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Abstract: A defining feature of a productive viral infection is the co-opting of host cell resources for
viral replication. Despite the host repertoire of molecular functions and biological counter measures,
viruses still subvert host defenses to take control of cellular factors such as RNA binding proteins
(RBPs). RBPs are involved in virtually all steps of mRNA life, forming ribonucleoprotein complexes
(mRNPs) in a highly ordered and regulated process to control RNA fate and stability in the cell. As
such, the hallmark of the viral takeover of a cell is the reshaping of RNA fate to modulate host gene
expression and evade immune responses by altering RBP interactions. Here, we provide an extensive
review of work in this area, particularly on the duality of the formation of RNP complexes that can
be either pro- or antiviral. Overall, in this review, we highlight the various ways viruses co-opt RBPs
to regulate RNA stability and modulate the outcome of infection by gathering novel insights gained
from research studies in this field.
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1. Introduction

Viruses rely on intricate hijacking mechanisms to seize control of the host gene ex-
pression machinery for their own replication. Given the importance of RNA binding
proteins (RBPs) in processes such as splicing, stability, localization, degradation, export,
and translation, these proteins are at the center of this battle to control the gene expression
resources [1–3]. Ribonucleoprotein complexes (RNPs) are assembled on mRNAs, and they
reshape the fate of transcripts as these complexes are recruited via sequence motifs or
sequence-independent secondary and tertiary structures [1,4]. Thus, the mRNA–protein
interface can vary widely from forming stable RNP complexes to transient interactions.
In infected cells, this is further complicated by the presence of viral proteins that may
disrupt any number of these post-transcriptional processes. Furthermore, membrane-less
organelles containing RNAs and RBPs are formed as compartmentalized densities that
serve as important sites of host post-transcriptional regulation but can also be co-opted as
viral replication factories [5–7]. While an extensive amount of work in the field has shown
the importance of RBPs in the regulation of gene expression, and as a particular crux of
targeting during viral infection [8–11], one important gap remains to be explored: how can
the same RNP complexes be pro-viral in some contexts while antiviral in others? Studies
portraying the impact of RNA–protein interactions during viral infection are an exciting
avenue of research and will likely yield important information on transcript regulation. In
this review, we will explore the complex interplay between RNA and proteins and their
role(s) in RNA stability during viral infections, shedding light on new avenues to explore
RNA fate and RBP modulation during viral infections in the future.

2. RNA Elements and Viral Infection

One strategy that viruses can use to redistribute gene expression resources is to induce
broad RNA degradation events to support the needs of active viral translation. These RNA
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decay events are orchestrated directly by virally encoded endonucleases. Interestingly,
recent work has begun to reveal RNA elements that are incorporated into select mRNAs
that can drastically impact RNA stability in the face of these viral-induced decay events.
Some of these RNA elements serve as target sites that recruit viral nucleases, while others
can provide protective measures against viral-induced decay. For example, during Kaposi
Sarcoma-Associated Herpesvirus (KSHV) lytic replication, the virally encoded endonucle-
ase SOX causes widespread decay of the mRNA transcriptome [12]. However, a fraction
of the transcriptome is spared from SOX-mediated degradation, which likely ensures the
cell viability and proper progression of viral replication. Thus, it appears that SOX targets
are carefully selected and in fact, the Gaglia group has recently mapped the SOX targeting
motif, which is preferentially targeted during KSHV infection [13]. This targeting motif
does not rely solely on sequence but rather on several key conserved residues alongside a
potentially conserved structural motif [13,14]. Similarly, during Influenza A virus infection,
the frameshift product PA-X functions as an endonuclease and contributes to a global
viral-induced host shutoff. But how does PA-X specifically locate the right transcripts to
degrade? Recently, Gaucherand et al. determined that PA-X targets GCUG tetramers in
hairpin loops within transcripts for cleavage [15]. This specific element is widely abundant
in the host genome but not in the viral genome, thus serving as a highly specific target
to differentiate host mRNAs from viral ones [16]. Therefore, it emerges that using a viral
nuclease with a wide range of host transcripts is an effective way to reallocate resources
toward viral needs. Additionally, the extent of the mRNA target pool appears to be critical
as a means to regulate viral infection. However, how the host fights back against the
viral takeover and whether certain RNA elements could potentially resist viral nuclease
targeting has recently been investigated [17–19]. In the context of KSHV infection, it was
discovered that the transcript for Interleukin-6 (IL-6) encodes an RNA element within its
3’ UTR that can provide protection from SOX [17,18]. This RNA element of about 200
nucleotides was termed the Sox-Resistant Element (SRE) [18]. The SRE appears to fold
into a stem-loop structure that modulates mRNAs’ susceptibility to the viral endonuclease
and likely serves as a scaffold for the recruitment of RBPs [18]. Several RBPs were iden-
tified as specifically binding to this RNA element and forming a complex that prevents
SOX-mediated decay [18,19]. Intriguingly, this “protective” element appears to dominate
over the SOX targeting motif, as a transcript that contains both the targeting motif and
the protective elements will remain unaffected by SOX [17–19]. This highlights that the
stability and fate of an mRNA in the face of viral infection is controlled by the complex
balance of its RBP landscape. Overall, the RNP environment on individual transcripts may
serve as specific markers in the context of viral-induced decay and could provide clues to
understand how viruses can distinguish between host and viral genes.

