highly Supported Variant Calls Supports Cross-Workflow and
Cross-Platform Agreement

To determine the consistency in variant calling across workflows before and after
ALTDP-, DP-, and AF-based filtering, the workflow calls were compared and plotted
as upset plots (Figure 4). (Figure 4A–D) demonstrate the level of agreement before any
filtering was applied to the seven workflows, with only variants with an AF of at least
15% considered, and with SPDI and Parsimony normalizations applied. Across the seven
workflows, Illumina data showed strong agreement, even prior to filtering for both SNPs
and indels (Figures 4A and 4B, respectively). However, for the five workflows that analyzed
the ONT data, the SNP and indel (Figures 4C and 4D, respectively) results were dominated
by single workflow’s unique calls. Across the Illumina and ONT data, (Figures 4E and 4G,
respectively) filtering increased agreement in the SNP calls across the workflows, with the
fraction of calls found by all but one workflow increased from ~25% to over 86%, and the
fraction found only by a single workflow decreased from over 60% to just over 2%. Thus,
the majority of workflow discrepancies can be attributed to calls with AF < 50%, calls at
locations with DP < 100 or an ALTDP < 50, calls from samples with poor reference genome
coverage (<50%), calls in homopolymer regions, and/or from single-end data. While the
approach did improve the agreement in indel calls for both Illumina and ONT (Figures 4F
and 4H, respectively), with the fraction of calls found by all but one workflow increasing
from ~2% to over 64% and the fraction found only by a single workflow decreasing from
over 91% to over 22%, the extent of agreement was not as extensive as that seen for SNPs.
Notably, the total number of indel calls was greatly reduced to ~1.5% of the unfiltered count,
suggesting that the majority of indel calls may be artifactual or otherwise poorly supported.
In support of this, the large number of workflow unique calls for EDGE-COVID19 and
BEI in Figures 4C and 4D, respectively, are attributable to calls with low read support
(DP < 100 or ALTDP < 50), of low frequency (<50%), as indicated by the reduction after
filtering, Figure 4G,H, respectively. The initial test set also showed agreement in variant
calls post-filtering, with the fraction of SNP calls found by all but one workflow increasing
from ~86% to over 92% and the fraction found only by a single workflow decreasing from
over 5% to ~1.5% (Supplementary Figure S2). Finally, the agreement in both SNPs and
indels calls across the length of the genome was examined (Supplementary Figure S3), and
no significant association between workflow disagreement and any portion of the genome
was observed as evidenced by the relatively even distribution of deep red and deep blue
color along the y axis (genomic position). Thus, consistent results across divergent deep
sequencing workflows can be achieved with a combination of input data cleaning and
algorithm parameter-based filtering.
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Figure 4. Agreement across workflows with and without recommended parameters. (A–D) Agree-
ment across workflows, without recommended parameters. (E–H) Agreement across workflows, with
recommended parameters. (A,E) Agreement on Illumina SNP calls. (B,F) Agreement on Illumina
InDel calls. (C,G) Agreement on Oxford Nanopore (ONT) SNP calls. (D,H) Agreement on ONT InDel
Calls. For each figure, the bars indicate the number of variants called by the groups, indicated by
filled circles below, across the whole dataset.

Similarly, to assess the extent of agreement and disagreement across sequencing
platforms, stacked bar plots were generated (Figure 5), with samples being considered only
if both Illumina and ONT data passed the filtering criteria described above. Similar to what
was seen with the cross-workflow comparison, the results for both shared SNPs and indels
without filtering (Figure 5A,B, respectively) were markedly improved for both SNPs and
indels with the application of our filters (Figure 5C,D, respectively), with nearly no ONT-
unique SNP calls and an increase in the number of SNP calls common between platforms
of 10–20%, depending on the workflow, after filtering. Indel agreement was similarly
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improved, with an increase in the percent of common calls of up to 60%, depending on the
workflow. Again, similar to what was seen with the cross-workflow comparison, the initial
dataset showed similar agreement for SNPs and more modest agreement for indel calls
post-filtering (Supplementary Figure S4), suggesting factors others than those considered
in the filtering account for discrepancies in indel calls earlier in the pandemic.
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Figure 5. Application of recommended parameters results in increased agreement across plat-
forms. Graphical representation of the agreement between platforms without the application of
recommended parameters of SNP (A) and InDel (B) calls. (C) (SNP) and (D) (InDel) represent the
agreement between platforms after the application of the recommended parameters. For each figure,
only those samples for which both Illumina and ONT platform data had at least one variant call that
passed all of the filters were considered. The total height is normalized to the total number of calls
made by each workflow, with light blue portion indicating calls made on both platforms for a given
sample, medium blue indicating calls made only for Illumina data, and dark blue indicating calls
made only for ONT data.

