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Abstract: Tomato Brown Rugose Fruit Virus (ToBRFV) is a plant pathogen that infects important
Solanaceae crop species and can dramatically reduce tomato crop yields. The ToBRFV has rapidly
spread around the globe due to its ability to escape detection by antiviral host genes which confer
resistance to other tobamoviruses in tomato plants. The development of robust and reproducible
methods for detecting viruses in the environment aids in the tracking and reduction of pathogen
transmission. We detected ToBRFV in municipal wastewater influent (WWI) samples, likely due to its
presence in human waste, demonstrating a widespread distribution of ToBRFV in WWI throughout
Ontario, Canada. To aid in global ToBRFV surveillance efforts, we developed a tiled amplicon
approach to sequence and track the evolution of ToBRFV genomes in municipal WWI. Our assay
recovers 95.7% of the 6393 bp ToBRFV RefSeq genome, omitting the terminal 5′ and 3′ ends. We
demonstrate that our sequencing assay is a robust, sensitive, and highly specific method for recovering
ToBRFV genomes. Our ToBRFV assay was developed using existing ARTIC Network resources,
including primer design, sequencing library prep, and read analysis. Additionally, we adapted our
lineage abundance estimation tool, Alcov, to estimate the abundance of ToBRFV clades in samples.

Keywords: Tomato Brown Rugose Fruit Virus (ToBRFV); ARTIC amplicon sequencing; lineage
abundance estimation; wastewater

1. Introduction
1.1. Tomato Brown Rugose Fruit Virus Global Incidence, Impact, and Phylogeny

In Canada, fresh market tomatoes have been the most abundantly produced green-
house vegetable since record keeping began in 1955. In 2022, >293 M kg of fruit with
a farm gate value of >CAD 793 M were produced, with >213 M kg of fruit with a farm
gate value of >CAD 540 M produced in Ontario [1]. The Tomato Brown Rugose Fruit
Virus (ToBRFV) is a devastating plant pathogen that infects tomato and pepper plants and
can reach nearly 100% disease incidence, causing massive crop losses and placing a high
economic burden on farmers [2–4]. Thus, the control or elimination of this virus is a major
obstacle in maintaining secure global tomato crop yields.

The first incidence of ToBRFV was reported by Salem and colleagues (2016) following
a 2015 outbreak in Jordan. Shortly thereafter, Luria and colleagues (2017) identified ToBRFV
as the causative agent of a 2014 tomato disease outbreak in Israel. It has spread to at least
35 countries since, including major tomato-producing countries such as China, Türkiye,
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and Mexico [4–7]. Global transmission and clade-specific mutations of ToBRFV strains are
monitored through a curated NextStrain database updated by authorized curators with
each updated version referred to as a build [8–10].

1.2. Taxonomic Classification, Distinguishing between Species, Lineages, and Strains

The ToBRFV is a member of the Tobamovirus genus, a group of highly virulent plant
pathogens that includes 37 virus species with diverse and distinct host ranges [3,11,12]. The
ToBRFV genome shares the highest sequence identity with Tobacco Mosaic Virus (TMV)
isolate Ohio V at 82.4% shared identity, and fulfills species demarcation criteria [2,13].
All ToBRFV isolates available in NextStrain share greater than 90% sequence identity,
meeting the demarcation criteria. The ToBRFV 2022 NextStrain build (version 3) contains
179 ToBRFV isolates, grouped into eight distinct clades which represent diverging lineages
of ToBRFV strains [8,9].

1.3. ToBRFV Gene Content, Mode of Infection, and Host Immune-Escape

Tobamovirus virions are rod-shaped particles up to 300 nm long and 20 nm wide and
are non-enveloped [11,14,15]. The genome structure and gene order are conserved amongst
all tobamoviruses, consisting of a ~6.4 kbp monopartite single-stranded positive-sense RNA
genome containing four open reading frames (ORFs). Replication proteins are encoded by
ORF1 and ORF2, whereas virus structural proteins are encoded by ORF3 and ORF4 and
expressed through subgenomic RNA [4]. ORF1 encodes a 126 kDa RNA-dependent RNA
polymerase (RdRp), while ORF2 encodes a 183 kDa helicase protein through an amber
UAG stop codon downstream of ORF1 [2]. ORF3 encodes a 30 kDa movement protein (MP)
that facilitates cell-to-cell transmission through the plant plasmodesmata. The MP binds to
multiple cellular components that transport the viral RNA through the plasmodesmata.
Lastly, ORF4 encodes a coat protein that encapsulates the virus genome forming a thin
rod-like structure [2,14].

Changes in the ToBRFV MP sequence break tobamovirus-resistance genes that have
been introduced into most commercial crop species to provide protection against to-
bamoviruses [16]. ToBRFV MP amino acid mutations result in structural changes that pre-
vent MP binding by the plant Tm-22 receptor protein, thereby preventing activation of the
hypersensitive response and leading to severe infection symptoms [16]. Recently, ToBRFV-
resistant tomato seed lines have been commercially developed; however, only a limited
number of varieties are currently available (https://www.vegetables.bayer.com/ca/en-ca/
resources/news/bayer-launches-additional-commercial-varieties-with-intermediate.html,
accessed on 16 March 2024; https://www.syngentavegetables.com/resources/ToBRFV,
accessed on 7 June 2023).

1.4. The ToBRFV NextStrain Database and Phylogeny

The NextStrain database is a useful resource for scientists and policymakers to un-
derstand transmission routes and establish disease control measures [10]. For example,
genomic sequence data from commercial seeds were analyzed using NextStrain phylo-
genies which alerted Dutch authorities to the illegal use of a ToBRFV cross-protective
species [8]. ToBRFV genome sequences can be submitted and then incorporated into up-
dated builds by authorized curators. This community-based approach has increased the
number of genomes available in each version [8,9]. The ToBRFV 2019, 2020, and 2022
NextStrain builds contain 63, 118, and 179 ToBRFV strains, respectively, which can be
phylogenetically grouped into three, six, and eight clades, respectively, representing diverg-
ing ToBRFV clades [8–10]. However, when Abrahamian and colleagues (2022) analyzed
genome sequences of 123 ToBRFV strains retrieved from GenBank as well as another 22 iso-
lated from plant tissues, they identified three distinct clades. Zhang and colleagues (2022)
also phylogenetically analyzed 78 ToBRFV genomes and identified three distinct clades.
These differences between identified clades are likely a result of the differing phylogenetic
analysis tools and genome sequences used by each study. Additionally, the majority of
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isolated strains originate from the Netherlands and this sampling bias has likely skewed
ToBRFV phylogenetic analyses [8,13].