3. Host–Viral RBP Role during Viral Infections

Evolutionary pressure and the need to fit through their host translational machinery
has driven viruses to mimic features of host transcripts to facilitate the hijacking of resources
and escape immune detection [20–22]. By mimicking host features, especially altering their
own transcripts, viruses also facilitate the hijacking of host RBPs and create RNP complexes
that are indistinguishable from host RNPs [23,24]. For instance, during Dengue virus
(DENV) infection, the receptor for activated C kinase 1 (RACK1)—a core component of
the 40S ribosomal subunit—was shown to specifically interact with host factors SERBP1
and Vigilin to promote viral replication [25]. The authors denoted RACK1 as a platform
to bind and recruit SERBP1 and Vigilin to the 40S ribosomal subunit to then collectively
connect viral RNAs to the translation machinery to facilitate DENV infection [25]. Outside
of infection, the ribosomal form of RACK1 has been demonstrated to help bridge mRNAs
to polysomes, to recruit translational initiation factors, and contribute to translational
quality control [25–29]. Yet, during DENV infection, RACK1 is co-opted to promote viral
replication and acts as a binding platform at the 40S ribosomal subunit for the recruitment of
DENV host-dependency factors [25]. Therefore, by hijacking key host RBPs, viruses ensure
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the progression of infection [30–32]. However, not all cellular RBPs favor viral replication,
and mimicking host mRNAs can be a double-edge sword as some RBPs can have potent
antiviral effects. For example, the host factor Shiftless (SHFL) is a RBP that has been shown
to restrict the gene expression of a number of viruses from inhibiting HIV frameshifts to
manipulating cytoplasmic RNP granules [11,33,34]. Another example is the RNA binding
protein polypyrimidine tract-binding protein 1 (PTBP1), which was shown by Qin et al. to
target and degrade the viral nucleocapsid (N) protein by activating the MARCH8-NDP52
autophagosome pathway in porcine epidemic diarrhea virus (PEDV) [35]. Collectively,
these studies illustrate the profound impact cellular RBPs can have on the outcome of an
infection and the duality in their functions. By further understanding the mechanisms by
which cellular factors modulate processes in a pro-viral or antiviral way, we will continue to
better decipher the complex landscape of RNA–protein interactions during viral infections.