In summary, these findings underscore the fact that variant calling data provided by
diverse workflows are not consistent, unless the processes by which the sequences were
analyzed reflect best practices in variant calling for SARS-CoV-2. To that end, the filtering
we identified and summarized in Figure 6 provides a robust playbook for diverse variant
calling workflows for both Illumina and ONT platform data, and supports robust agreement
between these platforms. To briefly summarize, host sequences need to be removed and
primers trimmed; a minimum depth of 100, a minimal alternate allele support of 50, and a
minimal allele frequency of 50% should be used when generating consensus sequences to
maximize interoperability of the resulting sequences across both workflows and sequencing
technologies. Additionally, variants identified through low-quality sequence data with
poor reference sequence coverage or calls in homopolymer regions should be carefully
scrutinized, as workflows can vary significantly in their results under these conditions.
These recommendations, if adopted, should support consistent reporting of consensus
sequences for downstream analyses, and the fair comparison of results generated by many
different sequencing groups.
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3. Discussion

Over the course of the pandemic, genetic surveillance focus shifted from the analysis
of consensus genomes alone to include more frequent use of the underlying sequence
data. While consensus genomes reduce the complexity and size of the data, recent cases
of recombinants [26,27], co-infection [28,29], and monitoring for drug resistance has made
clear the importance of working beyond the consensus genome. If only the consensus
sequence is provided, contamination that may have occurred during sample collection,
laboratory preparation, sequencing, or bioinformatics processing may be interpreted as a
coinfection. In absence of corresponding raw data, these potentially confounding factors
cannot be easily tracked and corrected. However, as consensus genomes are usually the
starting material for many common analyses, we aimed here to identify factors which
influence the accuracy and consistency of variant calling results.

The importance of primer trimming, shown in Figure 1, highlights the need for
comprehensive metadata when sharing data publicly, most notably information on which
primer scheme was used. While consensus between platforms is possible, as illustrated
by Figure 5, the potential challenges highlight the need for transparency regarding how
the original sequencing was performed, even if the submitted sequence is a consensus
sequence; specifically, information on what instrument was used for sequencing, along with
the method and parameters used for consensus construction. Additionally, the difficulty in
finding consensus with low-quality data suggests a need for quality standards for SARS-
CoV-2 NGS data. One such approach would be to identify a minimum reference coverage
and a minimum average depth of coverage, such that data below the minimum threshold
cannot yield consistent-enough results to be used for common downstream analysis, such
as lineage assignment or phylogenetic reconstruction.

Given the number of discrepancies found even when only considering a minimum
within-sample allele frequency of 15% and the parameter setting found necessary to ensure
inter-workflow compatibility, the use of minor alleles should be considered carefully. In
support of this suggestion, prior work on respiratory syncytial virus sequencing found that,
below allele frequencies of 25%, variant calling across a range of coverages, variant callers,
and a range of simulated error profiles resulted in a precision of less than 50%, approaching
0% at allele frequencies below 5% [30]. Additionally, sequencing analysis on influenza
samples has found that minor alleles cannot be confidently called at frequencies below
5% [31], and that without correction to the methods, minor variants were overestimated
by as much as 10-fold [32]. These studies also identified several methods to improve
confidence in variant calls, including generating technical replicates for each sample and
adjusting allele-frequency thresholds based on Polymerase Chain Reaction (PCR) cycle
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threshold values, both of which underscore the need for rich metadata to support thorough
and accurate use of public sequence data and the need to consider consensus sequences
carefully in the absence of such metadata. Furthermore, these suggestions highlight a topic
not examined in this work, which is the need to carefully consider wet-lab controls to
ensure quality data are generated prior to bioinformatic analyses. Together with the results
presented here, this suggests that more research is needed into the conditions under which
minor variants (<15% allele frequency) can be determined most reliably.

