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Abstract: Covalent modification with polyethylene glycol (PEG), a non-toxic polymer 

used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly 

influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and 

peptide-based therapeutics. This review summarizes the history of PEGylation and PEG 

chemistry and highlights the value of this technology in the context of the design and 

development of recombinant viruses for gene transfer, vaccination and diagnostic 

purposes. Specific emphasis is placed on the application of this technology to the 

adenovirus, the most potent viral vector with the most highly characterized toxicity profile 

to date, in several animal models.  
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1. Introduction  

 

Polyethylene glycol (PEG) is one of the most versatile polymers synthesized. This amphiphilic, 

chemically inert polymer consists of repeating units of ethylene oxide, which can be arranged in either 

linear or branched configurations, creating a series of compounds of different molecular weights with 

unique properties [1]. A demonstrated lack of immunogenicity, toxicity and antigenicity, subsequent 
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approval by the United States Food and Drug Administration (U.S. FDA) for human use and high 

solubility in water and many organic solvents fostered the use of PEG as a key excipient in many 

pharmaceutical and cosmetic formulations for over 60 years [2]. Other unique properties of this 

molecule such as flexibility of the polymer chain led to the pioneering work initiated in the late 1970s 

by Abuchowski and others in the field of molecular modification of biological molecules [3]. Since then, 

covalent attachment of PEG to protein and peptide-based therapeutics, a technique known as 

PEGylation, has become one of the most widely applied strategies for improving the physicochemical 

and pharmacokinetic properties of these labile compounds [4-6]. PEGylation has been used to 

ameliorate the stability, solubility, bioavailability and immunological properties of many biological 

compounds such as such as lipids, polysaccharides, polynucleotides and most recently, complex living 

organisms such as cells, tissues and viruses [3,7–9].  

 

2. PEGylation: The Early Years 

 

2.1. The Chemistry 

 

The monomethoxylated form of PEG (mPEG), containing a single hydroxyl group for activation 

and an inert methoxy group, resistant to standard chemical reactions, is generally used for protein 

conjugation (Figure 1)[8]. The first step in the PEGylation process is activation of the PEG molecule 

prior to protein conjugation. Activation is achieved by substitution of the single hydroxyl group at the 

end of the PEG molecule by an electrophilic reactive group that can then be covalently linked to a 

reactive site on a protein (Figure 2). Succinimidyl succinate PEG is prepared by reaction of mPEG 

with succinic anhydride followed by conversion of the carboxylic acid to the succinimidyl ester. This 

linkage is highly susceptible to hydrolysis after the polymer has been attached to the protein. Reaction 

of mPEG with tresyl chloride produces an activated PEG that has been shown to randomly modify 

proteins, viruses and liposomes, resulting in a heterogeneous mixture of conjugates with degradable 

linkages. Original PEGylation schemes employed cyanuric chloride to prepare activated PEG for 

attachment to proteins through multiple nucleophilic functional groups such as lysine, serine, tyrosine, 

cysteine, and histidine, which supports significant crosslinking and aggregate formation.  

 

Figure 1. Representative Types of PEG for Protein and Peptide Modification. 
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Figure 1. Cont. 

 

(A) The core molecule, linear poly(ethylene) glycol, a diol, with two free hydroxyl groups; 

(B) Monomethoxy poly(ethylene) glycol (mPEG). The single hydroxyl group is the site of 

attachment for a variety of reactive groups suitable for conjugation to nucleophilic 

functional groups on proteins such as lysine; (C) A branched PEG molecule in which two 

linear mPEGs activated with either succinimidyl carbonate or benzotriazole are linked to 

the - and -amino groups of lysine. These molecules offer the advantage of adding two 

PEG molecules at each attachment site, affording broader protection from proteolysis and 

the immune response without reducing bioactivity; (D) Multi-arm PEG. These compounds, 

generally prepared with hexaglycerine at the core, offer multiple hydroxyl groups for 

attachment of many copies of the same or several different reactive groups for protein and 

peptide conjugation; (E) Forked shaped PEG. Fork-shaped PEGs provide multiple reactive 

groups in close proximity at one or both ends (Panel F) of the PEG chain, where X 

represents functional groups. 

Figure 2. General Schematic for the Synthesis of Activated PEG Molecules. 
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Early on, lysine, one of the most plentiful amino acids present in many proteins, was identified as 

the primary site for attachment of PEG residues and could be modified with a wide selection of 

chemical moieties (Figure 3) [10], commonly used for PEGylation of both free - and -amino groups 

on peptides and proteins. Protocols employing these molecules are often plagued with the presence of 

impurities and non-specific attachment to residues, allowing for inconsistencies between production 

lots. These chemistries are also restricted to low molecular weight polymers. Once attached to a 

bioactive molecule, they are relatively unstable and tend to degrade soon after administration in vivo.  

Figure 3. First Generation PEG Derivatives. 

 
 

Improved second generation PEG chemistries have minimized diol contamination and expanded 

the chemical repertoire to include high molecular weight compounds with very diverse structures 

(Figure 4) [11]. 
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Figure 4. Second Generation PEG Derivatives. 

 
 

These PEG derivatives have been developed for specific attachment to cysteine residues 

on proteins and peptides. (A) PEG-maleimide is able to conjugate to free thiols under 

acidic (pH 6–7) conditions, however, this compound is not stable in water and the ring is 

susceptible to opening or addition of water across the double bond. (B) PEG-orthopyridyl 

disulfide reacts specifically with sulfhydryl groups under both acidic and basic conditions 

(pH 3–10) to form a disulfide bond with proteins which are stable except in a reducing 

environment when the linkage is converted to a thiol. (C) PEG-iodoacetamide, reacts 

slowly with thiol residues to form stable thioether bonds in mildly basic media. Use of this 

compound is advantageous in the context that, by strong acid hydrolysis, modification of a 

protein with this compound gives rise to a stable cysteine conjugate, 

carboxymethylcysteine that can be identified and quantified by standard amino acid 

sequencing techniques to verify the degree of modification of the parent protein. It is also 

important to note that any reaction employing this polymer should be performed under 

dark conditions in order to prevent the production of free iodine that may react with other 

amino acids such as tyrosine. (D) PEG-vinyl sulfone reacts slowly with thiols to form a 

stable thioester linkage to proteins under slightly basic conditions (pH 7–8). This process 

will proceed at a faster rate if the pH is increased. However, under these conditions, PEG-

vinyl sulfone may also react with free lysines. Use of any of these compounds is dictated 

by protein solubility/stability under reaction conditions defined by the PEGylation 

chemistry, availability/accessibility of cysteine residues on the protein surface, desired 

speed of reaction and availability of methodology for characterization of protein conjugates.  

Today, PEGylation processes focus on select amino acids, such as thiol groups on cysteine residues, 

as primary sites for attachment, thereby minimizing random attachment of PEG to the protein surface 

and the amount of heterogeneous conjugates in a given preparation [12]. Improved site-specific 

PEGylation with these reagents minimizes loss of biological activity through enhanced preservation of 

the native protein structure. Complex, branched second generation PEG molecules have also been 

shown to maintain pH and thermal stability, reduce immunogenicity and protect modified proteins 
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from proteolysis to a much higher degree than those modified with first generation chemistries [4,5]. 