To fully understand ToBRFV phylogeny, an increased number of genome sequences
from various regions must be obtained, which can be aided by improved sequencing
methods [4,13]. To aid in ToBRFV identification and surveillance efforts, we developed a
robust and specific ToBRFV genome tiled amplicon sequencing assay utilizing short-read
Illumina sequencing technology.

1.5. Use of PCR-Enrichment Sequencing Assays for Viral Detection

High-throughput shotgun sequencing can produce millions of reads from a single
sample [17–19]. However, the low abundance of viral reads and the high abundance of
host and background reads in environmental samples can make it challenging to sequence
viral genomes without utilizing virus-specific enrichment methods such as PCR [18,20].
PCR enrichment assays are often used to amplify specific DNA sequences; however, they
require the development of target-specific primers [21–23].

Recently, an open-source collaboration called the ARTIC Network has created adapt-
able user-friendly tools to develop virus-specific sequencing assays utilizing PCR enrich-
ment (https://artic.network/; accessed on 20 February 2024). The ARTIC Network was
originally developed for monitoring the transmission and evolution of viruses such as
MERS-CoV and Ebola but has since been adapted to streamline the design of species-
specific tiled amplicon sequencing assays [22,24]. ARTIC primer schemes are designed to
target short overlapping fragments, referred to as amplicons, that span a specific genome
of interest. PCR-enriched amplicons can be sequenced using either Illumina or Nanopore
platforms to obtain complete genome sequences. ARTIC primer schemes have been used
to target many viral genomes, including but not limited to Zika, Ebola, Dengue, and
SARS-CoV-2 [22,24–27].

We utilized the ARTIC infrastructure to develop a nearly whole genome tiled amplicon
sequencing assay that enriches ToBRFV genomes for Illumina sequencing. During our
ongoing exploration of SARS-CoV-2 content in wastewater influent (WWI), we observed
widespread occurrence of the ToBRFV sequences in samples from multiple treatment
plants in Ontario, Canada (data available upon request). Indeed, several recent studies
have observed ToBRFV sequences in WWI, indicating this virus is likely widespread and
prevalent in wastewater systems in many countries [28–30].

1.6. ToBRFV Occurrence and Transmission in Wastewater

ToBRFV sequences have been observed in wastewater samples from Slovenia and
California [28–30]. In 2020, Bačnik and colleagues demonstrated that wastewater influ-
ent contains active ToBRFV virions which, when concentrated, can cause asymptomatic
infections in tomato plants.

Reclaimed wastewater is commonly used to irrigate crops, however several species in
the Tobamovirus genus, including Pepper Mild Mottle Virus (PMMoV), remain transmissible
in treated wastewater effluent [28]. Thus, ToBRFV could potentially be transmitted to
crops via reclaimed wastewater during irrigation. Moreover, in 2023, Mehle and colleagues
demonstrated that ToBRFV-infected plants shed active virions through their roots which
can then spread to other plants through shared hydroponic systems that distribute nutrient
solution. This suggests that plants exposed to ToBRFV-contaminated wastewater could
potentially become infected and cause widespread outbreaks. This could be a challenge for
growers who utilize reclaimed wastewater to irrigate crops [31,32]. However, it has not yet
been shown that ToBRFV virions remain infective after conventional wastewater treatment
methods. Thus, the possibility remains that treated wastewater effluent is suitable for irri-
gation and further work must be performed to determine ToBRFV transmissibility [28,29].

The entry mode of ToBRFV virions into wastewater has not yet been established.
One possible explanation for ToBRFV transmission is through environmental sources
such as waste from regional greenhouses and fields with ongoing ToBRFV infections [30].

https://artic.network/
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Another possible mode of transmission could be through a human dietary route [30]. If
the virus is present in produce and tomato- or pepper-based products, then the excretion
of these products by humans could transmit ToBRFV virions into WWI [33]. To test these
hypotheses, WWI could be obtained and tested for ToBRFV from regions without ToBRFV
infections or where there is no tomato or pepper cultivation to eliminate the possibility of
transmission through agricultural waste. Additionally, tomato and pepper products from
grocery stores, as well as human feces, could be tested for the ToBRFV to establish a dietary
route of transmission [33]. Similarly, a dietary mode of PMMoV transmission to human
feces has been established, thus, the human dietary mode of ToBRFV transmission into
WWI is the more probable scenario [33].

1.7. ToBRFV Detection and Sequencing

Current ToBRFV screening procedures, such as RT-qPCR and loop-isothermal ampli-
fication assays, can be used to determine the presence or absence of ToBRFV sequences,
quantify the viral load, and provide more rapid results than sequencing assays. However,
many of these assays cannot detect strain-specific mutations or they require the devel-
opment of specialized strain-specific primers/probes to track transmission routes and
determine sources of infection [4,29,34,35]. Moreover, increased evolutionary pressure
from disease eradication efforts could result in the emergence of novel mutations that
evade or reduce the effectiveness of current rapid presence/absence detection assays and
eradication measures [13]. Thus, sequencing of complete ToBRFV genomes is essential to
monitor virus transmission and evolution, predict emerging threats, and fully understand
ToBRFV phylogeny [8]. However, high-throughput shotgun sequencing analysis is not
ideal for the recovery of ToBRFV genomes due to the low recovery of viral sequences, high
costs, and length of sample processing time [4]. To circumvent this problem, we designed
a ToBRFV-specific tiled amplicon assay. Results show our tiled-amplicon assay provides
a reliable cost-effective method to sequence ToBRFV genomes as well as aid in global
surveillance efforts and uncover novel phylotypes of clades.

To aid in ToBRFV surveillance efforts, we utilized wastewater RNA extracts from
five Ontario WWI collection sites to develop and validate a novel ToBRFV tiled ampli-
con sequencing (ToBRFV-Seq) assay. We prepared RNA sequencing libraries using our
ARTIC-style ToBRFV-Seq assay and an RNA shotgun sequencing assay using the NebNext
Ultra II RNA Prep kit. By evaluating the recovery of ToBRFV reads by each method, we
demonstrate that our assay is a highly specific and efficient method for ToBRFV genome se-
quencing. Moreover, we adapted our in-house SARS-CoV-2 lineage abundance estimation
tool, Alcov [36], to identify and estimate the relative abundance of ToBRFV clades. Our
adapted tool, named Altob (https://github.com/Ellmen/altob; accessed on 20 February
2024), was able to analyze clade-specific mutations and estimate the abundance of ToBRFV
NextStrain clades 1–4 and 6–8 in samples.

