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Abstract: People living with HIV (PLWH) could be at risk of blunted immune responses to COVID-19
vaccination. We investigated factors associated with neutralizing antibody (NAb) responses against
SARS-CoV-2 and variants of concern (VOCs), following two-dose and third booster monovalent
COVID-19 mRNA vaccination in Japanese PLWH. NAb titers were assessed in polyclonal IgG
fractions by lentiviral-based pseudovirus assays. Overall, NAb titers against Wuhan, following two-
dose vaccination, were assessed in 82 PLWH on treatment, whereby 17/82 (20.73%) were classified
as low-NAb participants. Within the low-NAb participants, the third booster vaccination enhanced
NAb titers against Wuhan and VOCs, albeit to a significantly lower magnitude than the rest. In the
multivariate analysis, NAb titers against Wuhan after two-dose vaccination correlated with age and
days since vaccination, but not with CD4+ count, CD4+/CD8+ ratio, and plasma high-sensitivity
C-Reactive protein (hsCRP). Interestingly, an extended analysis within age subgroups revealed NAb
titers to correlate positively with the CD4+ count and negatively with plasma hsCRP in younger,
but not older, participants. In conclusion, a third booster vaccination substantially enhances NAb
titers, but the benefit may be suboptimal in subpopulations of PLWH exhibiting low titers at baseline.
Considering clinical and immune parameters could provide a nuanced understanding of factors
associated with vaccine responses in PLWH.

Keywords: SARS-CoV-2; neutralizing antibodies; COVID-19 vaccination; HIV; variants of concern

1. Introduction

The rollout of global COVID-19 vaccination raised concerns over the ability of people
living with HIV (PLWH) to elicit optimal immune responses given their underrepresen-
tation in preceding clinical trials [1,2]. A growing body of literature now suggests that
although PLWH on antiretroviral therapy (ART) can mount antibody responses at a compa-
rable magnitude to non-HIV-infected individuals [3,4], certain subpopulations of PLWH,
such as those with suboptimal CD4+ count recovery, have shown attenuated antibody
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responses following two-dose vaccination [5–7]. Additionally, a substantial proportion
of PLWH have shown no detectable antibody responses to a standard two-dose mRNA
vaccination regimen [8]. As a result, PLWH have been categorized as a vulnerable popula-
tion, with respect to severe COVID-19 [9], and have subsequently been recommended for
updated monovalent and bivalent booster vaccination regimens [10]. However, whether
subpopulations of PLWH exhibiting suboptimal antibody responses at baseline could opti-
mally benefit from booster vaccination remains unclear. Thus, it is important to continue
evaluating antibody responses in PLWH receiving booster vaccination regimens.

The evaluation of host factors associated with antibody responses to COVID-19 vacci-
nation in PLWH on suppressive ART is increasingly challenging, in part, due to extensively
heterogeneous immune reconstitution markers, chronic inflammation levels, and rates of
co-morbidities in this population [11–13]. Investigations aiming to refine our understand-
ing of host immune factors delineating certain subpopulations of PLWH presenting with
suboptimal antibody responses to vaccination have been inconclusive thus far, and in some
instances, conflicting. For instance, whereas HIV-related factors such as CD4+ count [8]
and CD4+/CD8+ ratio [14] have been shown to associate with antibody responses in some
cohorts, these factors did not impact antibody responses in others [4,15]. Additionally,
clinical factors such as age and inflammation biomarkers [16], which have similarly shown
a differential impact on antibody responses to vaccination, further highlight the complexity
of predicting vaccine responses in PLWH. While the basis of these disparities remains
unclear, they continue to impede efforts aimed at identifying most at-risk subpopulations
of PLWH for targeted booster vaccination strategies. Hence, in this study, we investi-
gated factors associating with neutralizing antibody (NAb) responses against SARS-CoV-2
and VOCs following two-dose and third booster monovalent COVID-19 vaccination in
Japanese PLWH.