Further refinement of these molecules led to the development of heterofunctional PEGs that directly 

link the protein of interest to another molecule used for targeting specific cells and tissues. A general 

schematic of PEGylation strategies is summarized in Figure 5. 

Figure 5. The Building Blocks of a PEGylated Therapeutic. Once a therapeutic molecule 

amenable to PEGylation is identified, the appropriate PEG chemistry must be selected. 

Properties such as size, symmetry, and bifunctionality must be considered and adopted 

according to the desired application. The linker used for covalent attachment of PEG must 

also be evaluated with respect to the strength of the bond created as well as its affinity for 

certain residues on the bioactive molecule. Receptor-specific peptides, proteins and 

molecular sensors have been tethered to PEGylated therapeutics for cellular and tissue 

specific targeting.  

 
 

2.2. Tolerization to Antigens, Tissues and Cells 

Davis and Abuchowski were the first to modify two model proteins, bovine serum albumin and 

liver catalase, with methoxypolyethylene glycols (mPEG) of 1,900 and 5,000 Daltons (Da) using 

cyanuric chloride and 2,4,6-trichloro-8-triazine as the coupling agents, respectively [13,14]. One of 

their prime findings, that when PEG is properly coupled to a protein or an enzyme, the modified 

product loses its immunogenicity in vivo, laid the groundwork for additional studies that suggested that 

protein antigens modified by this technique may not only fail to induce an immune response but may 

be tolerogenic. This phenomenon was first reported by Lee et al. when intravenous administration of 

PEGylated ovalbumin (PEG-OVA) 4 hours before sensitizing with dinitrophenylated OVA (DNP-

OVA) suppressed the primary anti-DNP-OVA and anti-OVA IgE responses in both mice and rats. 

These animals also responded very poorly to additional doses of DNP-OVA. In contrast, injection of 

unmodified OVA did not alter the ability of the animals to mount IgE responses to DNP-OVA [15]. 

Additional reports have been written summarizing similar transitions for other allergens including 
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ragweed pollen extract, uricase, L-asparaginase, hen egg lysozyme, and bovine gamma globulin and 

other antibodies to non-immunogenic, tolerogenic derivatives through PEGylation [16–25].  

Although it has been shown that repeat administration of each of these PEGylated allergens 

significantly reduces IgM, IgG and IgE antibody levels against the native antigen, it has also been 

found that the degree of suppression depends on the immunological state at the time of treatment, the 

nature of allergen and the dose. Suppression of the antibody-mediated response was best observed in 

mice without measurable anti-allergen antibodies, while the weakest suppression was observed in mice 

with high levels of antibodies at the time of treatment [26]. Additional studies have found that 

PEGylated allergens can induce a long-term suppression of the antibody response [15,18,21,26,27]. 

For example, administration of PEGylated human monoclonal immunoglobulins (HIgG) suppressed 

the anti-HIgG antibody response by more than 95% for over 300 days after a series of seven injections of 

the immunizing antigen in mice [21]. While the exact mechanism by which this phenomenon occurs 

remains unknown, adoptive transfer of splenocytes from animals given several doses of PEGylated 

compounds to naïve animals suggests that PEG-modified allergens activate antigen-specific CD8+ 

suppressor T cells [15,18,27,28]. Since proliferation of suppressor T cells and the associated 

production of factors that dampen the immune response is dependent upon the concentration of 

circulating antigen during the tolerization process, slowing of antigen processing and extending the 

half-life of the antigen by PEGylation most likely plays a major role in the immunosuppressive 

capacity of the conjugates [17,24,25]. 

As data continued to suggest that PEGylated biomolecules were less immunogenic than their native 

counterparts, many interested in preventing immunorejection during transplantation began to apply 

this process to intact, viable cells and tissues. Modification of type A and type B human red blood 

cells (RBCs) with mPEG did not compromise the structure, function and viability of the cell and 

prevented agglutination by anti-A and anti-B antisera, respectively [29–31]. PEGylation of ovine 

RBCs prolonged their survival when transfused into mice [30]. PEGylation of lymphocytes can inhibit 

MHC class II activation and proliferation of T cells, as was demonstrated in an in vivo model of 

transfusion-associated graft versus host disease [31–33]. Adoptive transfer of PEGylated splenocytes 

isolated from C57BL/6 mice to lethally irradiated Balb/c mice extended survival time from 7 to 10 

days [34]. PEGylation reduced proliferation in the donor T cell population, suggesting that the loss of 

T cell responsiveness is likely due to disruption interactions between the T cells and antigen 

presenting cells necessary to mount an immune response [32]. It has also been suggested that this 

weak, ineffective co-stimulation of alloreactive T cells induces apoptosis, leading to tolerance of donor 

tissue [34]. This phenomenon has been further exemplified in diabetic rat models where PEGylation 

improved pancreatic islet viability, facilitated engraftment and re-established blood glucose 

homeostasis [34,35]. Additional studies demonstrated that PEGylation efficiently blocked recognition 

of the transplants by immune cells, allowing them to remain stably functional in diabetic recipients for 

several weeks [35–38].  

3. PEGylation in the Pharmaceutical Industry 

Approval of Adagen (Pegademase) for the treatment of severe combined immunodeficiency 

disease (SCID) by the U.S. FDA in the early 1990s illustrated the potential for PEGylation to 
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significantly impact modern therapeutics. The half-life of this product, bovine adenosine deaminase 

randomly modified with 5 kDa PEG molecules, increased from less than 30 min to 28 hr for the 

conjugated counterpart [39]. This, along with the fact that the modified enzyme preparation could 

evoke 1,800 times the activity per milliliter of red blood cells alone [40], marked notable progress in 

the area of enzyme replacement therapy by minimizing the number of doses needed to achieve a 

therapeutic effect, eliminating the need for blood transfusion and avoiding the risk of iron overload 

and transfusion-associated viral infection [11]. In a similar manner, therapeutic use of L-asparaginase 

for acute lymphoblastic leukemia was hindered by the fact that frequent intramuscular injections, 

necessary for therapeutic efficacy, also induced strong hypersensitivity reactions, rendering the 

enzyme ineffective in many patients [41]. Covalent attachment of 5 kDa PEG to this enzyme four 

years later reduced its immunogenicity and the necessity for frequent dosing, allowing for successful 

use in those with hypersensitivity to the unmodified enzyme [42–44]. Within the last 10 years, 

improvements in polymer homogeneity and PEGylation chemistry have produced many potent, well-

characterized, protein-based therapeutics. Therapeutic PEGylated proteins currently marketed in the 

United States and Europe are summarized in Table 1.  

Table 1. Therapeutic PEGylated proteins currently marketed in the United States and Europe.  