2. Materials and Methods
2.1. Viral RNA Extraction from Wastewater Influent

Wastewater influent (WWI) samples were collected in plastic bottles and shipped in
coolers with ice packs from five wastewater treatment plants in Ontario, Canada (Table S1).
Samples from five sites (designated A–E) were processed using virion capture Nanotrap
Microbiome A particles (Ceres Nanosciences, Manassas, VA, USA, #44202), then RNA was
extracted using the Qiagen RNeasy Mini kit (Hilden, Germany #74104).

Briefly, bottles of WWI were inverted to mix and allowed to settle for 1 min at room
temperature, then 10 mL of wastewater supernatant containing suspended biosolids was
moved to a fresh tube. A negative control sample was prepared alongside extracts using
10 mL of nuclease-free DI water instead of WWI. The supernatant was mixed with 100 µL of
ER2 solution by briefly vortexing. Then, 150 µL of Microbiome A particles were added and
the samples were inverted to mix. The samples were then incubated at room temperature
for 10 min, with three inversions after 5 min of incubation. Samples were placed on a

https://github.com/Ellmen/altob
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15 mL tube magnetic stand; the cleared supernatant was discarded and magnetic beads
were retained.

Beads were gently resuspended in 1 mL of nuclease-free water and transferred to
a sterile 1.5 mL microfuge tube. Beads were placed on a magnetic stand and incubated
for 1 min and the supernatant was discarded without disturbing the bead pellet. Beads
were resuspended 700 µL of RLT lysis buffer containing 1% 2-ME (BioShop, Burlington,
Canada, MER002.500) by pipetting and then vortexing. Samples were incubated at room
temperature for 10 min, then 600 µL of the supernatant from each sample was manually
extracted using the Qiagen RNeasy Mini kit (Hilden, Germany, #74104). RNA was eluted in
80 µL of RNase-free water and the concentration of DNA and RNA was analyzed on a Qubit
4.0 fluorometer (Thermofisher Scientific, Waltham, USA, #Q33238). DNA was degraded
using the Ambion DNase I kit (Invitrogen, Vilnius, Lithuania, #AM2222), samples were
incubated with 4 units of DNase I at 37 ◦C for 45 min. RNA was recovered using the RNeasy
Mini Kit RNA (Hilden, Germany #74104) clean-up protocol, DNA and RNA concentration
were then determined by Qubit 4.0 analysis to ensure RNA integrity and complete removal
of DNA.

2.2. Primer Design and Pooling

Primers were designed by first generating a multiple sequence alignment (MSA) from
the genomes of 118 ToBRFV strains listed on the 2020 NextStrain Build (version 2), and
sequences were obtained from NCBI (Table S2). A consensus sequence was generated
from the MSA and uploaded to the web-based tool PrimalScheme to generate primer
sequences targeting overlapping amplicons of approximately 400 base pairs (bp) in length.
PrimalScheme generated 20 amplicons for a total of 40 primers that cover 95.7% of the
ToBRFV genome NC_028478.1, which was used for downstream read mapping analysis.
Primers were synthesized by Integrated DNA Technologies. Primers amplifying odd and
even numbered amplicons were diluted and mixed in two separate aliquots (pools 1 and 2,
respectively) to avoid mispriming between overlapping amplicons (Figure 1). Each primer
was pooled at a concentration of 0.5 µM in respective pools (Table S3).

2.3. ToBRFV-Targeted Tiled Amplicon Sequencing Library Preparation

RNA extracts from WWI samples were reverse transcribed to synthesize cDNA using
the LunaScript SuperMix RT kit (New England Biolabs, Ipswitch, MA, USA, E3010L); 10 µL
of each RNA extract was used in a total reaction volume of 20 µL. First-strand cDNA
synthesis products were PCR-amplified in two reaction mixtures containing primer pools 1
or 2 (Figure 1). The PCR was performed using Q5 2× Master Mix (New England Biolabs,
Ipswitch, USA, M0492S), 6 µL of cDNA synthesis reaction, and 2.5 µL of one primer pool,
adding ddH2O to a total volume of 25 µL. Samples were initially denatured at 98 ◦C for
30 s, followed by 35 cycles of 98 ◦C for 15 s, 63 ◦C for 30 s, and 72 ◦C for 30 s, ending with a
final extension of 5 min at 72 ◦C.

PCR products were prepared for sequencing using the Illumina DNA Prep kit (San Diego,
CA, USA, #20060060) using half of the manufacturer’s recommended volumes. Briefly,
PCR products were purified using AMPure XP beads (Beckman Coulter, Brea, CA, USA,
A63881), then assessed by Qubit 4.0 fluorometer and agarose gel electrophoresis. Purified
PCR products were tagmented using on-bead tagmentation and barcoded with custom
unique dual indexes using six PCR cycles. Indexed PCR products of ~400 bp were isolated
using double-sided magnetic bead purification. The purified fragments were assessed
using a Qubit 4.0 fluorometer and agarose gel electrophoresis.

2.4. RNA Shotgun Sequencing Library Preparation

RNA extracts from WWI were prepared for RNA sequencing using the NEB Ultra
II RNA Sequencing kit (New England Biolabs, Ipswitch, USA, E7770S), following the
manufacturer’s recommended protocol, Section 5. RNA extracts were quantified using a
Qubit 4.0 fluorometer, then reversed-transcribed using first- and second-strand synthesis
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enzymes. AMPure XP beads were used to purify double-stranded cDNA fragments. Frag-
ments were end-prepped by dA-tailing enzymes, then adaptor-ligated. Ligated fragments
were purified using AMPure XP beads, PCR-enriched and barcoded with unique dual
indexes (Illumina, San Diego, CA, USA, 20027213) using six PCR cycles. PCR products
were purified using AMPure XP beads and then assessed using a Qubit 4.0 fluorometer
and agarose gel electrophoresis.