4. RBP Modulation of RNA Stability in Subcellular Localizations during
Viral Infections

The physical separation between the processes of transcription and translation enables
RNA–protein complexes to adapt and diversify throughout the life of an mRNA, a factor
that is contingent on its subcellular localization. However, during viral infections, viral
RNAs (vRNAs) compete with cellular RNAs to take over resources from the cell. Viruses,
by hijacking cellular RBPs, can disrupt the RBPs’ normal localization and their function. To
date, several studies have investigated the mechanisms behind RBP re-localization in re-
sponse to cellular environmental changes, particularly during viral infection [36–39]. In this
section, we will review how RBPs regulate RNA stability between cellular compartments
during viral infections.

4.1. Nuclear and Cytoplasmic Regulation

RNA fate is highly linked to its subcellular localization, a process largely driven by
the pattern of RBPs on transcripts [40–42]. In the context of viral infection, the dynamic
process of nuclear–cytoplasmic shuttling can be drastically altered [30,43]. For example, in
the context of gamma-herpesvirus infection where host shutoff leads to widespread mRNA
decay, many RBPs could potentially become a target to facilitate viral replication [43]. Using
TMT labelling coupled to LC/MS-MS, Gilbertson et al. were able to track the subcellular
localization of RBPs and showed that numerous RNA binding proteins undergo a change
in their localization in response to viral-induced decay [43]. Given the scale of RNA decay
triggered by these viruses, it is perhaps unsurprising that many RBPs would lose their
target mRNA and be released, many of them finding their way back to the nucleus [43]. This
potentially creates a measurable cellular response “sensing” of RNA decay in the cytoplasm,
and the message can be relayed to the nucleus through the shuttling of RBPs [43–47].
According to Gilbertson et al., this creates a feedback mechanism, akin to informing the
transcription machinery of the state of RNA decay in the cytoplasm and resulting in a halt
of host transcription [43,47]. Therefore, trafficking of RBPs between cellular compartments
during events of stress such as viral-induced RNA decay could be fundamental to relaying
information about cellular mRNA abundance within the cell [41,43,47]. Another study by
Garcia-Moreno et al. observed similar dynamics of RBP in response to Sindbis Virus (SINV)
infection [30]. The authors used a system-wide approach known as RNA-interactome
capture (RIC) to determine the distribution of RBPs in cells infected with SINV [30]. In the
context of drastic loss of cellular RNAs and high abundance of viral RNAs, they observed
a remodeling of the RBP interactome [30]. In particular, it was observed that many key
gene expression regulators such as UPF1 (helicase, nonsense-mediated decay pathway),
SRPK1 (alternative splicing, RNA export and stability), GEMIN5 (mediates assembly
of small nuclear RNPs), TRIM25 and TRIM56 (E3 ubiquitin ligases), PPIA (regulation,
signaling, apoptosis), and FAM98A (form the tRNA ligase complex) were re-localized to
viral factories [30]. These proteins were observed to colocalize with viral RNAs, suggesting
a role in facilitating viral replication during SINV infection. However, it remains unclear
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what the cell response is to drastic loss of host RNA and RBP re-localization during SINV
infection and how remodeling of viral–host protein interactions could contribute to alter
RBP function and localization during SINV infection.

It is becoming clear that RBP function and localization is pivotal during viral infections
and can help viruses co-opt resources. Many questions continue to mount surrounding the
mechanisms that regulate the shuttling of RBPs during viral infection, especially during
viral-induced RNA decay. With the advent of novel protein labeling methods, we anticipate
that we will learn more about the dynamics of these processes in the coming years.