Parent Molecule Generic name 
Trade name 

(company) 

Size of PEG 

moiety 

(kDa) 

Indication 
Year of 

approval 

Adenosine 

deaminase 

Pegademase 

bovine 
Adagen (Enzon) 5 

Severe combined 

immunodeficiency 

disease (SCID) 

1990 

L-asparaginase Pegaspargase Oncaspar (Enzon) 5 

Acute 

lymphoblastic 

leukemia 

1994 

Interferon -2b Peginterferon -2b 
PegIntron (Schering-

Plough) 
12 Hepatitis C 2000 

Interferon -2a Peginterferon -2a Pegasys (Genetech) 40 Hepatitis C 2001 

G-CSF Pegfilgrastim NeulastaTM (Amgen) 20 Neutropenia 2002 

hGH Pegvisomant 
SomavertTM (Pfizer 

Pharmacia) 
5 Acromegaly 2003 

Erythropoietin 

Methoxy 

polyethylene glycol-

epoetin beta 

Mircera (Roche) 40 Anemia 2007 

Anti-TNF Fab Certolizumab pegol Cimzia (UCB) 40 

Rheumatoid 

arthritis and 

Crohn’s disease 

2008 

 

Two marketed products of PEGylated interferon alpha (IFN-), PEGIntron (Schering Plough) and 

PEGASYS (Roche), illustrate how different PEG chemistries can affect the pharmacokinetic profile of 

a biologically active protein. PEGIntron (IFN-2b) contains a single chain 12kDa PEG attached to 

His34 via a urethane bond [45]. Although this modification significantly extends the elimination half-

life and reduces the clearance of the protein (Table 2), the conjugate is hydrolytically unstable in 
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plasma and when stored at ambient temperatures [46]. The activity of this preparation relative to the 

unmodified protein is 28% [47]. In contrast, PEGASYS (IFN-2a) contains branched 40 kDa PEG 

molecules attached to lysine residues via an amide bond [48]. This conjugate, with greater in vitro and 

in vivo stability has a significantly longer half life than PEGIntron and reduces the clearance of the 

protein by a factor of 100, overshadowing the fact that the modified protein retains only 7% of the 

relative activity of the unmodified protein (Table 2) [47]. Despite their differences, both products have 

greater anti-viral action than their native counterparts, reducing administration schedules from three 

times a week to once weekly [49,50].  

Table 2. Pharmacokinetics of unmodified interferon alpha and two PEGylated derivatives. 

Pharmacokinetic Parameter IFN-α PegIntron (PEG-IFN α-2b) Pegasys (PEG-IFN α-2a) 

Elimination half life (hours) 6-9 32-40 72-96 
Clearance (ml/hour) 6,000 725 60-100 
Volume of distribution (L) 25-30 20-40 8 
Tmax (hours) 7-12 20 80 

Granulocyte-colony stimulating factor (G-CSF) and an anti-TNF- Fab have been conjugated to 

PEG in order to increase the overall size of the molecule. In the case of Pegfilgrastim 

(Neublasta:PEGylated G-CSF), the increase in size minimizes renal clearance of the drug, prolongs 

the circulation time and stimulates the proliferation and differentiation of neutrophils which, in turn, 

aid in clearing the compound once therapeutic levels are attained [51]. Certolizumab pegol (Cimzia), 

the Fab fragment of a humanized anti-tumor necrosis factor- (TNF) monoclonal antibody linked to 

a branched 40 kDa PEG maleimide at a single cysteine residue, demonstrates a prolonged circulating 

time in blood, such that a single monthly subcutaneous injection is sufficient for therapeutic efficacy. 

In addition, increasing the size of this molecule by PEGylation allows it to preferentially accumulate 

in inflamed tissue, where its therapeutic effect is primarily needed [46]. 

4. PEGylation and Gene Therapy in the 21st Century 

Gene therapy has gained significant attention over the past two decades as a potential method for 

diverse applications including the correction of inherited genetic and neurodegenerative disorders, as 

well as the treatment of cancer, cardiovascular and infectious diseases [52,53]. Despite encouraging 

pre-clinical results, practical use of this technology has been hindered by inefficient delivery to 

specific cellular targets and immune responses to both the vector selected for gene transfer and the 

transgene product. Rapid clearance from the circulation by the complement system and the 

immunogenicity associated with non-viral and viral vectors alike were the primary reasons for 

applying PEGylation technology to gene delivery vectors. In this regard, PEGylation was initially used 

for non-viral vectors and eventually for viral vectors as the immune response became the most 

significant limitation to therapeutic gene transfer. Additional efforts soon recognized that advanced 

PEG chemistries accommodated attachment of specific ligands to the vectors, making them less 

promiscuous and promoting tissue and cell-specific gene expression.  
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4.1. Non-Viral Vectors. 

Non-viral gene transfer is a method by which DNA is formulated with cationic lipids and/or 

polymers to create dense particles that are delivered to target cells by physical means such as direct 

injection, electroporation or gene gun [54]. These particles, however, are often rapidly sequestered in 

the reticuloendothelial system (RES), and are removed from the bloodstream within minutes after 

systemic administration [55,56]. PEGylation was primarily used to reduce the rate at which these 

vectors are cleared to improve therapeutic efficacy. This has been achieved by PEGylating 

preparations containing branched polyethylenenimine/-cyclodextrin/DNA polyplexes as well as 

simple DNA/chitosan mixtures [57–59]. In both cases, this modification minimized aggregate 

formation under physiological conditions and prolonged circulation time, thereby reducing uptake by 

macrophages and improving overall transduction efficiency of each system. Numerous reports have 

shown that PEGylation also reduces binding of DNA complexes to plasma proteins and minimizes 

toxicity while improving the stability, solubility and, in turn, transfection efficiency of these non-viral 

preparations [52,57,60–65]. Results from these studies and data accumulated from clinical trials with 

viral vectors soon prompted development of PEGylation strategies for viruses. 

4.2. Viral Vectors. 

Although viral vectors, unlike their non-viral counterparts, are extremely efficient at inducing 

transgene expression in cellular targets, their clinical utility is hindered by significant immunogenicity 

and toxicity. Covalent modification of proteins contained in the virus coat with PEG has been shown 

to improve both the physicochemical and biological properties of several recombinant viruses used for 

gene transfer (Table 3) including adeno-associated virus (AAV) [66,67], pseudotyped lentivirus [68], 

retrovirus [69,70], and baculovirus [71].  

PEGylation has also been used to modify influenza virosomes, virus-like particles synthesized from 

capsid proteins, to minimize host immunological responses [72,73]. While results with many viral 

vectors have been minimal, there has been a significant effort in developing PEGylation protocols for 

one of the most potent vectors with a highly characterized toxicity profile to date, the adenovirus. 

Table 3. Current Summary of PEGylated Viruses and the Reported Impact of Modification. 

Virus Model Biological effects Ref. 

Adeno-
associated 
virus 

in vitro 

Conjugation of AAV with monomethoxy poly(ethylene) glycols activated 
by tresyl chloride (TMPEG) and succinimidyl succinate (SSPEG) 
chemistries did not compromise transduction efficiency. 

66 

PEGylation with either 2 kDa or 5 kDa PEG at 1:1, 10:1, 100:1 and 
1000:1 PEG:lysine ratios did not compromise transduction efficiency.  
Conjugation of rAAV with 2 kDa PEG at the 1000:1 PEG lysine ratio 
protected from serum neutralization. 