2.5. Library Pooling and Illumina NextSeq Sequencing

ToBRFV-Seq and RNA shotgun-prepared libraries were pooled. Samples prepared
using the same method, either RNA shotgun or ToBRFV-Seq, were pooled at equal con-
centrations and shotgun libraries were pooled at 15× the concentration of ToBRFV-Seq
libraries. The pooled libraries were sequenced on an Illumina NextSeq2000 using 2 × 300
sequencing and P1 chemistry. Approximately 65% of the flowcell sequencing capacity was
dedicated to these samples, for a total expected yield of 52 GB.

2.6. Read Processing, Taxonomic Classification, and ToBRFV Genome Alignment

Sequencing read quality and adaptor content were evaluated using FastQC v0.12.1 [37].
Low-quality reads and adaptor sequences were removed and reads were paired using
Trimmomatic v0.39 using flags ILLUMINACLIP:<a>:2:30:7:2:TRUE, LEADING:3, TRAIL-
ING:3, SLIDINGWINDOW:5:15, MINLEN:125 [38]. RNA shotgun reads were trimmed
using NebNext Illumina adaptor read sequence 1 AGATCGGAAGAGCACACGTCT-
GAACTCCAGTCA and read sequence 2 AGATCGGAAGAGCGTCGTGTAGGGAAA-
GAGTGT while ToBRFV-Seq reads were trimmed using the Illumina DNA Prep adaptor
sequence CTGTCTCTTATACACATCT. The overall quality of read trimming was evaluated
using FastQC v0.12.1 [37]. Read pairs passing quality control filters were taxonomically
classified with Kraken2 v2.0.7-beta, using the flag-paired and the standard database, and
reports of read taxonomic rankings were generated for each sample [39]. Quality-controlled
read pairs were aligned to the ToBRFV genome NC_028478.1 using bowtie2 v2.3.5 with
the flag-local [40]. Alignments were converted into bam files with samtools v1.9 files and
anvio-7.1, and then visualized using Tablet 1.21.02.08 [41–43].

2.7. Altob Implementation and Synthetic Read Simulation

Our in-house SARS-CoV-2 variant of concern lineage abundance estimation tool, Alcov,
was adapted to identify and estimate ToBRFV clades in Illumina paired reads [36]. We used
Seaview to compute a multiple sequence alignment (MSA) with the MUSCLE algorithm
using NC_028478.1 as the root genome and 124 unique genomes listed on NextStrain
(Table S2) [8,44,45]. Then, a phylogenetic Maximum Likelihood tree was generated using
a GTR model and 100 bootstrap replicates and compared to the 2022 NextStrain ToBRFV
phylogenetic tree (Figure S1). Phylogenetically grouped isolates were used to generate
MSAs for each clade using NC_028478.1 as the root and the MUSCLE algorithm. MSAs
were used to generate a list of mutations that appear in at least 50% of clade-specific isolates,
which were then used to construct constellations of clade-specific mutations to estimate
ToBRFV clade abundances using Altob. Positions in our mutation list are relative to position
one of the reference genomes, whereas the mutations reported in the NextStrain phylogeny
are relative to position one of their ToBRFV MSAs which is either 106 or 107 bp upstream
of our start site.

Altob was adapted from our in-house tool Alcov by modifying the original mutation
constellations and reference genome; all other functions and parameters were maintained.
A detailed description of Alcov and its functions can be found in our preprint [36]. Briefly,
Altob scans sites with a minimum coverage of 40 reads for the provided mutations and
calculates frequencies as the number of mutations over the total reads at that site [36]. Altob
computes the clade abundance which best explains the observed pattern of mutations
utilizing linear programming, a well-studied optimization technique [36,46].
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Synthetic read data used to benchmark Altob were generated using DGWSIM v0.1.13
and genomes of eight randomly selected ToBRFV strains, each belonging to a different
NextStrain clade (Table S2) [8,47]. Three datasets containing either 1000, 10,000, or 100,000
paired 2 × 250 Illumina reads were generated for each of the eight genomes without
introducing random mutations or random DNA reads. Files containing 100,000 paired
reads were combined to generate datasets with a mixture of clade-specific mutations. An
equal number of reads from eight, four, and two genomes were combined, thus, each clade
is represented by 12.5%, 25%, or 50% of reads, respectively. Altob is publicly available on
GitHub (https://github.com/Ellmen/altob; accessed on 20 February 2024).
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Figure 1. ToBRFV-specific primer binding sites and resulting amplicons mapped to the ToBRFV
MK133093 genome sequence. In silico visualization of primer binding sites; forward and reverse
primers are denoted by the upward and downward pointing triangles, respectively, and each resulting
amplicon is numbered and denoted by blue and orange flags [48]. Pool 1 primers and amplicons are
blue, pool 2 primers and amplicons are orange. Nucleotide positions are labeled at 1000 bp intervals.

3. Results
3.1. In Silico Primer Binding Analysis of ToBRFV Genome Sequences of 125 Strains

To ensure our 40 ToBRFV-specific primers would inclusively target a wide variety
of ToBRFV strains without compromising species-specific stringency, we performed an
in silico primer binding analysis using the sequence analysis software Benchling (2023)
and 137 tobamovirus genomes [48]. A list of 179 ToBRFV strain accession numbers from
the NextStrain ToBRFV build (2022, version 3) was obtained, representing 125 unique se-
quences, and these genomes were downloaded from NCBI. In addition, 12 tobamovirus Ref-
Seq genomes of species closely related to the ToBRFV were obtained from NCBI (accessed on
20 April 2023) and all 137 unique genome sequences were imported into Benchling [12,15].
Benchling was used to probe all 137 genome sequences for potential primer binding sites
using the program’s Find Primer Binding Sites tool. A successful match required at least
18 matching bases, a maximum of 3 mismatches, and a maximum of 1 consecutive nu-
cleotide. The positions of matching primers were mapped to each genome and visualized
using Benchling to ensure the overlapping amplicon primer scheme was maintained.

All 40 ToBRFV-specific primers had one matching binding site within each of the
125 ToBRFV-strain genomes (Table 1), with between zero and two mismatches observed
between primers and ToBRFV-strain genomes. Several binding sites were identified in
genomes of tobamovirus species closely related to the ToBRFV; 15, 14, 11, and 9 primers
produced partial matches to tobacco mosaic virus (TMV), tomato mottle mosaic virus
(ToMMV), rehmannia mosaic virus (ReMV), and tomato mosaic virus (ToMV) genomes,
respectively (Table 1). Fewer matches, between zero and six, were identified for the other
nine tobamovirus genomes which are more distantly related to the ToBRFV (Table 1) [2].