Pharmaceutical and biotechnology companies are required to comply with Good Prac-
tice (GxP) guidelines and obtain system validation when developing computer software
to ensure that medical devices, drugs, and other life science products are safe and effec-
tive [33]. At present, it is unclear what level of computer system validation is required by
regulatory agencies, including the FDA for NGS analysis workflows, and regulatory agen-
cies typically perform their own independent analyses and compare them to the submitted
analysis from sponsors. Given the numerous sample preparation methods and sequencing
platforms, as well as the various analysis workflows (many of which are proprietary), this
presents challenges for regulatory review of deep sequencing data [34]. In the future, the
FDA anticipates the development of standardized analysis workflows that will provide
reproducible data analysis sufficient for generating consistent and robust results from NGS
data [34]. However, we have shown that standardized deep sequencing analysis workflows
are currently not used across academia, government, and industry. Further collaborative
efforts, like the work from ACTIV TRACE shown here, are needed to achieve the standard-
ization of workflows and reproducibility of results that are needed in the face of pandemic
threats. This collaboration representing industry, government, and academic partners has
moved us closer to the standardized analysis that will be required for deep sequencing,
suggesting that regulatory agencies should implement these robust recommendations in
their current guidelines.

4. Methods
4.1. Dataset

RefSeq [35] accession sequence NC_045512.2 was used as reference genome for align-
ment for all but one workflow, Lilly‘s, the sequence for which is 99% identical, with zero
gaps, by Needleman–Wunsch alignment. A description of the data analyzed in the original
and recent datasets can be found in Supplemental Tables S2 and S3, respectively. Briefly,
Dataset 1 consists of 413 sequence records, representing 155 samples, while the recent set,
Dataset 2, consisted of 419 sequence records, representing 210 samples. Dataset 1 generally
represents the pre-Alpha lineages with some Alpha, while Dataset 2 has a mixture of
Alpha, Delta, and Omicron lineages. Both sets are constituted by paired Illumina and ONT
samples. The records were processed by each of seven workflows described below. The
results were then combined, and SNPs were normalized using the SPDI algorithm [24].
Subsequently, the InDel results are normalized using the Parsimony script, described below,
and the additional analyses and figures were generated via python scripts, all available
here (https://github.com/ncbi/ACTIVTRACEvariants, accessed on 4 December 2023).

4.2. BEI Resources

SARS-CoV-2 reads were retrieved from NCBI’s [36] Sequence Read Archive (SRA)
directly using the fastq-dump v2.11.1 utility (https://github.com/ncbi/sra-tools, accessed
on 4 December 2023). These reads were then trimmed and filtered to remove adapter
sequences and low-quality reads, using fastp [37] v0.23.2 for Illumina reads and NanoFilt [38]
v2.8.0 for Oxford Nanopore reads. Settings for fastp were left at default, while NanoFilt
was set for a minimum average quality of 10 and minimum length of 150, while trimming
the first 30 bases of each read. Following this, both sets of reads were taxonomically
binned using ATCC’s bin_reads function, which relies on kraken2 [39] v 2.1.2 to identify the
nearest taxonomy of any given read. Kraken2 classification was run with default settings
and its bacterial_viral_db database. Kraken2 also contains an extract reads function that

https://github.com/ncbi/ACTIVTRACEvariants
https://github.com/ncbi/sra-tools
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was employed using NCBI: taxID694009, which corresponds to SARS-Coronavirus and
all sub-taxa.