67 

in vivo 

SSPEG and TMPEG improved gene transduction in the lung without 
compromising transduction efficiency in the liver and muscle. 
TMPEG reduced Th1-type response. 
Successful readministration of virus after iv injection was achieved by 
modification with TMPEG.  

66 
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Table 3. Cont. 

Lentivirus 

in vitro 

Transduction efficiency of PEGylated virus was not compromised in the 
presence of neutralizing antibodies PEGylation provided a 20 fold 
resistance to antiserum and extended circulatory half-life by a factor of 5 
with no observable loss in titer and prevented interaction with antibodies 
and inactivation of virus by complement in human and mouse sera. 

68 

in vivo 
PEGylation extended the circulation half-life by a factor of 5 
PEGylation improved transduction efficiency in the bone marrow and in 
the spleen 14 days after systemic administration of virus. 

68 

Retrovirus in vitro 

Coating of retrovirus with PEG-poly(L-lysine)(PLL) block copolymer 
improved transduction efficiency 3 to 7 fold without increasing 
cytotoxicity. 

69 

Conjugation of a (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), 
polyethylene glycol and biotin complex[DSPE-PEG-biotin] increased 
the number of viruses that bound to streptavidin coated plates by more 
than three-fold. 

70 

Baculovirus 
in vitro 

Transduction efficiency was deceased with an increased amount of PEG 
added to the virus surface. 

71 

in vivo PEGylation improved transduction efficiency in the lung and brain. 71 

Influenza 
virosomes 

in vitro 
Reconstituted viral membranes containing 3 mol% poly(ethylene –
glycol) grafted phosphatidylethanolamine retained 40% of their fusion 
activity. 

72, 73 

 

4.3. The Adenovirus 

Despite the fact that recombinant adenoviruses can infect both dividing and non-dividing cells, 

have the capacity to accommodate large DNA inserts and can be readily produced in large quantities 

with high purity [74], their clinical use is significantly hindered by strong innate and adaptive immune 

responses against viral proteins [75]. This is compounded by the fact that the virus enters cells through 

several receptors (integrins, heparan sulfate proteoglycans and the coxsackie- and adenovirus receptor 

(CAR)) distributed widely throughout the body which leads to non-specific transgene expression and 

undesired side effects such as thrombocytopenia, intense periportal polymorphonuclear lymphocyte 

infiltration and elevated liver enzymes [76–78]. Thus, a significant effort was put forth to develop 

PEGylation protocols for the adenovirus, an otherwise highly efficient vector for gene transfer. 

PEGylation of adenovirus was initially achieved by the use of monofunctional PEGs (mPEGs) such 

as monomethoxypolyethylene glycol activated by tresyl chloride (TMPEG), succinimidyl succinate 

(SSPEG) and cyanuric chloride (CCPEG) which react with the -amino terminal of lysine residues on 

virus capsid proteins (Figure 2) [79–82]. These early studies revealed that modification with TMPEG 

did not compromise virus titer during a 3 hour reaction period, while modification with SSPEG 

reduced titer by 30% [80]. Preparations modified with the CCPEG chemistry retained only 11% of 

their original titer after the 90 minute conjugation process was complete. It was later found that this 

dramatic loss of titer was due to extensive cross-linking of the polymer with multiple virus capsids and 

subsequent formation large aggregates. Despite the initial loss of infectious titer during the PEGylation 
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process, each of these preparations maintained titers that were significantly higher than unmodified 

virus during storage at −20, 4, 25 and 42 C for extended periods of time. PEGylation of adenovirus 

prior to microencapsulation with poly(lactic-co-glycolic acid) (PLGA) block copolymers prevented 

inactivation of the virus during the microencapsulation process, resulting in improved transfection 

efficiency with respect to unmodified virus used in the same process [83]. Further investigation 

revealed that this modification prevented virus aggregation within the acidic environment created 

during degradation of the microspheres and prevented shear-induced damage to the virus capsid during 

the homogenization process.  

Although early studies reported that PEGylation increased transduction by a factor of 3 in the lung [81] 

and by a factor of 5 in the liver [82], it was also found that excessive PEGylation could critically 

damage the structure and function of the virus, limiting transduction efficiency [79,84,85]. For 

example, an increase in the a viral amine:mPEG molar ratio from 1:1 to 1:10 reduced the relative 

transduction efficiency of the virus from 94% to 52% [83]. Additional studies revealed that 

transduction fell by 20, 60 and 99% as 25, 50 and 80% of the free amines of the virus are modified 

with PEG, respectively [84].  

4.4. Characterization of PEGylated Adenoviruses 

Once it was realized that the number of PEG molecules attached to capsid proteins profoundly 

affects the performance of the virus in vitro and in vivo, much effort was put forth to develop assays to 

characterize the physical properties of these vectors and accurately determine the degree of 

modification that occurred within a given preparation. As PEG molecules are added to the virus 

surface, they mask protein residues that dictate the overall charge and relative solubility of the particle 

while increasing the hydrodynamic radius in accordance with the size of PEG. Thus, initial 

characterization profiles of PEGylated adenoviruses included assays designed to assess broad changes 

in the physical properties of the virus such as particle size, zeta potential and PEG-Dextran partition 

coefficients [80,86,87]. Zeta potential analysis revealed that PEGylation reduces the negative charge 

of the virus capsid from −48 mV (unmodified, native virus) to −28, −24 and −16 mV when conjugated to 

TMPEG, SSPEG and CCPEG, respectively [80]. The partition coefficient of the PEG-virus conjugate in 

an aqueous PEG/dextran two-phase system (K) was found to shift from 0.7 for unmodified virus to 1.76, 

1.96 and 3.56 for virus conjugated with TMPEG, SSPEG and CCPEG chemistries, respectively [80]. 

Although these assays were able to confirm that virus particles were modified once the PEGylation 

process was complete, they did not accurately assess the degree of modification.  

Changes in particle size of the virus have been found to correlate with degree of modification. In 

one report, addition of 5 kDa PEG to all of the available sites on the adenovirus capsid increased the 

diameter of the particle by approximately 30% [86]. Other efforts have focused upon assessment of the 

number of unmodified amino groups that remain on virus prior to and after PEGylation process using a 

traditional fluorescamine assay in which measured fluorescence is proportional to the free lysine 

amino groups on the virus capsid [80] or a PEG-biotin enzyme-linked immunosorbent assay (ELISA) 

that indirectly quantifies the amount of biotin-labeled PEG associated with a virus particle using an 

avidin-horseradish peroxidase detection system [79]. Pairing these assays with other analytical 

techniques such as capillary zone electrophoresis and high pressure liquid chromatography (HPLC) 



Viruses 2010, 2                            

 

480

where subtle changes in physical properties of individual capsid proteins can be measured by changes 

in the placement of a peak and/or peak size (Figures 6 and 7) and sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) with barium iodide staining that allows one to 

visualize specific virus proteins linked to PEG and measure the change in molecular weight associated 

with the new PEG-conjugate [88] (Figure 8) will improve the accuracy of the chemical profiles of 

PEGylated viruses and assist in the assessment of the reproducibility and reliability of a PEGylation 

process prior to clinical testing. 