Our in silico primer binding analysis suggests all 40 primers could amplify the genomic
sequences of all 179 ToBRFV strains listed on NextStrain while maintaining an overlapping
binding scheme across each genome (Table 1, Figure 1). In silico results demonstrate that
our primers are highly specific to ToBRFV genome sequences yet remain non-specific at the
strain level. Moreover, limited binding to other tobamovirus genomes shows our primers
are unlikely to amplify the complete genome of off-target species; however, partial genome
segments could potentially be amplified.

https://github.com/Ellmen/altob
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Table 1. In silico Analysis of ToBRFV-specific Primer Binding to 137 Tobamovirus Genomes. In
silico primer binding analysis identified one potential binding site in 137 ToBRFV genomes for all
40 ToBRFV-specific primers [48]. A limited number of ToBRFV-specific primers are partially bound to
other tobamovirus genomes. A greater number of primer binding sites was observed in genomes of
species sharing more recent ancestry with the ToBRFV.

Tobamovirus Species Accession Primer Count

All 125 unique ToBRFV genomes Supplementary Table S2 40
Tobacco mosaic virus (TMV) NC_001367.1 15

Tomato mottle mosaic virus (ToMMV) NC_022230.1 9
Tomato mosaic virus (ToMV) NC_002692.1 14

Pepper mild mottle virus (PMMoV) NC_003630.1 3
Bell pepper mottle tobamovirus (BPeMV) NC_009642.1 6

Obuda pepper virus (ObPV) NC_003852.1 1
Paprika mild mottle virus (PaMMV) NC_004106.1 3

Tobacco middle green mosaic virus (TMGMV) NC_001556.1 2
Cucumber green mottle mosaic virus (CGMMV) NC_001801.1 0
Cucumber fruit mottle mosaic virus (CFMMV) NC_002633.1 0

Brugmansia mild mottle virus (BrMMV) NC_010944.1 6
Zucchini green mottle mosaic virus (ZGMMV) NC_003878.1 0

3.2. Read Quality Control and Adaptor Trimming

Sequenced RNA shotgun libraries produced on average 4.64 Gbp and 15,627,313 reads
per sample, whereas ToBRFV-Seq libraries produced on average 179,820 Mbp and 597,554 reads
per sample, and in total 63.7 GB of data were produced (Table 2). Due to the low level
of viral reads and high level of background eukaryotic and prokaryotic DNA found in
environmental samples, shotgun-prepared libraries often require a high sequencing depth
to obtain even a modest number of viral reads [18,49]. Thus, RNA shotgun samples were
loaded at a 15× greater concentration than ToBRFV-Seq prepared samples. The majority of
reads were high-quality, with RNA shotgun and ToBRFV-Seq prepared samples containing
an average of 94.07% and 83.72% reads passing filters, respectively (Table 2).

Table 2. Total and Filtered Reads from RNA Shotgun and ToBRFV-Seq Prepared Sequencing Libraries.
The total number of reads (Pairs), number of filtered paired reads (QF Pairs), and percent of quality
filtered (%PF) reads obtained from WWI samples and a nuclease-free water blank prepared with
either RNA shotgun or ToBRFV-Seq. Samples A–E were averaged, excluding the NTC (no-template
control) blank.

RNA Shotgun ToBRFV-Seq

Sample Total Gb Pairs QF Pairs % PF Total Gb Pairs QF Pairs % PF

Average 4.640000 15,627,313 14,631,264 94.07 0.1798200 597,554 502,007 83.72
A 5.5000000 18,528,523 17,138,798 92.50 0.1688000 560,908 451,928 80.57
B 4.9000000 16,434,198 15,693,587 95.49 0.2103000 698,848 609,572 87.23
C 3.6000000 12,035,815 11,788,803 97.95 0.1589000 527,913 445,326 84.36
D 5.4000000 18,266,390 16,248,968 88.96 0.2054000 682,673 586,488 85.91
E 3.8000000 12,871,637 12,286,164 95.45 0.1557000 517,430 416,720 80.54

Blank 0.0396000 131,614 123,528 93.86 0.0000571 190 108 56.84

3.3. Taxonomic Profile of WWI Samples Prepared by RNA Shotgun and ToBRFV-Seq Methods

Domain-level taxonomic classification of read pairs by Kraken2 against the standard
database was computed to compare the recovery of viral reads obtained with each library
prep method (Figure 2A,B) [39]. RNA shotgun reads were mostly bacterial, representing
on average 89.40% of sample reads; 0.06% were viral, while the remaining 10.53% of reads
were eukaryotic, archaeal, or other. Comparatively, on average, 97.38% of ToBRFV-Seq
reads were classified as viral while the remaining 2.62% of reads were eukaryotic, viral,
archaeal, or other (Figure 2C). The high recovery of bacterial reads in cDNA shotgun
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libraries is likely a result of residual bacterial genomic DNA, rRNA, and mRNA sequences
in prepared samples and is a common limitation of viral metagenomic sequencing [50,51].
DNA contamination could be prevented by including thorough quality checks to confirm
DNA has been completely removed from the sample prior to library preparation steps [51].
Notably, DNA contamination did not impact the recovery of viral reads using our ToBRFV-
Seq, even though the same extracts were used for each library prep method. Moreover, we
have found DNase treatment unnecessary to obtain a high number of specific reads with
our ToBRFV-Seq assay (data available upon request).