All Illumina reads that have been processed as outlined above were entered into an
identical workflow for variant calling analysis. This workflow was comprised of four
steps: read mapping to NC_045512.2 (Wuhan-Hu-1), local realignment, variant calling, and
normalization. Prior to alignment, paired-Illumina fastqs needed another step of processing.
Because kraken2’s taxonomic binning does not guarantee that both forward and reverse
fastqs will have the same resulting reads, seqkit common [40] v 2.1.0 was used to ensure that
only paired reads are further analyzed. Alignment was performed with bwa mem [41] v
0.7.17-r1188 using default parameters. Local realignment began with bcftools mpileup [42]
v1.12 to produce a per-base pileup to stage the realignment. This used default settings,
except for the max-depth, which was set to 8000 to reduce the chance of missing minority
variants due to excessive depth at a position. Next, bcftools call and bcftools filter were used
to capture multiallelic variants with a variant call quality above 30. This initial vcf was
passed to GATK [43] v4.2.2.0 to apply base quality score recalibration within the context of
all bases at each position. Finally, realignment was achieved using the lofreq Viterbi [44] tool
v2.1.5, using default parameters. Variant calling was performed using lofreq v2.1.5 in four
stages: indelqual with “--dindel” parameter and alnqual to capture indel variants, call with
--call-indels and -C 50 to capture all variants above a depth of 50×, and filter with -v 50 and
-a 0.15 to further filter for minimum depth of 50× and alternate allele frequency of 15%.

Oxford Nanopore long reads have a few fundamental differences that affect what
off-the-shelf tools can be used for their processing. Namely, underlying algorithms in fastp,
GATK, and bwa mem are not designed for the increased length and error profile of these
reads. Consequently, medaka_haploid_variant [45] v1.5.0 was used to perform the initial
alignment, and its BAM file was passed to lofreq in the same manner as in the Illumina
dataset. Minimum depth and alternate frequency filters were applied afterward, and the
previously described step of taxonomic binning was identical to the Illumina dataset.

4.3. Galaxy Project

Illumina short-read (paired-end subset of the data only) and Oxford Nanopore long-
read data was downloaded in fastq.gz format from the FTP server of the European Bioin-
formatics Institute (EMBL-EBI) at ftp.sra.ebi.ac.uk (accessed on 22 May 2022). Variant
calling was then performed with platform-specific Galaxy workflows [46], which have
previously been described [47] and are publicly available from Dockstore [48] and the
WorkflowHub [49], against NCBI Reference Sequence NC_045512.2. No attempt was made
to analyze single-end Illumina data. A brief overview of the analysis of data from both
platforms is provided below.

4.3.1. Variant Calling from Paired-End Illumina Short-Read Data

We used fastp (version 0.23.2) for read trimming and quality control [38], aligned
reads with bwa-mem (version 0.7.17) [41], filtered for reads with fully mapped read pairs
(with samtools, version 1.9 [42]), re-aligned reads using the lofreq viterbi command from
the lofreq package (version 2.1.5 used here and in all subsequent steps using lofreq) [44]
and calculated indel quality scores with lofreq indelqual. We then attempted to trim
amplification primers from the aligned reads using ivar trim (version 1.3.1) [50] assuming
the ARTIC v3 primer scheme [51] had been used in amplification of all samples (which
is true for the majority of the samples analyzed, but not all of them; we continued with
untrimmed data for those other samples). The remaining, trimmed alignments served as
the input for variant calling with lofreq, and variant calls down to an allele-frequency of
0.05 were reported if confirmed by at least 10 reads.

4.3.2. Variant Calling from Oxford Nanopore Long-Read Data

We used fastp (version 0.23.2) for quality control [37] and read length filtering. For
samples that we detected to be amplified with the ARTIC v3 primer scheme we filtered for

ftp.sra.ebi.ac.uk
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read sizes between 300 and 650 bases, for other samples we allowed read sizes between
300 and 3000 bases. Retained reads were aligned with minimap2 (version 2.17) [52], and
successfully mapped reads left-aligned with BamLeftAlign from the freebayes package
(version 1.3.1) [53], after which we attempted to trim primers from the reads with ivar
trim (version 1.3.1), again assuming the ARTIC v3 primer scheme and using untrimmed
data where that assumption failed. The data was then analyzed with the medaka con-
sensus tool (https://github.com/nanoporetech/medaka, accessed on 4 December 2023,
version 1.0.3) [45] and variants extracted with medaka variant tool (version 1.3.2) and post-
processed with medaka tools annotate (integrated into the medaka variant tool’s Galaxy
wrapper; https://toolshed.g2.bx.psu.edu/repository?repository_id=a25f9bf8a7d98ae4&c
hangeset_revision=0f5f4a208660, accessed on 4 December 2023, 09/20/21 installation).
Variant calls down to an allele-frequency of 0.05 were reported if confirmed by at least 10
reads and called, in the case of SNVs only, with a QUAL score of at least 10.