 

Figure 6. PEGylation Significantly Alters the Surface Charge of the Adenovirus Over 

Time. Representative Capillary Electropherograms of (A) Monomethoxypoly(ethylene) 

glycol tresylate (TMPEG, 10 mg/ml) alone and adenovirus that underwent conjugation for 

(B) 24 hours (100% coverage as determined by a fluorescamine assay) (C) 4 hours (90% 

coverage) (D) 2 hours (70% coverage) (E) 1 hour (50% coverage) and (F) Unmodified 

Virus. As seen from the figure, capillary electrophoresis can be used to (a) confirm that 

free PEG has been adequately removed from a preparation, (b) assess the degree of 

modification of virus capsids and (c) assess the homogeneity of a preparation (i.e., all 

capsids are modified to the same degree). Data included in the figure was generated by 

diluting samples 1:2 with sample buffer (20 mM sodium phosphate, pH, 7.0, 5 mM NaCl). 

Capillary length was 34 cm. Virus was detected at 214 nm. The Y axis represents 

absorbance units and the X axis minutes until a preparation eluted from the capillary. 
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Figure 7. PEGylation Dampens Peak Intensity of Adenovirus Capsid Proteins as 

Determined by Reverse Phase HPLC. RP-HPLC Chromatograms Showing Peaks of (A) 

Free PEG; (B) PEGylated adenovirus (50% modification as determined by CE and 

fluorescamine assays); (C) Unmodified Adenovirus and (D) PEGylated adenovirus (100% 

modification). Viral proteins were separated on a Jupiter column (250  4 mm) packed 

with a 5 m diameter, 300 Å pore size C4 resin (Phenomenex) and a pre-column filter  

(0.5 m, Phenomenex) at 45 °C. A 145 minute gradient of 0.1% trifluroacetic acid (TFA) 

in water (Solution A) and 0.1% TFA in acetonitrile (Solution B) was used at a flow rate of 

1 ml/min and absorbance measured at 215 nm. Reduction of the peak height of the penton 

protein (Peak 2) reflects the degree of modification of the virus capsid as determined by 

fluorescamine and biotin ELISA assays (see table for data summary). This method can also 

be used to monitor the PEGylation process and confirm results obtained from analysis by 

capillary electrophoresis (Figure 6). It also verifies that free PEG is removed from the final 

preparation as is shown by the absence of Peak 5 in all traces. 
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Figure 8. Changes in the Molecular Weight of PEGylated Adenovirus Capsid Proteins 

Can be Detected by Gel Electrophoresis and Barium Iodide Staining. Unmodified (Lanes 4 

and 5 both gels) and PEGylated (Lanes 2 and 3 both gels) adenovirus were boiled and run 

on 10% polyacrylamide gels with standard molecular weight markers (Lane 1 gel A) at 30 

volts overnight. Duplicate samples were run such that, when electrophoresis was complete, 

the gel could be cut in half and either stained with Coomassie Brilliant Blue (Gel A) or a 

5% barium chloride/1M iodine in 0.01 M perchloric acid (Gel B) for the identification of 

PEGylated proteins as described in reference 88. PEGylated proteins (Lanes 2 and 3, Gel 

A) are not stained as intensely as unmodified proteins (Lanes 4 and 5, Gel A) with 

Coomassie Blue despite the fact that the same amount of virus (based upon protein 

concentration) was loaded in each lane. In contrast, unmodified proteins were not resolved 

with barium chloride/iodide staining (Lanes 4 and 5, Gel B) while proteins with high PEG 

densities (Lanes 2 and 3, Gel B) could be detected by this method. Changes in the 

molecular weight of the adenovirus hexon (marked “a”), penton (marked “b”) and hexon-

associated protein (marked “c”) were noted in the preparation included in the figure. The 

limit of detection of this assay was 0.5 g of PEG in a 10% acrylamide gel. 

 

 
 

4.5. Pharmacology of Adenovirus-Pharmacokinetics and Biodistribution 

As mentioned previously, one of the benefits of PEGylating therapeutic proteins is that this 

modification prolongs the circulation time, allowing for administration of a single daily dose to 

achieve full therapeutic effect. When given systemically, the half-life unmodified adenovirus is less 

than 2 minutes [89]. The kinetics of PEGylated adenovirus were initially described by Alemany et al. 
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who indicated that the clearance rate of the modified virus is reduced by a factor of 4 with respect to 

unmodified virus in mice [89]. Similarly, it has been reported that PEGylation reduces the systemic 

clearance of helper-dependent adenovirus by approximately 40% in non-human primates [90]. The 

circulation time of a PEGylated adenovirus targeted to endothelial cells in the blood was found to be 

significantly longer than that of unmodified virus after systemic administration in mice, as evidenced 

by an increase in the area under the plasma concentration-time curve (AUC) by a factor of 12 [91]. 

The half-life of PEGylated adenovirus also increases profoundly with the degree of modification 

(Table 4) [86]. Plasma half-lives of adenoviruses linked to 5 kDa PEG at a ratio of 90% and 100% 

were 6.4 and 22 min, respectively, whereas that of unmodified Ad had a calculated half life of 1.9 min 

in mice. Increasing the molecular weight of the PEG also prolongs the time that the virus remains in 

the systemic circulation (Table 4). Plasma levels of adenovirus conjugated with 20 kDa PEG at a 45% 

modification ratio were 25 times that of unmodified virus or 8 tines that of virus coupled with 5 kDa 

PEG at a 90% modification ratio 60 minutes after intravenous administration in mice [92]. Similarly, it 

was reported that circulating genome levels of virus modified with 35 kDa PEG were more than 10 

fold higher than those of unmodified virus at both early (10 minutes) and later (24 hours) times after 

systemic administration in mice [93].  

Table 4. Summary of the Reported Impact of PEGylation on the Pharmacokinetic 

Parameters of Adenovirus In the Mouse. 

 ↑AUC ↓CL ↑Half-life 

PEG size 3.4 kDa 5 kDa 5 kDa 20 kDa 

Degree of modification - - 30% 60% 90% 100% 45% 

Fold change in 
Pharmacokinetic parameter 

12 4 1.3 2 3 22 25 

 

Removal of adenovirus from bloodstream and rapid uptake in the liver after intravenous injection 

is caused by non-specific charge-mediated interactions with proteins and cells, notably components of 

the reticuloendothelial system (RES) [89]. It is also known that adenovirus preferentially accumulates 

in the liver and the spleen in rodent models and non-human primates when given systemically, which 

contributes significantly to the toxicity associated with this vector [94-96]. Although the exact 

mechanism by which PEG prolongs circulation time in the blood is not currently known, it is thought 

that protrusion of long chain PEG molecules from the virus surface plays a critical role in minimizing 

cellular interactions, limiting access to the liver parenchyma and subsequently extending circulation 

half-life [84,97,98]. If this is indeed the manner by which PEGylation extends the half–life of the 

virus, one must also reason that transduction efficiency is also  compromised. This has been reported 

in vitro [84], however, we and others have found that conjugation of virus with 5 kDa PEG does not 

compromise hepatic transduction efficiency of both first generation and helper dependent 

adenoviruses in mice [82,84,93,99]. One reason for this may be the longer circulation time, which 

prolongs virus contact with the liver. In addition, in vitro data (Figure 9, unpublished data) and studies 

in rodents have suggested that PEGylated virus retains its liver transduction efficiency by entering cells 

via heparan sulfate proteoglycan receptors (HSPGRs), the primary means by which the virus enters 
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hepatocytes in vivo, and interacts with blood factors including protein C (PC), factor VII (FVII), factor 

IX (FIX) and factor X (FX) which facilitate binding of virus to these receptors [93,100–105].  