4.2. Nuclear Export

Once mature, mRNAs are transported to the cytoplasm through nuclear pore com-
plexes (NPCs) embedded in the nuclear envelope [48–51]. Transport of mRNAs is mediated
by mRNP complexes composed of shuttling proteins, commonly the NXF1-based bulk
export, and a more specialized CRM1-based export for unspliced mRNA [49,52]. Several
studies have shown that viruses target the nuclear export machinery, which results in the
downregulation of host gene expression and reduction in host antiviral responses [51,53–55].
For instance, Hepatitis B Virus (HBV) core protein HBc interacts with NXF1 [56]. This
interaction is suggested to mediate the shuttling of the Hepatitis B core/capsid protein
(HBc)–NXF1 complex, and facilitate the export of HBV transcripts (Figure 1) [56]. During
KSHV infection, Gong et al. identified the interaction of the viral protein ORF10 with
nuclear pore proteins (Nup98) and export factors (Rae1), which results in blocked mRNA
export and the nuclear accumulation of transcripts (Figure 1) [55]. However, this export
inhibition is not total but instead relies on transcript selectivity based on an unidentified
RNA element located at their 3’UTR [55], which likely ensures proper export of viral
mRNAs. This inhibition contributes to the global “host shutoff” phenotype induced by
herpesviruses and helps with ensuring easier access to the translational machinery for
viral transcripts [55,57]. Meanwhile, in Murine Leukemia Virus (MLV), both nuclear export
routes (NXF1 and CRM1) are proposed to be exploited by the virus [58]. Mougel et al. show
that MLV full-length RNA interacts with NXF1, allowing export of viral RNAs destined to
undergo translation (Figure 1) [58]. Simultaneously, export of MLV RNA by CRM1 marked
transcripts for viral packaging in the cytoplasm [58]. The use of these two export pathways
by MLV highlights the ability of the viral RNA to assemble two different mRNP complexes
and control RNA fate. Overall, many of the components of the nuclear export pathway
have been identified as viral targets but the precise mechanisms by which their hijacking is
coordinated are still not well understood. Ongoing and future studies will likely shed light
on the processes that regulate the fate of viral and cellular mRNAs through the recruitment
of RNA–protein complexes.
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export proteins NXF1-NXT1 to block export of cellular transcripts (purple) promoting export of viral 
transcripts (red). (C) MLV viral transcripts interact with NXF1 protein to promote their transport 
from the nucleus into the translation machinery, while other viral transcripts interact with CRM1 
which marks them for further viral packaging. 
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of solid and liquid elements, and active exchange with the environment. Two classifica-
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cells and both heavily rely on complex and dynamic interactions between RBP and RNA: 
processing bodies (P-bodies) and stress granules (SGs) [69,70]. P-bodies are often com-
prised of mRNA and RBPs such as DDX6, ET-4, PAT1B, LSM14A, EDC4, DCP1/DCP2, and 
CPEB1 [71–82]. Along with ribonucleic acids, SGs often contain proteins such as 
G3BP1/G3BP2, TIA-1, TIAR, Atx2, eIF2, eIF3, eIF4A, eIF4B, eIF4E, eIF4G, and eIF5 [69,82–
89]. Some granules, such as P-bodies, are constitutively expressed in cells, and treatment 
with translation elongation inhibitors, like cycloheximide, will lead to cytoplasmic loss of 
the granules [70,71,90]. Conversely, stress granule formation must be induced by treat-
ment with a translation terminator such as puromycin [70,91] or via cellular stressors like 
viral agents [5]. P-bodies are thought to be sites of RNA metabolism and regulation within 
the cytoplasm and have been implicated in mRNA decay, translation repression, non-
sense-mediated decay (NMD), as well as mRNA silencing. They have commonly been 
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tion, namely DDX6, DCP1, DCP2, Xrn1, EDC3, and EDC4, among others. However, they 
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lation pool to control pathway activation/deactivation or for energetic conservation [70]. 
On the other hand, it has been well characterized that SGs form upon viral infection, and 
these cytoplasmic granules are often targeted for downregulation by viruses. 

Figure 1. Viral manipulation of nuclear export pathways: (A) HBV viral protein HBc binds export
proteins NXF1 to facilitate export of viral transcripts (red). (B) KSHV viral protein ORF10 binds
export proteins NXF1-NXT1 to block export of cellular transcripts (purple) promoting export of viral
transcripts (red). (C) MLV viral transcripts interact with NXF1 protein to promote their transport
from the nucleus into the translation machinery, while other viral transcripts interact with CRM1
which marks them for further viral packaging.