4.4. Gilead Sciences

Illumina short-reads and Oxford Nanopore long-read data were downloaded from
Sequence Read Archive (SRA) using sratoolkit (https://github.com/ncbi/sra-tools#the-sr
a-toolkit, accessed on 4 December 2023, v 2.8.1).

4.4.1. Illumina

Fastq files were aligned to hg38 reference using BWA v0.7.15 [41] to exclude human
RNA transcripts and to isolate viral reads for further processing. Next, reads were trimmed
using Trimmomatic v0.36 [54] for low quality (sliding window 4 bp, avg phred 15) and
short reads (<50 base pairs) were filtered out. Paired end reads that overlap were merged
using NGmerge v0.3 [55] software, creating a single-end fastq file containing merged reads
and any single end reads that do not overlap. Reads were then aligned to the Wuhan-Hu-1
reference (NC_045512) using SMALT v0.7.6 aligner (https://www.sanger.ac.uk/tool/sm
alt-0/, accessed on 4 December 2023). If amplification primer information was available,
trimmed the base pairs from reads that overlap with primers. Tabulate nucleotide variants
and indels per genome position (NC_045512), excluding any variants with average phred
score less than 20 and read depth less than 50, as well as any frameshift indels.

4.4.2. ONT

Fastq files were aligned to hg38 reference using minimap2 v2.17 [56] to exclude human
RNA transcripts and to isolate viral reads for further processing. Reads were then aligned to
the Wuhan-Hu-1 reference (NC_045512) using minimap2 v2.17 [56]. If amplification primer
information was available, trimmed the base pairs from reads that overlap with primers.
Tabulate nucleotide variants and indels per genome position (NC_045512), excluding any
variants with average phred score less than 10, forward strand ratio < 0.1 or > 0.9, and read
depth less than 50, as well as any frameshift indels.

4.5. Los Alamos National Laboratory (EDGE-COVID19)

Illumina short-read and Oxford Nanopore long-read data were downloaded from
Sequence Read Archive (SRA) using sratoolkit (https://github.com/ncbi/sra-tools#the-sr
a-toolkit, accessed on 4 December 2023, v 2.9.2). Quality control, read mapping, variant
calling, and consensus genome generation were then performed with EDGE-COVID19 (EC-
19) workflows (http://edge-COVID19.edgebioinformatics.org/, accessed on 4 December
2023, v20220427). Detailed description of the EC-19 workflows has also been previously
described [19] (https://edge-COVID19.edgebioinformatics.org/docs/EDGE_COVID-19
_guide.pdf, accessed on 4 December 2023). Briefly, the EC-19 workflow employs many
commonly used tools such as FaQCs (v2.09) for quality control, Minimap2 (v2.17, default
for ONT) or BWA mem (v0.7.12, default for Illumina) for mapping reads to a SARS-CoV-2
reference genome (NC_045512.2 without the 33nt poly-A tail in the 3′ is used as default),
an algorithm based on ARTIC workflow (https://github.com/artic-network/fieldbioi

https://github.com/nanoporetech/medaka
https://toolshed.g2.bx.psu.edu/repository?repository_id=a25f9bf8a7d98ae4&changeset_revision=0f5f4a208660
https://toolshed.g2.bx.psu.edu/repository?repository_id=a25f9bf8a7d98ae4&changeset_revision=0f5f4a208660
https://github.com/ncbi/sra-tools#the-sra-toolkit
https://github.com/ncbi/sra-tools#the-sra-toolkit
https://www.sanger.ac.uk/tool/smalt-0/
https://www.sanger.ac.uk/tool/smalt-0/
https://github.com/ncbi/sra-tools#the-sra-toolkit
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nformatics, accessed on 4 December 2023) for trimming primers if an amplicon-based
method (e.g., ARTIC, SWIFT) was used for sequencing, generating consensus genomes,
and variant calling based on samtools mpileup (v1.9) wrapped into a custom script (https:
//gitlab.com/chienchi/reference-based_assembly, accessed on 4 December 2023). EC-19
then accounts for strand biasness using both fisher score and Strand Odds ratio (https://ga
tk.broadinstitute.org/hc/en-us/articles/360036464972-AS-StrandOddsRatio, accessed on
4 December 2023) and reports SNVs if the Allele Frequency (AF) > 0.2 and has a minimum
Depth of Coverage (DC) of 5. Likewise, InDels are reported if DC > 5, and then platform-
specific thresholds are implemented for AF, as AF > 0.5 is required for Illumina and AF >
0.6 for ONT data in order to account for the higher error rates with this platform, and >0.8
within homopolymer sequences [57,58].