Viruses 2024, 16, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 2. Taxonomic Classification of RNA Shotgun and ToBRFV-Seq Read Pairs at the Domain- 
and Species-level. Kraken2 classified read pair counts at the domain level for (A) RNA shotgun li-
brary prepared samples and (B) ToBRFV-Seq prepared samples [39]. At the domain level, categories 
included are viral, archaea, bacterial, eukaryotic, or other reads, where other includes unclassified 
reads, plasmids, adapters, linkers, and/or primers. (C) The percentage of reads represented by each 
domain for both prep methods. Samples A–E were used to calculate the average, the blank was 
excluded. (D,E) Percentage of total reads classified as ToBRFV (T), other tobamoviruses (OT), and 
the remainder of virus classified reads (RR) (F). Counts of tobamovirus classified read pairs at the 
species level (G). (A,B,D,E) Reads are represented on a log scale to magnify and visualize low abun-
dance reads. Two-tailed tests were used to compare the mean read counts of RNA shotgun and 
ToBRFV-Seq classified reads, respectively. (D) RNA shotgun samples, p < 0.05, n = 5, df = 4, t-values, 
(T-OT) 3.569, (T-RR)-1.015, and (RR-OT)-1.181, critical t-value ± 2.776. (E) ToBRFV-Seq samples, p < 
0.05, n = 5, df = 4, t-values, (T-OT) 12.523, (T-RR) 12.523, and (RR-OT) 2.449, critical t-value ± 2.776. 
Thus, there is a statistically significant difference between the number of ToBRFV and other 

Figure 2. Taxonomic Classification of RNA Shotgun and ToBRFV-Seq Read Pairs at the Domain-
and Species-level. Kraken2 classified read pair counts at the domain level for (A) RNA shotgun



Viruses 2024, 16, 460 10 of 19

library prepared samples and (B) ToBRFV-Seq prepared samples [39]. At the domain level, categories
included are viral, archaea, bacterial, eukaryotic, or other reads, where other includes unclassified
reads, plasmids, adapters, linkers, and/or primers. (C) The percentage of reads represented by each
domain for both prep methods. Samples A–E were used to calculate the average, the blank was
excluded. (D,E) Percentage of total reads classified as ToBRFV (T), other tobamoviruses (OT), and the
remainder of virus classified reads (RR) (F). Counts of tobamovirus classified read pairs at the species
level (G). (A,B,D,E) Reads are represented on a log scale to magnify and visualize low abundance
reads. Two-tailed tests were used to compare the mean read counts of RNA shotgun and ToBRFV-Seq
classified reads, respectively. (D) RNA shotgun samples, p < 0.05, n = 5, df = 4, t-values, (T-OT)
3.569, (T-RR)-1.015, and (RR-OT)-1.181, critical t-value ± 2.776. (E) ToBRFV-Seq samples, p < 0.05,
n = 5, df = 4, t-values, (T-OT) 12.523, (T-RR) 12.523, and (RR-OT) 2.449, critical t-value ± 2.776. Thus,
there is a statistically significant difference between the number of ToBRFV and other tobamovirus
reads produced by RNA shotgun sequencing, whereas there is a statistically significant difference
between the number of ToBRFV reads produced compared to both other tobamovirus reads and the
read remainder.

Viral read pairs were further classified at the species level to evaluate the recovery
of ToBRFV, other tobamovirus, and all other virus species by each library preparation
method (Figure 2D,E). As expected, RNA shotgun sequencing yielded a mixture of to-
bamovirus reads with a high proportion specific to the ToBRFV, as well as other virus
species (Figure 2D,F). On the other hand, our ToBRFV-Seq assay almost exclusively pro-
duced ToBRFV reads (Figure 2E,F). Although other tobamoviruses were observed in all
WWI samples, they were not significantly enriched within ToBRFV-Seq samples (Figure 2G).
This demonstrates that our primers do not amplify these closely related off-target sequences
when present in low abundance and are therefore highly specific to ToBRFV genomes.

Of note, the ToBRFV-Seq blank sample, prepared using nuclease-free water, contained
100 ToBRFV read pairs (Figure 2G). This is likely due to sample contamination prior to or
during library preparation and is a commonly encountered issue when preparing tiled-
amplicon sequencing assays [52]. Thus, extra precautions should be taken to reduce sample
contamination during RNA extraction and PCR setup [53].

3.4. Mapping Reads to a ToBRFV Reference Genome

The quality of ToBRFV genome recovery was assessed by mapping reads from samples
to a ToBRFV genome using bowtie2, and assessing coverage, completeness, and depth
of read mapping to the reference [40]. Our ToBRFV-specific primers target 95.7% of the
ToBRFV genome sequence, forgoing 64 bp and 210 bp on the 5′ and 3′ genome ends,
respectively. These regions are less than 400 bp and therefore too small to be included in
our tiled amplicon primer scheme. Thus, the percentage of genome coverage was calculated
for both the total and PCR-targeted genome regions.

Both library preparation methods were able to obtain nearly complete or complete
coverage of the total and PCR-targeted genome; however, RNA shotgun samples contained
far fewer reads and had a lower depth of coverage than ToBRFV-Seq samples (Table 3).
Moreover, RNA shotgun samples on average contained 15,627,313 read pairs, yet only
0.02% of reads aligned to the ToBRFV reference genome (Tables 2 and 3). Conversely,
ToBRFV-Seq samples contained on average 597,554 read pairs with 99.86% of reads aligning
to the reference genome (Tables 2 and 3). RNA shotgun samples utilized a much greater
sequencing capacity than our ToBRFV-Seq samples, yet still yielded fewer ToBRFV reads
and lower depth of sequencing. Thus, our ToBRFV-Seq assay offers an alternative and
more robust approach for sequencing ToBRFV genomes that is highly specific and requires
minimal sequencing capacity. On average, ToBRFV-Seq samples covered 99.92% of the
PCR-targeted genome sequence with 0–6 bp missing on alignment terminal ends.
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Table 3. Alignment and Coverage of RNA Shotgun and ToBRFV-Seq Reads Mapped to a ToBRFV
Genome. Number of ToBRFV reads and percentage of total reads that align to the ToBRFV genome
NC_028478.1, % coverage of the total (% Total Cov) and PCR-targeted (% Target Cov) genomic region,
the average read depth, and maximum read depth. Samples A–E were included in the average and
the blank was excluded.

RNA Shotgun ToBRFV-Seq

Sample ToBRFV
Reads

%
Aligned

% Total
Cov.

% Target
Cov.

Avg.
Depth

Max.
Depth

ToBRFV
Reads

%
Aligned

% Total
Cov.

% Target
Cov.