2. Materials and Methods
2.1. Study Participants

We enrolled PLWH on ART during scheduled routine HIV monitoring and ART refill
visits in HIV care clinics at Kyushu Medical Center (n = 70) and Hiroshima University
Hospital (n = 12) in Japan. Plasma samples after 2-dose COVID-19 mRNA vaccination were
collected between September 2021 and January 2022, whereas samples after monovalent
3rd booster vaccination were collected between February and June 2022. HIV-related
parameters of CD4+ count, CD4+/CD8+, HIV plasma viral load, and high-sensitivity C-
Reactive protein (hsCRP), which are routinely monitored in the HIV care clinics from which
the participants were recruited, were acquired at the point of sample collection. Pre-ART
CD4+ count and pre-ART viral load data were also included.

2.2. Purification of Polyclonal IgG Fractions

Polyclonal IgG fractions were purified from participant plasma by spin columns
equipped with protein A-conjugated silica beads (Cosmobio, cat # CSR-APK-10A, Tokyo,
Japan), according to the manufacturer’s instruction. Briefly, 70 µL of heat-inactivated
plasma was diluted with 210 µL of 1× phosphate-buffered saline (PBS) and passed through
a 0.22 µM filter (Sigma-Aldrich, cat # SLGVR33RS, St. Louis, MI, USA) to minimize
impurities in the end product. IgG fractions were eluted in 100 µL of manufacturer-
provided elution buffer and quantified by a NanoDrop 2000 spectrophotometer (Thermo
Fisher, Waltham, MA, USA) before storage at 4 ◦C for no longer than 3 months.

2.3. Production of Pseudotyped Viruses

SARS-CoV-2 and variant of concern (VOC) spike-bearing pseudoviruses were con-
structed by co-transfecting 293T cells (ATCCs), with modified versions of plasmids encod-
ing spike and a lentiviral backbone, as previously reported [17]. In brief, spike-encoding
plasmids (kindly provided by T. Kuwata [18]) were modified by truncating the last 19 amino
acids from the C-terminal end of the cytoplasmic tail to create plasmids designated as
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SARS-CoV-2 or VOC-Spike C∆19. The lentiviral backbone, pSG3∆ENV∆Nef-Luc2-IN/HiBit
(kindly provided by K. Tokunaga), was previously modified by inserting a HiBiT peptide
tag sequence and a luciferase reporter gene [19]. The 2 modified plasmids were then used
to co-transfect overnight-seeded 293T cells at a concentration of 1000 ng and 25 ng for
pSG3∆ENV∆Nef-Luc2-IN/HiBit and SARS-CoV-2/VOC-Spike C∆19, respectively. Upon
48 h of incubation at 37 ◦C and 5% CO2, DNase I was added to the culture supernatant
to degrade any unutilized plasmid. The culture supernatant was then passed through
0.45 µM filters (Sigma-Aldrich, cat # SLHVJ13SL, St. Louis, MI, USA) and aliquots thereof
stored at −80 ◦C. Viral titers were quantified as a function of HiBiT-generated luminescence
and normalized by the corresponding level of HIV p24 antigen (produced by the HIV-based
proviral backbone), as described previously [20].

2.4. Target Cell Preparation

Target cells expressing SARS-CoV-2 surface receptors were prepared as previously
described [17]. In brief, 293T cells cultured in Dulbecco’s Modified Eagle Medium (DMEM)
(Thermo Fisher, cat # 041-29775, Waltham, MA, USA) enriched with 10% fetal bovine serum
(FBS) (Sigma Aldrich, cat # 172012, St. Louis, MI, USA) were co-transfected with 500 ng
of pCXN-ACE2 and 250 ng of pC-TMPRSS2 (kindly provided by K. Tokunaga [21]), and
incubated at 37 ◦C and 5% CO2 for 48 h. The cells were then trypsinized 15 min prior to
utilization in the ensuing polyclonal IgG neutralization assay.

2.5. Polyclonal IgG Neutralization Assay

NAb titers against SARS-CoV-2 and VOC spike in participant-derived polyclonal IgG
fractions were assessed by previously developed HIV neutralization assays [22], subject
to minor modifications. Briefly, participant-derived IgG was 3-fold serially diluted on a
96-well plate from starting concentrations of 100 µg/mL or 300 µg/mL. Pseudoviruses
were thawed to 37 ◦C and added at a concentration of 3 ng/well of the proviral backbone
p24 antigen level and incubated at 37 ◦C and 5% CO2. One hour after incubation, freshly
trypsinized target cells (293T/ACE2/TMPRSS2) were added to the IgG/pseudovirus
complex at a density of 22,000 cells/well and incubated for 48 h. A luciferase substrate
(ONE-Glo, Promega, cat # E6130, Madison, MI, USA) equipped with a lysis agent was
added to the culture supernatant in accordance with the manufacturer’s instructions. IgG
neutralization at each dilution was calculated as a percentage reduction in luminescence in
the IgG + pseudovirus wells relative to the pseudovirus-only wells. IgG NAb titers were
expressed as IC50 values calculated on a dose–response curve fit with a non-linear function.
An IgG sample of known NAb titer was used as a positive control to ensure consistency in
conditions between assay runs.