4.6. Lilly
Illumina

The paired end raw sequencing data were trimmed in two successive rounds using
cutadapt [59] version 2.5 with the following parameters: pe1_parms: --quality-base = 33 -a
‘G{150}’ -A ‘G{150}’: pe2_parms: -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
-A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTAT-
CATT: --quality-base = 33 -q 20 -n 2 --trim-n -m 20 --max-n = .2: -a ‘A{150}’ -A ‘A{150}’
-a ‘T{150}’ -A ‘T{150}’: -g ‘A{150}’ -G ‘A{150}’ -g ‘T{150}’ -G ‘T{150}’: -g AAGCAGTG-
GTATCAACGCAGAG -G AAGCAGTGGTATCAACGCAGAG: -g AAGCAGTGGTAT-
CAACGCAGAGTAC -G AAGCAGTGGTATCAACGCAGAGTAC. Reads were aligned to
the hg19_human_trxome_and_coronavirus.fa reference genome (Thermo Fisher, Waltham,
MA, USA, which included MT019532.1 BetaCoV/Wuhan/IPBCAMS-WH-04/2019) us-
ing bwa-mem [41] version 0.7.12 with default parameters. Variants were called using
FreeBayes [53] version 1.3.1 with the following parameters: -F 0 -p 1 -K -C 0 -n 5 -w --min-
alternate-count 0 --min-alternate-fraction 0. Variants were reported if there were ≥5 reads
supporting the variant; if ≥10% of reads supporting the variant were derived from the
minor strand; and if the allele frequency was ≥15%.

4.7. NCBI
4.7.1. Illumina

Illumina short reads were downloaded from SRA database using fastq-dump of
sratoolkit (https://github.com/ncbi/sra-tools#the-sra-toolkit, accessed on 4 December
2023, version 2.11.0), then trimmed using trimmomatic (version 0.39) [54]. The reads were
aligned using Hisat2 (version 2.2.1) [60], then left-aligned using GATK LeftAlignIndels
(version 4.2.4.1) [61]. GATK HaplotypeCaller (version 4.2.4.1) with the options “minimum-
mapping-quality 10” [62] was used for generating variant VCFs with NCBI Reference
Sequence NC_045512.2 as the reference. Calls with QUAL value smaller than 100, alternate
allele counts lower than 10, FS value smaller than 60, SOR value smaller than 4, QD value
equal to or greater than 2, ReadPosRankSum value equal to or greater than −4, allele
frequency lower than 0.15, and reference genome positions beyond 29,850 were excluded.

4.7.2. ONT

Nanopore reads were downloaded from the SRA database using fastq-dump of sra-
toolkit (https://github.com/ncbi/sra-tools#the-sra-toolkit, accessed on 4 December 2023,
version 2.11.0), then trimmed using NanoFilt [38] (version 2.8.0) with the options “q 10” and
“headcrop 40” [38]. Two rounds of medaka (version 1.3.2, https://github.com/nanoporet
ech/medaka, accessed on 4 December 2023) were applied to generate consensus assembly.
Consensus to reference (NC_045512.2) alignment and initial variant calls were generated
with MUMmer (version 4.0.0rc1, https://github.com/mummer4/mummer, accessed on 4
December 2023). InDels and SNPs within 10bps of an InDel were excluded using bcftools
(version 1.11) [43], and snp clusters (2 or more SNPs within 10 bps) were filtered using
vcftools (version 0.1.12b) [62].