 

Figure 9. (A) Effect of Heparin on Adenovirus Transduction Efficiency. Viruses were pre-

incubated with heparin for 1 hour at 37 °C prior to addition to A549 cells. Virus binding 

was allowed to take place for 1 hour at 4 °C prior to the replacement of virus with culture 

medium. Values are representative of three separate experiments. Error bars represent the 

standard deviation of the data; (B) PEGylated Adenoviruses Enter Target Cells Partially 

Through Heparan Sulfate Glycosaminoglycans. Virus was pre-incubated with heparin (10 

g/ml) prior to addition to monolayers of A549 cells treated with both the anti-CAR 

antibody and a peptide which blocks integrin receptors (RmcB + RGD + Hep.). Percent 

transduction is the number of beta-galactosidase positive cells found in treated monolayers 

with respect to the number of positive cells found in monolayers that did not receive 

treatment prior to viral infection. Data are the average transduction efficiencies obtained 

from two separate experiments and error bars represent the standard deviation of the data. 

 

 
A recent study in which it was reported that PEGylation reduces the transduction efficiency of 

helper-dependent adenovirus in the liver of non-human primates suggests that data generated in rodent 
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models may not predict how these modified viruses will perform in the clinic [90]. Although the 

mechanism(s) underlying the differences in hepatic transduction efficiency of PEGylated virus 

between these species are unclear, species-specific differences in liver fenestration and in the binding 

properties of platelets and other blood components with the modified virus may attribute to this 

finding in non-human primates. Although the average diameter of fenestrae of a mouse and a baboon 

are similar (100 and 90 nm, respectively), the number of fenestrae in the baboon liver is less than that 

of the mouse by a factor of 10 [106]. Thus, the smaller size and lower density of fenestrae may be 

anatomical barriers for hepatocyte transduction in non-human primates. This may also explain reduced 

hepatic transduction efficiency of virus modified by high molecular weight PEGs at high PEG 

densities reported in mice [86,92,93].  

 

4.6. Toxicology of PEGylated Adenovirus 

 

Adenovirus-induced toxicity, caused by the immune response to virus capsid proteins, occurs 

shortly after systemic administration in several animal models and humans [76,107–110]. Covalent 

attachment of PEG to the virus capsid significantly alleviates virus-induced hepatotoxicity and 

cytotoxicity in mice. Serum alanine aminotransferase (ALT), an indicator of hepatotoxicity, was 

reduced in mice given PEGylated first generation and helper-dependent adenovirus by a factor of 13 

and 9 with respect to animals given unmodified virus [99]. Similar results were also found for serum 

aspartate aminotransferase (AST), another indicator of hepatotoxicity in non-human primates [90]. 

Serum lactate dehydrogenase (LDH), an indicator of tissue and organ damage, also followed a similar 

trend, further indicating that PEGylation can reduce adenovirus-associated toxicity in non-human 

primates. While one might reason that these observations are simply due to the fact that the virus does 

not efficiently transduce the primate liver, additional data from this and other studies suggest that it is 

a reduction in uptake of the PEGylated virus in the spleen and subsequent drop in cytokine release (see 

Section 4.7 below) that is responsible for the improved toxicity profile of PEGylated vectors in this 

animal model. 

Abnormalities associated with blood coagulation including prolongation of clotting time, a 

reduction in platelets, and an increase in D-dimer levels have been observed after administration of 

adenovirus in several animal models and humans [107,110–113]. A significant drop in platelet counts 

from 1,644  103/L to 770 × 103/L was observed in mice at three days after administration of 

unmodified helper-dependent virus while animals treated with PEGylated virus did not experience a 

change in platelet counts from baseline levels [99]. Similarly, conjugation of a second generation 

adenovirus with SSPEG and TMPEG completely prevented thrombocytopenia [114]. Recent studies in 

mice demonstrated platelet counts were unaffected by administration of PEGylated virus at a dose of  

1  1011 viral genomes (vg)/kg while a slight decrease was detected at a dose of 31011 vg/kg. In this 

study, PEGylation also reduced production of D-dimer by a factor of 2.4. Further investigation 

illustrated that PEGylation reduces the binding of virus to platelets and erythrocytes. Taken together, it 

was suggested that steric hindrance associated with the polymer prevents interaction with platelets, 

which in turn, disrupts the clotting cascade and also limits endothelial cell-mediated platelet activation 

and clearance, leading to reduced D-dimer formation and subsequent thrombocytopenia [115]. These 

differences in binding may also explain the fact that a 40% reduction in platelets was noted in baboons 
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6 hours after administration of 3  1012 vp/kg of both unmodified and PEGylated helper-dependent 

virus [90]. This transient drop returned to baseline within 72 hours in a baboon given PEGylated virus 

while platelets remained low throughout the study in an animal given unmodified virus. D-dimer was 

affected in the same manner.  

4.7. The Immune Response 

Most of the toxicity associated with recombinant adenoviruses arises from the innate and adaptive 

immune response against the virus and develops in three phases in animal models and humans. The 

first phase, caused by the interaction of adenovirus capsid with Kupffer cells, macrophages and 

dendritic cells, occurs as early as 1 hour after systemic administration and continues for four days. 

This results in the release of pro-inflammatory cytokines and chemokines, including interleukin-6 (IL-6), 

IL-12, tumor-necrosis factor- (TNF-), inducible-protein-10 (IP-10) and RANTES into the general 

circulation to recruit effector cells, leading to neutrophil-dependent hepatic injury and progression 

toward the second phase of the inflammatory process [108,116]. This phase, occurring 5 to 7 days 

after administration, is characterized by removal of vector-infected cells by activated lymphocytes, 

leading to short-term transgene expression and a self-limited inflammation in the liver [117,118]. At 

high viral loads, this can progress to severe liver necrosis, disseminated intravascular coagulopathy, 

bleeding and, in a few cases, a systemic inflammatory response syndrome, a condition characterized 

by multiorgan failure, sepsis and trauma [76,107]. The last phase, the humoral immune response, is 

characterized by production of antibodies which rapidly clear the virus from the circulation and 

prevent successful gene transfer upon readministration [75].  