Avg.
Depth

Max.
Depth

Average 3840 0.02 99.06 99.71 155.31 472 977,491 99.86 95.69 99.92 35,694.79 206,304

A 867 0.00 97.45 98.53 29.94 110 873,270 99.78 95.67 99.89 32,084.65 227,756

B 1732 0.01 99.34 100.00 67.63 184 1,180,695 99.85 95.70 99.85 44,893.64 312,224

C 4891 0.02 99.5 100.00 211.20 623 859,568 99.90 95.67 99.95 31,268.41 154,096

D 4742 0.02 99.44 100.00 177.90 556 1,153,735 99.90 95.74 99.95 40,645.85 227,468

E 6968 0.03 99.58 100.00 289.89 886 820,185 99.85 95.67 99.95 29,581.39 109,976

Blank 70 0.04 72.96 73.36 2.93 16 199 96.60 53.00 56.53 6.33 36

3.5. Estimating the Relative Abundance of ToBRFV Clades in Wastewater Influent

We adapted our tool, Alcov, to estimate the abundance of ToBRFV clades in Illumina
sequencing reads and named the adapted tool Altob. Clade-specific mutations were
defined by constructing a Maximum Likelihood tree from unique ToBRFV isolates listed
on the NextStrain 2022 build and clade-specific MSAs aligned to the reference genome
NC_028478.1 were used to define mutations [8]. We were able to resolve seven of the
eight clades identified on NextStrain; however, clade five isolates did not form a distinct
clade and appeared in several divergent branches (Table S2, Figure S1). Benchmarking
analysis of Altob was performed using synthetic Illumina read datasets of 1000, 10,000, and
100,000 reads using genomes that represent each ToBRFV clade [8].

Altob correctly identified all clades and estimated between 94.2% and 98.7% relative
abundance for the respective clades (Figure 3A), except for clade five. Clade five contains
the wildtype ToBRFV used to root our tree and define mutations in all other clades; therefore,
the clade five clade is not called by Altob [8]. Synthetic read datasets containing a mixture
of clade-specific reads were also correctly identified using Altob (Figure 3B). We expected
a 50% abundance call for each clade in files containing two genomes, a 25% call in files
containing four genomes, and a 12.5% call in files containing all eight genomes. Slight
differences in the estimated and expected read abundance for some clades were observed
(Figure 3B), which can likely be attributed to the low frequency of mutations in some
strains and therefore absence of mutations in some randomly generated reads. Thus,
Altob is well suited to identify and distinguish between ToBRFV clades with the exception
of clade 5; however, abundance scores should be treated as close estimates and not as
exact measurements.

Finally, Altob was used to evaluate the clades present in our WWI samples (Figure 3C).
In samples A–E, clades four and seven were identified in all RNA Shotgun and ToBRFV-Seq
samples, demonstrating the wide-spread transmission of specific ToBRFV-clades in Ontario
WWI. Clade four strains have been identified in North America; as such, the identification
of clade four strains in Ontario wastewater influent is unsurprising [8]. Clade seven strains
have been identified in the Netherlands and Belgium, suggesting the transmission of these
strains to Ontario either through the agricultural industry and/or the import of tomato
products [8,30,33]. In each sample, the predicted clade abundance of clade 7 was relatively
similar regardless of library preparation method, with an average difference of ∓1.86%
between RNA shotgun and ToBRFV-Seq estimates for each respective sample. However,
clade 4 yielded different abundance calls when samples were prepared by each assay and
had an average difference of ∓26.92%.
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Figure 3. ToBRFV Clade-Abundance Estimates of Synthetic Read Datasets and WWI samples with
Altob. Heatmaps display Altob clade abundance estimates of (A) datasets containing 1000, 10,000,
or 100,000 synthetic reads from eight ToBRFV genomes representative of each clade. (B) Datasets
combining 100,000 synthetic reads from either all eight genomes, four genomes, or two genomes.
(C) Reads from WWI samples prepared with RNA shotgun (Shotgun) or our ToBRFV-Seq assay
(ToBRFV) (A–E).

3.6. Assessment of Viral Shotgun Reads at a Species Level

To investigate the presence and abundance of viruses in WWI, viral reads from RNA
shotgun samples were taxonomically classified at the species level and the abundance of
species assigned read pairs was evaluated (Figure 4). In all five WWI samples, twenty-six
viruses were consistently found which included plant-infecting viruses, human pathogens,
enteric bacteriophages, insect viruses, and amoeba-infecting viruses (Table S4).
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Figure 4. Evaluation of virus-species abundance in WWI samples using counts of viral reads tax-
onomically classified by Kraken2. (A) Percentage of virus paired read counts of the seven most
abundant virus species found in each sample and count of all other species. (B) Percentage of virus
species classified reads assigned to the most abundant species in each WWI sample prepared by RNA
shotgun and a blank.

The counts and percentage of paired reads assigned to the seven most prevalent
virus species identified in each sample were compared to ascertain which species were
consistently found in high abundance (Figure 4). In samples A–D, either ToBRFV or choris-
toneura fumiferana granulovirus (ChfuGV) read pairs were in the highest abundance while
cucumber green mottle mosaic virus (CGMMV) and pepper mild mottle virus (PMMoV)
were on average the third and fourth most prevalent virus species, respectively (Figure 4B).
ToBRFV, CGMMV, and PMMoV are plant pathogens belonging to the Tobamovirus genus,
while ChfuGV is an insect pathogen that infects budworms [3,54]. In sample E, however,
Wuhan insect virus 23, is the most abundant single virus species detected. Preparation or
sequencing biases may have resulted in the overestimation of this virus in samples. How-
ever, these samples were collected during summer months, therefore there may have been
a high insect-to-human virus transmission experienced by individuals in the population
serviced by site E. Replicative data at this site could be used to discern between these and
other potential possibilities.

4. Discussion

ToBRFV-Seq is a whole genome sequencing enrichment assay that utilizes a tiled
amplicon primer scheme for specific PCR amplification. We evaluated our ToBRFV-Seq
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assay specificity using RNA extracted from five wastewater influent samples. We assessed
primer specificity by first performing in silico primer binding analysis to ToBRFV genomes
and other closely related tobamovirus genomes (Table 1). In silico, all primers were capable
of binding the genomes of all 125 ToBRFV strains that were analyzed while relatively few
off-target binding sites to other tobamovirus genomes were identified. We then evaluated
primer specificity by taxonomically identifying reads obtained from five WWI RNA extracts
prepared with our ToBRFV-Seq assay. The vast majority were taxonomically identified
as ToBRFV reads and very few reads, 0–0.0017%, were assigned to other tobamoviruses
(Figure 1G). Furthermore, >99% of ToBRFV-Seq reads mapped to the reference genome
NC_028478.1, covering >99% of the target genomic region and >95% of the total genome
(Table 3). Thus, demonstrating our primers are highly specific to and efficient in enriching
ToBRFV genomes. When evaluating our ToBRFV-Seq assay we also prepared each WWI
RNA extract for RNA shotgun sequencing. ToBRFV was detected in all RNA shotgun
samples; however, a far greater depth of sequencing was required to obtain a modest
number of ToBRFV reads when compared to our ToBRFV-Seq assay (Table 3). Thus,
our assay provides an effective sequence enrichment method that is highly specific to
ToBRFV genomes.