https://github.com/artic-network/fieldbioinformatics
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4.8. VIR
4.8.1. Illumina

The workflow was written and optimized for another library preparation, and the
primer removal step and workflow parameters were not optimized for the samples analyzed
in this study. Illumina short reads were downloaded from the SRA database using fastq-
dump of sratoolkit (https://github.com/ncbi/sra-tools#the-sra-toolkit, accessed on 4
December 2023, version 2.9.1) [parameters: –split-files for paired end reads]. The library
preparation consisted of a mix of SE reads and PE reads (with random fragmentation
or amplicons fragment). The read length ranged from 300 to 500bp for SE, and 50 to
300bp for PE reads. As the samples were prepared with different library preparations, not
always retrievable from the metadata, we used a conservative approach to trim the 31bp at
the beginning of all reads that were 150bp or longer; 31bp corresponds to the maximum
primer length in the ARTICV3 kit. Reads were trimmed with trimmomatic (version 0.39)
[parameters: HEADCROP:31 MINLEN:35; PE -validatePairs for paired end; SE for single
end] [54]. The alignment was performed with bwa-mem (quay.io/biocontainers/bwa:
0.7.17--hed695b0_7) [parameters: -M] [63]. The variant calling was performed with lofreq
(quay.io/biocontainers/lofreq:2.1.5--py36ha518a1e_1) [44] in multiple consecutive steps:
lofreq viterbi; lofreq indelqual [parameters: --dindel]; lofreq call-parallel [parameters:
--no-default-filter --call-indels –min-bq 6 –min-alt-bq 6 –min-mq 1 –sig 1]; lofreq filter
[parameters: --no-defaults –af min 0.01 –cov min 15 –sb-mtc fdr –sb-alpha 0.05 –sb-incl-
indels; note: --sb-alpha parameter was set to 0 for samples prepared with amplicon libraries
to prevent filtering variant due to strand bias, which can occur with amplicon library
preparation]. For each sample, SNVs present at AF > 0.5 were substituted in the reference
genome with bcftools consensus (quay.io/biocontainers/bcftools:1.10.2--hd2cd319_0) [42],
and the alignment and variant calling steps were run a second time on the “new” reference
genome (in order to rescue reads that were potentially mis-aligned/un-aligned due to too
many mutations located in the near vicinity of each other). Of note, the final variant calling
was done with regard to the initial NC_045512.2 reference genome nomenclature. SNVs
and indels were reported if they were present with AF > 0.15. Minimum read depth was set
at a low threshold (15 reads) for the purpose of this analysis. Variants flagged as potentially
spurious due to their location on the reads (i.e., consistently located at the same position in
the read for the alternative allele, but not for the reference allele) were further filtered if
they were present in more than 2 samples and in all samples at low AF (<0.5).

4.8.2. ONT

At the time of analysis, VIR did not have an existing workflow to assess ONT data.

5. Parsimony Script

Following SPDI-normalization, the parsimony script was applied. After pulling the
SPDI-processed data into a data table, the first step was to sort data according to analytical
group, sample accession, and position. Then, it must resolve adjacent indels into singular
records. Where InDels used a hyphen (-) to represent the reference or alternate allele, we
searched for any adjacent rows with identical group and accession values, and the positions
were consecutive. For each record that satisfied these requirements for either the next or
previous record, they were grouped together and concatenated according to the Group and
Acc values, with any number of repeated hyphens being replaced with a singular hyphen
to match SPDI formatting. This only saved the depth and alternate allele values for the first
record in the set of each consecutive InDel. In practice, we have not found this disruptive to
our analysis, but this may present an issue when this occurs closer to the limit of detection
or when precise depth is significant.

Next, we must address the nucleotide context issue. This combined data table was
looped over, row by row, capturing the assorted metadata in each row. These fields will not
be altered. We are only concerned with InDels that do not conform to our simple formatting.
First, we checked for the simple cases that either the reference or alternate allele completely

https://github.com/ncbi/sra-tools#the-sra-toolkit
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contains the other, such as AAA4313AAAA. In this case, we removed the shorter of ref
or alt from the other, and replaced the shorter field with a hyphen (-) and write to file,
transforming AAA4313AAAA to A4313-.