2.6. Statistical Analysis

Bivariate and multivariate Spearman correlation analyses were performed by IBM
SPSS Statistics, version 26 (Chicago, IL, USA). Nonparametric partial correlation analysis
was performed to adjust for confounders of NAb titers. The Wilcoxon signed-rank test and
Mann-Whitney U test were used to compare differences between paired populations and
unpaired populations, respectively. All tests were two-tailed, and p-value of <0.05 was
considered statistically significant.

3. Results
3.1. Cohort Characteristics

A total of 82 PLWH who reported no history of COVID-19 diagnosis were included in
this analysis. Most participants, 48/67 (71.6%), received two doses of BNT162b2 (Pfizer,
New York, NY, USA), while the rest 19/67 (28.4%) received two doses of mRNA-1273
(Moderna, Cambridge, MA, USA). The participants, who were majority male 80/82 (97.5%),
had a median (IQR) age of 48 (40–56) years. All participants were on ART, although the
plasma viral loads of 5 (6.3%) participants were above the detection limit (defined as
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>50 copies/mL). The median (IQR) CD4+ count at the time of sample collection was 470
(314–643) cells/µL. By the close of sample collection in June 2022, a total of 28 two-dose
vaccinees (34%) had received a monovalent third booster vaccine dose. We, however,
focused our analysis on a subset of 18 participants whose sampling time point after the
third booster vaccination matched the sampling time point after two-dose vaccination
(Table 1). Within the booster vaccinees, 12/15 (80%) received mRNA-1273, whereby the
majority 10/15 (66.7%) received a booster dose by a different manufacturer from the first
two doses.

Table 1. Demographic and clinical characteristics of COVID-19-vaccinated PLWH.

2-Dose Vaccinated Participants (n = 82)

Age in years, median (IQR) 48 (40–56)
Male, n (%) 80 (98)

mRNA vaccine received c

BNT162b2, n (%) 48 (71.6)
mRNA-1273, n (%) 19 (28.4)

Days since 2-dose vaccination 53 (27–83)
Receiving ART, n (%) 82 (100)

Pre-ART HIV viral load in log copies/mL, median (IQR) 4.8 (3.1–5.2) a

Undetectable HIV viral load (at sample collection) n, (%) 74 (94%) b

Pre-ART CD4+ count in cells/µL, median (IQR) 211 (28–376) a

CD4+ count (at sample collection) in cells/µL, median (IQR) 470 (314–643) a

CD4+/CD8+ ratio (at sample collection), median (IQR) 0.9 (0.4–1.1) a

hsCRP (at sample collection) in mg/dL, median (IQR) 0.12 (0.05–0.3) c

3rd Booster Vaccinated Participants (n = 18) d

Age in years, median (IQR) 49 (36–66)
Male, n (%) 18 (100)

mRNA booster received b

BNT162b2, n (%) 5 (33.3)
mRNA-1273, n (%) 10 (66.7)

Days since 3rd booster vaccination, median (IQR) 51 (37–70)
Days from 2-dose to 3rd booster vaccination, median (IQR) 207 (196–215)

ART, antiretroviral therapy; IQR, interquartile range; hsCRP, high-sensitivity C-Reactive protein. a Data missing
for 13 participants; b data missing for 3 participants; c data missing for 15 participants; d 18/82 participants who
received 3rd booster vaccination had their longitudinal samples obtained.