Various strategies have been evaluated to circumvent both cellular and humoral immune responses 

generated against adenoviral vectors. Immunosuppression with agents such as cyclophosphamide, 

FK506 and cyclosporin A [119–123] and the disruption of costimulatory interactions between T cells 

and B cells using interferon-, IL-12, anti-CD40 ligand antibody or CTLA4Ig [124–127] have 

effectively blunted the immune response and extended the length of transgene expression. However, 

these approaches were deemed unsuitable in practice since they impair immunity to other microbes 

and produce serious unwanted side effects. Deletion of all viral early and late genes in helper-

dependent adenoviruses has reduced cell-mediated immune responses, resulting in high level and long-

term transgene expression [128]. However, acute toxicity and neutralizing antibodies are still detected 

after treatment with this vector [129]. Recent efforts employing genetic substitution of both the fiber, 

hexon and other capsid proteins with those of rare and non-human adenovirus serotypes have shown to 

dampen the innate response and subsequent release of inflammatory cytokines [130–133]. Although 

viruses constructed by this approach, termed “sero-switching”, are minimally affected by anti-

adenovirus type 5 neutralizing antibodies and can be successfully given several times, they are very 

difficult to produce.  

O’Riordan et al. was the first to show that covalent attachment of a polyethylene glycol to 

adenovirus capsid proteins was a straightforward and practical strategy to prevent neutralizing 

antibodies (NAB) from recognizing virus surface antigens [79]. Conjugation of virus with 15% and 

20% TMPEG improved in vitro transduction efficiency in the presence of neutralizing antibodies  

2 fold with respect to unmodified virus. The most striking finding of these studies was that 
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administration of PEGylated virus to mice previously exposed to unmodified virus produced transgene 

expression levels equivalent to those found in naïve animals. Since then, many other groups reported 

similar results [81,82,91,97,134–137]. 

PEGylation has attenuated the acute toxicity associated with the innate immune response by 

reducing production of pro-inflammatory cytokines and chemokines and infiltration of neutrophils in 

the liver. Early reports demonstrated that mice treated with PEGylated first generation and helper 

dependent adenoviruses had serum IL-6 levels that were 4 and 2 times lower respectively than that 

seen in mice given unmodified virus 6 hours after treatment. At the same timepoint, serum IL-12 in 

animals treated with PEGylated virus was 3 fold lower than animals treated with unmodified virus. 

PEGylation has also shown to reduce TNF- to baseline levels [99]. Further characterization of 

cytokine release profiles in mice revealed that PEGylated virus produced similar kinetic profiles for 

IL-6 and other cytokines to that of animals receiving unmodified virus, meaning that levels still 

peaked at 6 hours [84]. However, PEGylation of first generation and helper-dependent viruses 

significantly reduced cytokine levels as early as 2 and 4 hours after treatment as well as at 6 hours by a 

factor of 8, 3 and 5 respectively [114]. Similar to that reported in rodents, IL-6 levels were also found 

to be reduced by approximately 70% in non-human primates given a single intravenous dose of 3  

1012 vp/kg dose of PEGylated helper-dependent adenovirus [90]. In the same study, IL-12 was reduced 

by a factor of 2 while TNF- was not detected in the animal given the PEGylated vector. Real-time 

RT-PCR analysis indicated that hepatic gene expression of chemokines including monocyte chemo-

attractant protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2), macrophage inflammatory 

protein-1 (MIP-1), interferon-inducible protein-10 (IP-10) and lipopolysaccharide-induced CXC 

chemokine (LIX) was significantly reduced in mice after tail vein injection of PEGylated virus and 

that neutrophil infiltration in the livers of these mice was reduced by a factor of 2 with respect to those 

given unmodified virus [114]. In vitro mechanistic studies revealed that macrophages infected with 

PEGylated virus failed to produce IL-6 [85,138]. Other studies report that vector uptake by 

macrophages and Kupffer cells in vitro and in vivo is significantly hindered by PEGylation [84]. Taken 

together, one may attribute the reduction in immunogenicity inflicted upon the adenovirus by the 

PEGylation process is due to the fact that the polymer prevents uptake and processing of the virus by 

antigen presenting cells [84,97,114].  

Additional studies with PEGylated adenoviruses revealed that this modification dramatically 

attenuated cellular immune responses [81,82,97]. Significant reductions in cytotoxic T lymphocyte 

production were noted after a single intratracheal and intravenous dose of PEGylated virus in  

mice [81,82]. Modification of virus with PEG alone or PEG and a peptide specific for the fibroblast 

growth factor receptor reduced secretion of IFN- and IL-2, markers of the Th2 response [97]. As 

might be expected, the transgene expression profiles achieved with several PEGylated vectors were 

significantly extended beyond what was commonly seen with unmodified viruses [81,82,99]. As seen 

with native virus, transgene expression after intratracheal instillation of PEGylated virus also peaked 

in mice at 4 days, but continued for 42 days, long after that from the native virus dwindled (10 days 

after treatment) [81]. Similarly, transgene expression was extended from 14 to 28 days after a single 

intravenous injection of PEGylated virus in the mouse [82]. Although the exact mechanism by which 

PEGylation dampens the T cell response has not been identified, it is likely that the polymer alters 

processing and presentation of viral antigens, preventing T cells from recognizing viral epitopes. It is 
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also possible that PEG modification redirects the vector away from antigen-presenting cells (APCs). 

The fact that several reports have described unsuccessful readministration of PEGylated virus in mice 

treated with virus modified by the same PEG chemistry and that changing the chemistry of the 

polymer reestablished transgene expression suggests that shielding traditional immunogenic peptide 

sequences through PEGylation of capsid proteins may induce processing and recognition of other 

sequences in close association with the polymer [81,82,99] 

5. Re-Directing Adenovirus by Physical Means: Effect of Molecular Size and Degree of 

PEGylation 

Another major obstacle to clinical use of adenoviruses for gene transfer is the fact that the virus can 

infect many different cells due to widespread expression of its primary cellular receptors: the 

coxsackievirus and adenovirus receptor (CAR) [139] and integrins [140,141]. Interestingly, these 

receptors are either absent or expressed at low levels on the surface of many cells that are logical 

targets for gene transfer such as tumor, skeletal and smooth muscle, peripheral blood, and 

hematopoietic stem cells, making gene transfer relatively inefficient [142,143]. One observation made 

during the characterization of the transduction efficiency of PEGylated vectors was that the both the 

size of the PEG and the level and the degree of modification could prevent transduction of many 

tissues and redirect the virus to some of these important targets. Initial studies found that systemic 

administration of adenovirus conjugated with 5 kDa PEG at a density of 90% increased transgene 

expression by a factor of 35 in tumor bearing mice and reduced transgene expression in the liver  

by 7% [86].  

Further characterization of PEGylated viruses suggested that vectors modified with large molecular 

weight polymers would indeed be useful in the treatment of cancer. Several groups found that 

polymers with sizes in the 2-5 kDa range could not completely ablate the interaction of the virus with 

integrin receptors allowing for transduction the liver through endothelial cells [84,92,93,137,144]. Use 

of larger, 20 kDa polymers prevented transduction of both liver after systemic administration and 

muscle after local injection in mice [137]. In addition, use of this large polymer at a 45% PEG density 

improved transgene expression by a factor of 5 in tumor bearing mice while reducing gene expression 

in the liver by a factor of 185 improving the therapeutic window (ratio of gene expression in the tumor 

to that in the liver) over that seen with a similar virus modified with 5 kDa PEG by a factor of 45 [92]. 