5. RNA Granules: A Nexus in the Viral–Host Struggle over RNA

RNA granules are biomolecular condensates of RNA and protein that exist within
the cytoplasm. While these densities are often described to undergo liquid–liquid phase
separation (LLPS), the story is more complex [59]. A better description of LLPS helps to
better illustrate what these foci are: sequestered conglomerates of biomolecules that are
separated from the surrounding cytoplasmic matrix without any phospholipid barrier [59].
However, this distinction can be quite difficult to define in such a dynamic system [60–62].
Granules are not simply defined as viscous liquids but are more precisely described as
viscoelastic densities [63–68]. This distinction implies a duality and fluctuation of solid
and liquid elements, and active exchange with the environment. Two classifications of
cytoplasmic granules have emerged as important regulatory mechanisms within cells and
both heavily rely on complex and dynamic interactions between RBP and RNA: processing
bodies (P-bodies) and stress granules (SGs) [69,70]. P-bodies are often comprised of mRNA
and RBPs such as DDX6, ET-4, PAT1B, LSM14A, EDC4, DCP1/DCP2, and CPEB1 [71–82].
Along with ribonucleic acids, SGs often contain proteins such as G3BP1/G3BP2, TIA-1,
TIAR, Atx2, eIF2, eIF3, eIF4A, eIF4B, eIF4E, eIF4G, and eIF5 [69,82–89]. Some granules, such
as P-bodies, are constitutively expressed in cells, and treatment with translation elongation
inhibitors, like cycloheximide, will lead to cytoplasmic loss of the granules [70,71,90].
Conversely, stress granule formation must be induced by treatment with a translation
terminator such as puromycin [70,91] or via cellular stressors like viral agents [5]. P-bodies
are thought to be sites of RNA metabolism and regulation within the cytoplasm and have
been implicated in mRNA decay, translation repression, nonsense-mediated decay (NMD),
as well as mRNA silencing. They have commonly been identified as sites of mRNA decay
due to several constituents’ ties to transcript degradation, namely DDX6, DCP1, DCP2,
Xrn1, EDC3, and EDC4, among others. However, they can also serve as compartments
to temporarily sequester some transcripts from the translation pool to control pathway
activation/deactivation or for energetic conservation [70]. On the other hand, it has been
well characterized that SGs form upon viral infection, and these cytoplasmic granules are
often targeted for downregulation by viruses.
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Due to their dynamic nature, diversity in composition, and temporal/environmental
sensitivity, RNA granules’ functionality varies broadly from mRNA storage, degradation,
and triage to assisting in cellular processes such as energetic conservation, the stress
response, or the inflammatory response. This multitude of processes can readily be taken
advantage of by viruses. Viruses and the host wage constant battles over the formation and
regulation of RNA granules by manipulating RBPs, in a means to ultimately influence gene
expression and lead to the arrest of certain cellular pathways to control the fate of RNA
(Figure 2).
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Figure 2. RNA granule functionality in the context of viral infection. (A) Host factors, such as
SHFL or NBDY, result in P-body loss, which can impact the availability of ARE-mRNA transcript
levels. (B) Viral agents like KSHV, HCV, WNV, and EV71 recruit P-body RBPs to promote viral
RNA stability and translation. (C) Stress granule induction helps to slow viral translation, while
serving as a scaffold to mount an immune response and combat infection. (D) Viruses, such as
SARS-CoV-2, MNV, and HuNoV, have been observed to re- purpose G3BP1 leading to a blockage for
certain anti-viral pathways. G3BP1 may also be repurposed during infection to promote stability for
viral translation complexes.