3.2. Neutralizing Antibody Titers against SARS-CoV-2 following 2-Dose Vaccination in PLWH

To assess the NAb titers of antisera, we employed a lentiviral reporter assay system
pseudotyped by SARS-CoV-2 spike protein, as previously reported [19]. A version of
spike protein which had been modified by truncating 19 amino acids from the C terminal
end (C∆19 spike) was used. Consistent with previous reports [23,24], the C∆19 spike
showed substantial enhancement in pseudovirus infectivity compared to its native form
(Supplementary Figure S1). When we tested three representative plasma samples for un-
specific pseudovirus inhibition, they all uniformly inhibited the infection of lentiviruses
pseudotyped by SARS-CoV-2 (Wuhan) spike, including two pseudotyped by vesicular
stomatitis virus G protein (VSV-G) and murine leukemia virus envelope (MuLV), which
are of zoonotic extraction (Supplementary Figure S1). The confirmed unspecific inhibi-
tion activity targeting the proviral backbone likely emanated from residual ART in the
participants’ plasma, which has been shown to indiscriminately inhibit lentiviral-based
pseudoviruses [25,26]. Therefore, in order to abrogate unspecific inhibition by residual ART,
we purified polyclonal IgG, which has been shown to be the dominant isotype in plasma
anti-spike antibody responses [27]. Purified polyclonal IgG fractions did not show unspe-
cific inhibition of pseudoviruses bearing the VSV-G and MuLV envelope but exhibited
neutralizing activity specific for Wuhan spike, against which the participants had been re-
cently vaccinated. Consequently, all subsequent assessments of pseudovirus neutralization



Viruses 2024, 16, 555 5 of 11

activity were performed using purified polyclonal IgG antibody fractions and expressed as
IC50 values.

Following two-dose vaccination, NAb titers against Wuhan were determined in the
polyclonal IgG fractions of participants at a median (IQR) IC50 of 44.9 (27.4–94.9) µg/mL
(Figure 1A). However, recipients of BNT162b2 exhibited significantly lower NAb titers than
mRNA-1273 recipients (median IgG IC50 of 47.8 versus 33.2 µg/mL, p = 0.02), in agreement
with reports from cohorts of PLWH and HIV uninfected people [28,29] (Figure 1B). A low
NAb titer threshold was defined by identifying the upper IgG IC50 value of the lowest
quartile (>100 µg/mL). As a result, 17/82 (20.73%) participants were considered to have low
NAb titers, including 8 whose titers were below the detection limit. Among the 17 low-NAb
participants, 13 had undetectable HIV viral loads at the time of sample collection, while
1 participant who had recently initiated ART had a viral load of 330,000 copies/mL. The
median (IQR) age, CD4+ count, and CD4+/CD8+ ratio of the low-NAb participants were
58 (47–68) years, 301 (185–494) cells/µL, and 0.4 (0.2–1.1), respectively.
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3.3. Neutralizing Antibody Titers against SARS-CoV-2 and Variants of Concern following
Monovalent 3rd Booster Vaccination in PLWH

Further, we analyzed the impact of third booster vaccination on NAb titers against
Wuhan and other VOCs (Delta, Omicron BA.1 and Omicron BA.2) in a subset of 18 third-
booster vaccinees in which 5/18 (27.8%) had been previously classified as low-NAb par-
ticipants. Between the low-NAb participants and the rest, the days since two-dose and
third booster vaccination were not significantly different. First, we established that third
booster vaccination significantly enhanced NAb titers against Wuhan by a median fold of
16 (p = 0.0001). This boosting effect was observed in all participants, although low-NAb par-
ticipants exhibited significantly lower NAb titers despite a comparable fold increase with
the rest (Figure 2A). Similarly, the third booster vaccination enhanced NAb titers against all
the VOCs tested by the following median folds: Delta (14-fold), Omicron BA.1 (7-fold), and
Omicron BA.2 (12-fold) (p < 0.0001). Consistent with observations from Wuhan neutraliza-
tion, low-NAb participants recorded significantly lower NAb titers against VOCs, and in
two participants, titers showed no detectable change despite third booster vaccination.