Similar results were observed with oncolytic adenoviruses[144]. Although the exact mechanism(s) 

underlying tumor targeting and liver detargeting by PEGylation has not been exactly identified, the 

large PEG molecules that extend from the virus most likely prevent direct interaction of the virus with 

hepatocytes. This modification also promotes the enhanced permeability and retention (EPR) effect 

observed within the tumor vasculature since the large size of the vector and its extended circulation 

half-life allows more virus to reach and remain in the tumor. 

Re-Directing Adenovirus by Chemical Means: Use of PEG as a “Linker” for Attachment of Receptor-

Specific Conjugates  

Initial efforts to chemically modify adenovirus capsid proteins to facilitate infection of specific cell 

types involved coupling a receptor-specific ligand such as folate to anti-adenovirus antibodies and 
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mixing this with the native virus [145]. Alternative approaches involved genetically introducing fiber 

proteins from other adenovirus serotypes into the vector [146] or incorporating homing ligands into 

virus capsid [147]. Each of these, however were limited by modest production yields on a large scale 

and the potential for generating new immune responses to the altered vectors [74,148]. As PEGylation 

chemistry advanced, bifuntional molecules were evaluated for their ability to link the virus to tissue 

and cell-specific ligands. The strategy for this approach is summarized in Figure 5. 

Coupling a biologically selected peptide to the adenovirus capsid using a bi-functional PEG was 

first reported by Romanczuk and colleagues [134,149]. Modification of the virus with PEG and a 

peptide specific for differentiated ciliated airway epithelial cells improved transduction efficiency in 

this target fourfold. Similar findings were reported with PEGylated vectors conjugated with fibroblast 

growth factor (FGF) both in vitro and in vivo [97,150,151]. An adenovirus modified with PEG and 

FGF2 improved transduction of human ovarian cancer cells in vitro by a factor of 10 with respect to 

unmodified virus [97]. Similar results were observed in vivo in tumor-bearing CB-17 SCID mice. 

Retargeting PEGylated virus with FGF was also found to improve transduction by 10–1,000 fold in 

murine and human muscle cells in vitro and by a factor of 6 in the skeletal muscle of mdx mice [150]. 

Since RGD is a secondary mediator of adenovirus cell entry, its utility as a homing ligand has been 

demonstrated by several groups [91,136,152–154]. With respect to unmodified virus, RGD-PEG-Ad 

showed higher levels of gene expression in both CAR-positive and -negative cells, suggesting that the 

modification dampened CAR-mediated infection of target cells while enhancing the ability of the virus 

to infect cells through the integrin pathway. Additional improvements in gene transfer to endothelial 

cells in mice with delayed-type hypersensitivity and human breast cancer cells have been achieved by 

coupling anti-E-selectin antibodies and folate and human epidermal growth factor (EGF) to PEGylated 

virus respectively [85,91,138,155]. In addition to improving cell-specific transduction efficiency, this 

simple approach also offers several other benefits, as described above, including shielding adenovirus 

from the immune system, improving the half life and other pharmacokinetic parameters of the virus 

and minimizing safety concerns arising with respect to using genetically and chemically modified 

viruses in the clinic. [85,91,97,134,136,138,152,155]. 

6. PEGylated Adenovirus-Based Vaccines 

Because of their inherent ability to induce strong innate and adaptive immune responses, 

adenoviruses have been successfully employed as carriers for recombinant DNA–based  

vaccines [156–158]. One significant drawback to this, however, is the fact that a significant portion of 

the human population has marked levels of antibodies to the most commonly used adenovirus, 

serotype 5 [159,160]. Use of non-human serotypes, such as the chimpanzees adenovirus C7 [161,162], 

or rare human serotypes such as serotypes 35 or 11 has induced strong immune responses in the face 

of pre-existing immunity [163–166], however, additional work to address issues associated with the 

safety and large-scale production of these vectors is in order. As significant data generated with 

PEGylated viruses demonstrated that the vectors efficiently induced transgene expression in the face 

of pre-existing immunity[81,82,91,97,134,136,137,152], this technology has also found application 

with respect to vaccine development.  
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Early work in this area has shown that oral vaccination with PEGylated adenovirus moderately 

improves the B-cell mediated immune response against Ebola glycoprotein in both naïve mice and 

those with pre-existing immunity [167]. Virus modified with high molecular weight PEG has also been 

shown to induce strong cellular and humoral immune responses against the transgene/antigen in mice 

previously exposed to unmodified adenovirus [137,168]. In a prime-boost approach, priming with 

virus modified with 5 kDa PEG enabled unmodified and PEGylated vectors to induce stronger T cell 

responses against an encoded antigen with respect to that achieved with unmodified virus alone [168]. 

Although these results are promising, work with PEGylated vectors for vaccine development is clearly 

in the early stages. The exact mechanisms by which these vectors with a reduced immunogenic profile 

can induce strong anti-antigenic immune responses are currently unknown.  

7. The Future of PEGylation of Viruses for Gene Transfer and Vaccine Applications 

Since the early studies with PEGylated viruses were initiated in the year 2000, a significant number 

of reports in the literature have made it clear that covalent attachment of many different forms of 

poly(ethylene) glycol can significantly attenuate the immune response against the virus capsid and 

improve transduction efficiency in some tissues alone or with the addition of homing ligands to virus 

modified with heterofunctional chemistries in both mice and non-human primates. Additional bodies 

of evidence support the notion that much of the toxicity associated with use of the adenovirus is also 

eliminated by this modification. Despite all these favorable attributes, very few if any of these 

chemically modified viruses are under consideration for clinical use. Many pre-clinical studies to date 

suggest that several variables such as the molecular weight and shape of the polymer as well as the 

conjugation chemistry profoundly dictate the immunological and pharmacokinetic profile of the 

adenovirus. Further refinement of PEGylation chemistry to improve both site-specific attachment to 

the virus capsid and homing ligands will minimize the potential for generating mixtures of viruses 

with different PEG and ligand to virus ratios. Evaluation and validation of additional highly sensitive 

assays to characterize PEGylated viruses and large scale PEGylation processes will be vital to ensure 

that protocols are reproducible and that preparations consist of vectors that are modified to the same 

degree and are free of extraneous reaction byproducts.  

It is also important to realize that there are very few studies that determine the exact mechanism by 

which PEGylation blunts the anti-adenovirus immune response. While there is some evidence that the 

polymer prevents interaction with antigen presenting cells, other studies using the modified vectors for 

vaccination purposes suggest that the immune response against the encoded antigen is due to an 

increase in the uptake and processing of the vector in antigen presenting cells. In addition, there have 

been a few reports that suggest there is a slight if somewhat delayed immune response against these 

modified viruses that prevents repeated dosing. As outlined previously, PEGylation was initially 

employed as a technique by which to induce immunological tolerance against a given antigen. This has 

not yet been considered with any of the PEGylated adenoviruses to date and should be evaluated for 

vectors of which multiple doses are required. 
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