5.1. Viral Factors Exercise Control over P-Body RBPs to Promote Viral Replication

Given their extensive role in regulating mRNA fate, P-bodies are prime targets for
viruses that need to co-opt these pathways for their own replication. It has previously been
shown that viruses such as Kaposi Sarcoma-Associated Herpesvirus (KSHV), Hepatitis
C Virus (HCV), and West Nile virus (WNV) all utilize P-body constituents such as DDX6,
Lsm-1, DDX3, Ago2, Xrn1, and others to promote viral RNA and protein stability [8,92–99].
Recently, an investigation of Enterovirus 71 (EV71) showed how the virus induces a loss
of P-bodies within human cells, which Fan et al. demonstrated stems from blocking the
formation of de novo P-bodies [100]. The group further determined that certain scaffold
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proteins (i.e., DDX6 and 4E-T, among others) of P-bodies affected viral mRNA transcript
levels [100]. The absence of DDX6 and 4E-T leads to decreased viral transcript levels
compared to when both proteins were expressed [100]. Thus, they hypothesized that
virally induced P-body loss reallocated and repurposed key P-body components for RNA
stability and expression [100]. The group’s final model highlighted that EV71’s protease 2C
facilitates host RBP interactions with viral mRNA to promote viral gene expression, which
ultimately leads to the blockage in the formation of P-bodies [100]. It emerges that viruses
are masters at seizing control of P-bodies through their interactions with host RBPs and use
them to promote virion production. This also potentially suggests that the regulation of
host gene expression could be suppressed to further remodel the host environment, making
it more favorable for viral replication.

5.2. Hosts Manipulate P-Body RBPs to Alter RNA Availability/Degradation to Combat
Viral Infection

It has been widely reported that P-bodies often house transcripts with AU-rich el-
ements (AREs), located in their 3’ UTR for the purposes of degradation or translational
repression [101–106]. Many ARE-bearing transcripts encode for chemokines and cy-
tokines [107,108]. Several groups have demonstrated that following P-body loss, an increase
in ARE-mRNAs follows [101–106]. These results suggest that a decrease in P-body counts
may in fact play an antiviral role with the increased expression of these effectors. However,
it remains unclear to what extent does the host or virus individually contribute to the
loss of P-bodies during infection. Are P-bodies altered to stimulate the host inflammatory
response to mount an antiviral response or to enhance an environmental favorability for
viral agents? A host RBP that we mentioned previously in this review—Shiftless (SHFL)—is
a broad-acting and potent antiviral factor [11,33,109–114] with known roles in regulating
cytoplasmic granules. In the context of KSHV, SHFL has been shown to restrict P-body
foci [11]. The exact subcellular mechanism through which SHFL accomplishes this P-body
loss remains unclear. SHFL localizes to P-bodies [115] and its overexpression causes the
loss of P-body formation [11]. The SHFL-mediated depletion of P-bodies could subse-
quently alter the expression levels of certain ARE-mRNAs that are often included in these
granules, which likely contribute to SHFL overall ability to restrict viral agents. Outside
of the context of infection, cellular loss of P-bodies typically occurs through two methods:
1. The depletion of core protein components, or 2. The expression/phosphorylation of
the 68-amino-acid microprotein—the non-annotated P-body dissociating polypeptide (or
“NBDY”) [69,86,116]. Losses of certain proteins such as LSm14a [73,77], DDX6 [75,77], or
EDC4 have all been shown to lead to losses in P-bodies [72]. Otherwise, the expression and
phosphorylation of the polypeptide NBDY has been shown to cause the loss of P-bodies,
by potentially disrupting the electrostatic networks of these granules [117,118]. However,
it has also been posited that P-body regulation may also release many decapping and en-
donucleolytic enzymes, leading to a translation suppression [119]. Therefore, it is possible
that during viral infection, the host attempts to control the cytoplasmic gene expression
environment by disassembling P-bodies. Viral agents often seek control over P-body RBPs
as a tool to influence RNA expression within the cell. All the while, the host attempts to
antagonize viral replication through a similar method: utilizing P-body-associated RBPs to
alter RNA expression for antiviral pathways.