3.4. Factors Associated with Neutralizing Antibody Titers following COVID-19 Vaccination in PLWH

Next, we investigated how HIV and vaccine-related variables correlated with poly-
clonal IgG NAb titers against Wuhan spike following two-dose vaccination. In the bivariate
analysis, we found that the parameters of age (r = −0.42, p = 0.001), CD4+ count at sample
collection (r = 0.28, p = 0.01), and days since two-dose vaccination (r = −0.45, p = 0.001)
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significantly correlated with NAb titers, whereas those of pre-ART viral load, pre-ART
CD4+ count, and hsCRP at sample collection did not correlate (Table 2). Variables that
correlated moderately or strongly with NAb titers, and at a statistical significance of p < 0.1
(age, CD4+ count, pre-ART viral load, and days since two-dose vaccination), were adjusted
for via a nonparametric partial Spearman correlation analysis. The resulting adjusted
Spearman correlations revealed that only age (r = −0.33, p = 0.007) and days since two-
dose vaccination (r = −0.34, p = 0.005) independently correlated with NAb titers (Table 2).
Given previous reports showing diminished humoral responses at lower CD4+ counts in
PLWH [5], we also separately analyzed participants with a CD4+ count in the subnormal
range (≤500 cells/µL), but the correlation with NAb titers lost statistical significance in the
multivariate analysis as well.
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of 3rd booster vaccinated participants (n = 18). Changes in the NAb titers of previously identified
low-NAb-titer participants (n = 5) are highlighted in red. The p-values were computed by Wilcoxon
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Table 2. Correlates of neutralizing antibody (NAb) titers (reciprocal IgG IC50) against SARS-CoV-2
following 2-dose vaccination expressed as Spearman’s r coefficients.

Variables Bivariate Multivariate a

Age −0.42 (p = 0.001) −0.33 (p = 0.007)
Days since 2-dose vaccination −0.45 (p = 0.001) −0.34 (p = 0.005)

Pre-ART viral load (copies/mL) 0.21 (p = 0.087) 0.14 (p = 0.266)
Pre-ART CD4+ count (cells/µL) 0.18 (p = 0.141) −0.05 (p = 0.691)

CD4+ count (at sample collection) (cells/µL) 0.28 (p = 0.017) 0.17 (p = 0.158)
CD4+/CD8+ ratio (at sample collection) 0.15 (p = 0.204) 0.04 (p = 0.767)
hsCRP (at sample collection) (mg/dL) −0.16 (p = 0.193) −0.18 (p = 0.158)

NAb, neutralizing antibody; hsCRP, high sensitivity C-reactive protein. a Multivariate analysis by nonparametric
partial Spearman correlation analysis. p < 0.05 in boldface.
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Further, we analyzed factors correlating with NAb titers following the 3rd booster
vaccination within the subset of 18 booster vaccinees. Consistent with observations after
two-dose vaccination, we found that age, but not other host factors, negatively correlated
with NAb titers against Wuhan (r = −0.59, p = 0.009) following third booster vaccination
(Figure 2B). The correlation was also observed across all the VOCs investigated.

3.5. Factors Associated with Neutralizing Antibody Titers following COVID-19 Vaccination in
Different Age Subgroups of PLWH

Despite age being the only host correlate of NAb titers after two-dose vaccination, we
noticed that this correlation was biphasic in that it was more prominent (r = −0.44, p = 0.009)
in the upper 50th percentile of age and relatively diminished (r = −0.13, p = 0.46) in the
lower 50th percentile (Figure 3A). We thus stratified the participants at the median age
(48 years) and separately analyzed the correlates of NAb titers in the younger (≤48 years
old, n = 42) and older (>48 years old, n = 40) subgroups. There was no significant difference
in the proportion of BNT162b2 recipients between the younger and older age subgroups
(69.7% versus 74.5%, p = 0.79). While the CD4+ count did not correlate with NAb titers
in either subgroup, a CD4+ count within the subnormal range (≤500 cells/µL) positively
correlated with NAb titers in the younger (r = 0.55, p = 0.029), but not older, subgroup
(r = 0.14, p = 0.47) (Figure 3B). However, the CD4+/CD8+ ratio did not significantly correlate
with NAb titers in either subgroup (Figure 3C). Consistent with subnormal CD4+ count,
levels of hsCRP, which is a marker of inflammation [30], negatively correlated with NAb
titers in the younger (r = −0.43, p = 0.008), but not older (r = −0.01, p = 0.998), subgroup
(Figure 3D). hsCRP did not correlate with age in either subgroup.
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4. Discussion

PLWH remain vulnerable to severe COVID-19, and identifying the most at-risk sub-
populations remains a key objective. Our study analyzes factors associated with NAb
responses in the polyclonal IgG fractions of Japanese PLWH receiving two-dose and third
booster COVID-19 mRNA vaccination. We demonstrate that a subpopulation with low
NAb titers against SARS-CoV-2, identified after two-dose vaccination, exhibits similarly
low NAb titers against VOCs after the third booster vaccination. Additionally, different
age subgroupings exhibited differential host factor associations with NAb titers following
two-dose vaccination.