This left the more complex case of a single record containing both an InDel and an
SNP. These records have neither a reference nor alternate allele that completely contains
the counterpart, so we could not simply remove the identity of one from the other, as
we had before. Instead, we aligned the reference allele and the alternate allele for each
qualifying row using biopython’s [64] pairwise2 module as align.globalms with settings
match = 2, mismatch = −0.5, gapopen = −1, gap extension = 0.1, and allowed only the top
alignment. These settings were determined to be sufficient for the data presented in this
study, but have not been optimized to other datasets. For each alignment, we determined
where a deletion may be found and saved InDel in the ‘type’ field of the metadata variable.
For all other nonmatching bases in the alignment, we saved SNP to the ‘type’ field of
the metadata. In both cases, the position of the variant was incremented by the number
of preceding matching bases to correct for where the variant occurs. These explicit and
separated InDel and SNPs were written as discrete records to file. In all remaining cases,
both the reference and alternate allele values match with at least the starting nucleotide of
the record. We removed all matching alternate alleles from the reference alleles that had
not been otherwise addressed from the beginning of the reference, and incremented the
position by the length of the removed bases. This left only a deletion in all observed cases.
These were written to file with a hyphen in place of the alternate allele.

6. Studying the Effects of Primer Trimming on Variant Calls and Apparent Allele
Frequencies of Called Variants

In total, 83 high-quality ARTICv3-amplified samples were selected from the ACTIV
TRACE Illumina paired-end sample collection. These samples were analyzed twice with
the Galaxy workflow, once with and once without primer trimming. The position of each
resulting variant call (2696 calls total with, 2637 without trimming) was compared to the
known primer binding sites of the ARTICv3 primer scheme to classify calls as inside
(421 calls with, 360 calls without primer trimming) and outside of primer binding sites. For
variants called with and without primer trimming, the observed variant allele-frequency
with primer trimming was plotted against the same metric without primer trimming. For
variants called only with primer trimming, a value of zero was used as a substitute for the
unobserved variant allele-frequency without primer trimming.

7. Calculation of Receiver Operating Characteristic (ROC) Plots Based on Concordance
across Workflows

For each participating group, all variant calls made for all samples analyzed with the
group’s workflow were classified as either concordant or discordant based on whether
that same variant had or had not been called for the same sample by the majority of
groups (≥6 workflows) that had analyzed that sample. For the purpose of generating
ROC-like plots, concordant and discordant calls were treated as true-positive and false-
positive calls, respectively. The true- and false-positive lists of each group were then filtered
independently, with increasing thresholds on two key variant call metrics: the number of
sequencing reads supporting the variant allele (alternate allele read depth, AltDP) and the
fraction of all sequencing reads at the variant site that support the alternate allele (alternate
allele-frequency, AF). Increasing thresholds of each of the two metrics lower the number of
true- and false-positive calls, but to different extents. For plotting, the numbers of retained
true- and false-positive calls at each threshold were normalized to the numbers of unfiltered
true- and false-positive calls of the respective group, thus the ROC AUCs cannot be directly
compared between groups.
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8. Calculation of Receiver Operating Characteristic (ROC) Plots Based on
Cross-Platform Agreement

For samples for which both Illumina and ONT sequencing data were available, alter-
native plots could be generated as follows: for each participating group, all variant calls
made for all samples analyzed with the group’s workflow based on the data for one of the
two sequencing platforms were classified as concordant or discordant based on whether
that same variant had or had not been called for the same sample on the other platform
either by any participating group or not. For plotting, the true- and false-positive lists of
each group resulting from this alternate classification were used to create a threshold, and
were subsequently normalized as described above.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v16030430/s1, Figure S1: Indel Calls across the length of the
SARS-CoV-2 Genome.; Figure S2: Agreement across workflows with and without recommended
parameters, recent dataset; Figure S3: Difference in variant call frequencies across the length of
the reference genome for each workflow; Figure S4: Agreement across platforms with and without
recommended parameters, recent dataset. Table S1: Workflow Details; Table S2: Dataset 1 Metadata;
Table S3: Dataset 2 Metadata.
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