5.3. Viruses Influence Stress Granule RBPs to Suppress Host Immune Response Transcripts and
Positively Regulate Viral RNA Fate

Numerous viruses have been shown to affect SGs: Japanese Encephalitis Virus (JEV)
has been shown to alter the localization of SG marker G3BP1 [120]; Dengue virus (DENV),
West Nile virus (WNV), Murine Respirovirus (SeV), and the Zika virus (ZIKV) have all
been shown to utilize viral biomolecules to sequester SG critical proteins to block granule
formation [9,121,122]. Recently, the betacoronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been shown to have a similar effect on SG abundance and
the re-purposing of the foci’s components [123]. The SARS-CoV-2 nucleocapsid protein (NP)
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has also been found to interact with the structurally critical SG proteins G3BP1/G3BP2 [123].
Liu et al. observed that this NP-G3BP interaction limits the degree to which SGs can form in
response to viral infection, which in turn limits the host’s ability to stall translation and slow
viral replication [123]. The group went on to observe that SARS-CoV-2’s NP sequestration
of G3BPs not only resulted in the loss of SGs but also in the downregulation of IFN-β
transcript levels and the RIG-I pathway (a critical piece of the innate immune response) as a
whole [123]. This differs from a normal immune response, where G3BP1 typically influences
the RIG-I pathway and IRF3 becomes phosphorylated, ultimately causing an increase in
IFN-β transcription [124]. The researchers were then able to demonstrate how this virus
exercises control over SG RBPs, such as G3BP1, to ultimately increase the propensity
for viral mRNAs and translation. Given the increase in viral mRNAs in the absence of
G3BP1, the authors concluded that the NP-G3BP1 interactions could help facilitate viral
replication [124]. A genomic intermediate of the SARS-CoV-2 genome appears to exist as
dsDNA, which has an observable affinity for G3BP1; mechanically, this was hypothesized
to be how the virus isolates this RBP from the host’s antiviral system [124]. Additionally,
this SG component has been shown to be necessary for both murine norovirus (MNV)
replication as well as Norwalk norovirus replication (a replicon used to model human
norovirus, HuNoV) [125]. Following the knockout of G3BP1 within cells, both MNV and
HuNoV were observed to have significantly low transcript levels and were no longer tied to
cytotoxic outcomes; cells were seen to be virally resistant [125]. Interestingly, Hosmillo et al.
were able to uncover that G3BP1 RNA binding domains directly impacted viral replication;
the loss of these domains resulted in less viral yield [125]. In addition, Hosmillo and
colleagues discovered that G3BP1 interacts with the viral protein VPg and helps facilitate
the loading of ribosomes and polysomes onto norovirus RNA [125]. It thus emerges that
SGs are fascinating focal points for where the host and virus compete over RBPs to gain an
advantage over the other.

5.4. Host Agents Orchestrate Stress Granule RBPs to Effectively Quench Viral Replication

Stress granules (SGs) have been widely characterized as antiviral subcellular compart-
ments. In the case of the α-coronavirus porcine epidemic diarrhea virus (PEDV), SGs form
and eventually are lost toward the latter stages (i.e., around 36 h) of infection [126]. In the
study, Sun et al. identified that the overexpression of G3BP1 resulted in significantly de-
creased levels of viral mRNA [126]. They further discovered that PEDV encodes a protease
that cleaves G3BP1 in the late stages of infection, which causes this loss [126]. They were
able to pinpoint the specific cleavage sites that viral caspase-8 targets down to two aspartic
acid residues [126]. Interestingly, robust SGs with cleavage-resistant G3BP1 stringently
limited viral transcripts as well as overall viral titers, indicating that SGs can efficiently
limit viral transcription and translation [126]. Studies like these demonstrate the capability
and antiviral functionality of SGs and how the host attempts to use RBPs like G3BP1 to
restrict viral agents.