The high relative abundance of ToBRFV-specific reads in RNA shotgun samples
indicates that ToBRFV is widespread and highly prevalent in Ontario WWI (Figure 4).
Moreover, comparing counts of ToBRFV-specific reads versus all other tobamovirus reads
with a one-tailed t-test (p < 0.05, n = 5, df = 4, t-values, t-value = 3.569, critical t-value
±2.776) demonstrates a statistically significant difference in read counts, with ToBRFV reads
outnumbering all other tobamovirus reads combined (Figure 2D). The higher abundance
of ToBRFV reads than PMMoV and all other tobamoviruses is consistent with the findings
of Rothman and Whiteson, 2022, who investigated WWI from Californian treatment plants
for the presence of eight tobamoviruses using qPCR and Illumina sequencing. Of the
eight tobamoviruses viruses, their analysis identified the ToBRFV as the most abundant in
California WWI, even more prevalent than both PMMoV and CGMMV [30].

4.1. Possible Assay Applications to Determine ToBRFV Transmission and Prevalence

Wastewater influent has become an important tool in tracking the transmission of
specific virus lineages [55,56]. Since the ToBRFV is prevalent in wastewater, sequencing of
WWI could be used to track and identify currently circulating ToBRFV lineages. To this
end, we adapted our SARS-CoV-2 lineage abundance estimation tool, Alcov, to estimate
ToBRFV lineages from sequencing reads. Generally, Altob is a robust prediction tool capable
of estimating ToBRFV clade abundances in samples with as few as 1000 ToBRFV reads
(Figure 3). However, some differences in the estimated clades when using differing library
preparation methods demonstrate that Altob-predicted clade abundances should be treated
as general estimates. The identification of additional ToBRFV strain genome sequences,
particularly in clades 6 and 8 which each contain only three known strains, would enable
more clade-specific mutations to be identified and added to Altob constellation files, thus
improving Altob’s ability to classify samples by ToBRFV clade. Together, our ToBRFV-Seq
assay and Altob could be a valuable resource to identify clade-specific ToBRFV infections,
explore potential transmission routes, and aid in combating transmission events.

PMMoV is a commonly used human fecal indicator due to its reliable presence in
human feces and has become a popular RT-qPCR standard to normalize cycle threshold (Ct)
values from SARS-CoV-2 assays [33,56–58]. Since the SARS-CoV-2 pandemic, a multitude
of virus and chemical human fecal indicators, such as PMMoV, caffeine, and nicotine, have
been recently evaluated [59–61]. However, a consensus on the best standard has not yet
been reached and the reliability of PMMoV and other standards is quite variable between
studies due to factors such as population size, seasonal changes, diet, sample processing,
and detection methods [58,61–65]. Although PMMoV was found in all our RNA shotgun
samples, it was consistently found in a lower abundance relative to ToBRFV, suggesting
ToBRFV may be more readily detectable and thus be a more robust fecal indicator and
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RT-qPCR standard than PMMoV (Figure 4). Indeed, two studies examining human infant
oropharyngeal and fecal viromes within the first year of life identified the ToBRFV by
metagenomic sequencing in infant fecal [66] and infant oropharyngeal [67] viromes. More-
over, a recent comparative study of PMMoV and ToBRFV as fecal contamination indicators
showed that ToBRFV is more prevalent in wastewater and matched the established micro-
bial tracking marker cross-assembly phage (crAssphage) abundance [68]. This suggests
that ToBRFV may be a suitable marker replacement for PMMoV in wastewater. ToBRFV
has likely been overlooked as a fecal indicator because PMMoV was first introduced as a
fecal indicator in 2006, long before the first recorded ToBRFV outbreak in 2014 [2,33,69].

4.2. Effectiveness of and Possible Improvements to Viral Capture and ToBRFV-Seq Procedures

Microbiome A particles, manufactured by Ceres Nanosciences™, are magnetic capture
beads that offer a fast and easy solution to isolate numerous virion species from wastewater,
including SARS-CoV-2, influenza, respiratory syncytial virus, PMMoV, norovirus, and
others [55,70,71]. We utilized Microbiome A particles to recover ToBRFV sequences from
all of our WWI samples (Figure 2) and to our knowledge, this is the first demonstration of
ToBRFV capture and concentration using Microbiome A particles.

Virus sequence yields in samples concentrated with Microbiome A particles provide a
rapid and user-friendly method to isolate ToBRFV and other viruses for targeted sequencing
methods. However, Microbiome A beads may not be the best option for virus metagenomic
RNA shotgun sequencing, due to the high contamination of bacterial DNA sequences.
Thus, when performing viral metagenomic analysis, a combination of ultracentrifugation
and filtration or other robust viral isolation methods should be utilized [72,73].

5. Conclusions

To aid in ToBRFV detection and ongoing surveillance efforts, we designed and de-
veloped a ToBRFV genome tiled amplicon sequencing assay that is robust, specific, and
efficient. Moreover, we designed a computational tool, Altob, that estimates the relative
abundance of ToBRFV clades in Illumina paired reads. Additionally, we demonstrate that
Microbiome A particles are an effective method for isolating ToBRFV from WWI. Lastly,
we demonstrate that ToBRFV is widespread and one of the most abundant virus species
in Ontario, Canada wastewater influent. Due to its stability and abundance in WWI, the
ToBRFV has the potential to be a useful indicator species in wastewater and/or used as an
RT-qPCR standard to quantify viral content in wastewater and more broadly, used in other
wastewater epidemiology efforts and human fecal studies; however, this would require
further study [68]. Moreover, due to the transmissibility of several tobamovirus species
in reclaimed wastewater, including PMMoV [28], the closely related ToBRFV may also
be transmissible in reclaimed wastewater used in crop irrigation, which could facilitate
transmission of active ToBRFV virions to crops causing viral outbreaks.
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