In this study, 17/82 (20.7%) participants were classified as low-NAb participants.
However, we did not find any significant differences in markers of immune reconstitu-
tion (CD4+ count and CD4+/CD8+ ratio) between the low NAb titers subpopulation and
the rest. While other reports have shown that a low CD4+ count is characteristic of low
antibody response subpopulations [8], differences in the thresholds used to define these
subpopulations cannot be overlooked. The third booster vaccination enhanced NAb titers
against Wuhan and VOCs, in agreement with previous reports [31,32]. However, low NAb
participants consistently exhibited significantly lower titers against all the VOCs tested,
including two who showed no detectable change in VOC neutralization despite third
booster vaccination. Although HIV uninfected subpopulations of low-NAb participants
have shown similarly low titers post-booster [33], we could not establish whether partici-
pants showing no detectable change in NAb titers against VOCs post-booster were limited
to PLWH or could also be found in the general population, given the lack of a healthy
control group in this study. Nevertheless, our findings highlight the need for continuous
monitoring of low-NAb subpopulations and their responses to booster vaccination in larger
cohorts of PLWH.

Our investigation of host factors associated with NAb titers showed that age negatively
correlated with NAb titers against Wuhan following both two-dose and third booster vacci-
nation regimens. Our findings are consistent with previous reports from cohorts of PLWH
from other countries [4,16] and HIV-uninfected healthcare workers from Japan [34,35].
Aging with HIV has been shown to accelerate immune senescence and could therefore limit
the ability of older PLWH to mount robust antibody responses to de novo antigens [36,37]
such as COVID-19 vaccination in this case. Given that the proportion of older PLWH is
projected to increase significantly by the end of 2030 [38], our findings bring attention to
the vulnerability of this subpopulation and call for their prioritization in future booster
vaccination regimens.

On the other hand, we found that CD4+ count did not correlate with NAb titers against
Wuhan after two-dose vaccination, a finding that is in line with previous reports [4,14,39]
but also in contrast to some other reports [5,7]. It is, however, intriguing that our age sub-
group analysis revealed that NAb titers in younger participants (≤48 years) positively cor-
related with the CD4+ count in participants with CD4+ counts within the subnormal range
(≤500 cells/µL). Although we could not confidently ascribe the observed age-dependent as-
sociation to differences in actual age or age-associated immune phenotypes, comorbidities,
and coinfections, these findings highlight how the heterogeneity of clinical parameters and
markers of immune reconstitution across cohorts could impede the building of consensus
on the most vulnerable subpopulations of PLWH. As such, classifications of cohorts based
on immune reconstitution markers, clinical and demographical parameters, may reveal a
broader spectrum of host factor interactions with vaccine responses and help in building
a consensus towards identifying the most at-risk subpopulations of PLWH for targeted
vaccination strategies.

Our study was, however, not without limitations. First, the lack of an HIV-uninfected
control group limits a direct comparison in NAb responses between PLWH and the gen-
eral population. Also, our experimental approach relied on IgG neutralization thereby
excluding other non-dominant isotypes, such as IgA and IgM, but with equally potent
neutralization properties. Furthermore, considering that our cohort was 97.5% male, and
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differences in immune responses to vaccination may be present between males and fe-
males, further research is needed to understand the potential role of sex in NAb responses
in PLWH. Additionally, the duration between vaccination and sample collection varied
considerably across the cohort. Finally, our study was also limited by its small sample
size. Nonetheless, our study contributes to a growing body of literature on factors associ-
ated with NAb responses to COVID-19 vaccination in PWLH. Our findings highlight an
overall immune-boosting effect of monovalent third booster vaccination against Wuhan
and VOCs. We identified differential host immune associations with NAb titers in differ-
ent age subgroupings; however, further research in larger cohorts is needed to elucidate
this observation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/v16040555/s1, Figure S1: Validation of polyclonal IgG neutraliza-
tion assay.
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