5.5. Granule Functionality/Effects Are Convoluted; Both Virus and Host Wield SG RBPs for Their
Own Benefit

The above sections detailing the great virus and host struggle over P-body and SG
RBPs already outline how ambiguous the functionality of granules can be. One other
fascinating viral case study that depicts this murkiness can be seen in the context of Viral
Hemorrhagic Septicemia Virus (VHSV), a member of Rhabdoviridae, which appears to
trigger the formation of stress granules [127]. Interestingly, G3BP1 was shown to be
redistributed to viral replication complexes and proven to be essential for efficient virion
production [127]. Even though viral infection results in SG formation, VHSV still influences
G3BP1 to facilitate its own replication [127]. However, SGs also seem to play an antiviral
role within the system. G3BP1 knockdown led to an increase in IFN signaling and a
decrease in VHSV protein levels and viral titers [127]. This suggests that G3BP1 and SGs
can limit viral replication to an extent, likely via translational arrest and sequestration [127].
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VHSV utilizes SG RBPs such as G3BP1 to enhance replication, yet the host also exercises
some control over these RBPs to simultaneously limit viral replication [127]. This case of
viral infection and SG dynamics captures the convoluted subcellular environment and
depicts how RNA granules exist at the axis where pro-viral and pro-host states teeter.
Have viral agents robustly conquered this host defense and adapted to largely benefit from
granules? Will host mechanisms adapt or can they be shaped to repurpose the likes of
P-bodies and SGs to effectively combat viral replication?

6. Conclusions and Future Perspectives

RNA binding proteins comprise the subcellular foundation for host survival and viral
replicative strategies. While this review covers many of the most recent findings of how both
sides of this conflict attempt to take advantage of these proteins, new studies continue to
unveil different viral case studies and mechanisms of exploit. mRNP complexes present an
exciting avenue of study to better understand viral replication and takeover. As proper gene
expression requires fine-tuned RNA processing, this multifaceted quality control system
helps to regulate the cell homeostasis. It can prove to be disastrous when certain viral
agents target one juncture of RNA processing and critical information is lost. Certain host
factors, such as NXF1 and CRM1, critically regulate nuclear egress of transcripts, which can
largely impact host survival dependent upon whether the virus or host controls these export
pathways. Interestingly, RBPs can also help regulate the dynamics of certain RNA granules,
which can significantly impact gene expression. Through P-bodies and stress granules,
RBPs influence mRNA sequestration, decay, and release into the translational pool.

Furthermore, from the studies reviewed here, we can continue to interrogate how
cellular pathways are affected by viral takeover, but also how the host responds to the viral
attack. As mRNA abundance and availability can be drastically altered, cellular feedback
response pathways can potentially serve to relay stress signals during viral infection.
This area is still ripe for further study since it is still unclear which cellular factors are
involved and to what extent communication is carried out in the cell between cellular
compartments. Moreover, more studies to discern RNA–protein interactions when RBP
expression levels are altered during viral infections are imperative to shed light onto the
unknown biological significance of RBP activity. This will reveal crucial information on
RBP localization, RBP multifunctionality, and their response to target availability. Studies
in these areas could prove exceptionally fruitful, providing a deeper understanding of these
processes, which could lead to the discovery of new antiviral targets and the development
of therapeutic agents.

Regarding the RBPs associated with RNA granules, many factors and mechanisms are
yet to be discovered. For viral agents, such as EV71, that lead to P-body loss, it remains to be
seen mechanistically how the virus utilizes and recruits RBPs like DDX6 to provide stability
and promote viral gene expression. Further characterization also ought to be conducted on
exactly how the host wields P-bodies and their biomolecules specifically to alter its own
gene expression to ultimately combat viral gene expression. For stress granule RBPs, how
prevalent is this viral hijacking strategy? What other viral agents have evolved mechanisms
to disrupt SG formation for purposes other than a lack of transcript sequestration? Overall,
the characterization of RNA granule functionality during viral infection has emerged as an
exciting frontier for better understanding virus–host interactions at the subcellular level.
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