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Abstract: The hypothesis is presented that bacteriophage DNA packaging motors have a 

cycle comprised of bind/release thermal ratcheting with release-associated DNA pushing 

via ATP-dependent protein folding. The proposed protein folding occurs in 

crystallographically observed peptide segments that project into an axial channel of a 

protein 12-mer (connector) that serves, together with a coaxial ATPase multimer, as the 

entry portal. The proposed cycle begins when reverse thermal motion causes the 

connector’s peptide segments to signal the ATPase multimer to bind both ATP and the 

DNA molecule, thereby producing a dwell phase recently demonstrated by single-molecule 

procedures. The connector-associated peptide segments activate by transfer of energy from 

ATP during the dwell. The proposed function of connector/ATPase symmetry mismatches 

is to reduce thermal noise-induced signaling errors. After a dwell, ATP is cleaved and the 

DNA molecule released. The activated peptide segments push the released DNA molecule, 

thereby producing a burst phase recently shown to consist of four mini-bursts. The 

constraint of four mini-bursts is met by proposing that each mini-burst occurs via pushing 

by three of the 12 subunits of the connector. If all four mini-bursts occur, the cycle repeats. 

If the mini-bursts are not completed, a second cycle is superimposed on the first cycle. The 

existence of the second cycle is based on data recently obtained with bacteriophage T3. 

When both cycles stall, energy is diverted to expose the DNA molecule to maturation 

cleavage. 

Keywords: bacteriophage structure; biological energy transduction; biological signal 

noise; cryo-electron microscopy; single-molecule analysis 
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1. Introduction 

Analysis of bacteriophage DNA packaging motors is performed to understand basic principles of 

energy transduction and associated signaling in multimolecular assemblies. A DNA packaging motor 

begins as a procapsid assembled from subunits in the absence of DNA (capsid I in the case of the 

related bacteriophages, T3 and T7; Figure 1). The motor binds a double-stranded DNA molecule and 

causes the DNA molecule to enter and package within the cavity of a symmetrical protein shell. This 

DNA packaging is an event that is accompanied by a change in the structure of the shell; this change 

usually includes increase in size (capsid II in Figure 1). The DNA molecule enters the cavity through 

an axial hole in two coaxial protein multimers that form a signaling center for the motor. The inner 

multimer is called the connector and is embedded in the capsid’s icosahedral shell at a five-fold 

rotational symmetry axis of the shell. The connector is made of 12 subunits, each a copy of a single 

protein, gp8 for T3/T7; the T3 and T7 proteins are named by gp, followed by the gene number from 

[1]. However, connector-like assemblies with other numbers of subunits are sometimes found when the 

connector protein is assembled outside of a bacteriophage particle. The monomer of the outer multimer 

is an ATPase [2-6].  

The DNA packaging of some bacteriophages is accompanied by cleavage of the mature DNA 

genome from a multi-genome concatemer (maturation cleavage). A C-terminal endonuclease domain 

of the ATPase catalyzes the cleavage [2,3,5,7,8]. In the case of a concatemeric substrate for packaging, 

the DNA packaging ATPase (with its C-terminal endonuclease domain) is called either terminase (the 

nomenclature to be used here) or the large terminase protein. Terminase is accompanied by a smaller 

protein, sometimes called the small terminase protein, that binds DNA, is needed for initiation of 

packaging and sometimes has other activities (illustrated for T3 and T7 in Figure 1; gp18 is the small 

terminase protein; gp19 is terminase).  

Bacteriophage DNA packaging motors are also models for understanding of both eukaryotic virus 

assembly and virus evolution, because DNA packaging motors evolved before the 

prokaryote/eukaryote splits. Specifically, herpes viruses also have a terminase and a connector [9,10]. 

The herpes virus terminase has sequence similarity to the phage terminases [11-13]. Thus, the 

connector and terminase proteins had evolved by about 1.6 billion years ago [14]. The high speed and 

low cost of bacteriophage propagation have been a foundation for relatively thorough 

genetic/biochemical/biophysical analysis of bacteriophage DNA packaging motors. In vitro systems 

have, for example, shown that DNA with a previously introduced single-stranded break (nick) in the 

phosphodiester backbone is packaged in the case of both 29 [15,16] and T4 [17]. A nick in a 

comparatively short packaging substrate (<200 base pairs) did, however, partially inhibit T4 

packaging, primarily by slowing it (Figure 5d in [17]). Thus, if transmission of torque is a required 

aspect of packaging, the protein component of the motor must resist DNA rotation.  

The analysis of bacteriophage DNA packaging motors has included the testing of proposed motor 

mechanisms by single-motor, real time, visible light-based nanometry and fluorescence microscopy of 

in vitro DNA packaging in systems of purified components. Several proposed motor mechanisms 

require rotation of the connector [18-22]. However, no rotation of the bacteriophage 29 connector 

was found (with probability >99%), when nanometry was used to measure packaging progression and 

single-motor fluorescence anisotropy was used to measure packaging-associated connector rotation 
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[23]. The conclusion of no motor-associated connector rotation had previously been drawn in the case 

of bacteriophage T4 when packaging continued after the potential for connector rotation was removed 

by genetically modifying the connector subunits [24].  

Figure 1. The DNA packaging pathway of the related bacteriophages T3 and T7 (adapted 

from [30]). The solid arrows indicate the proposed productive pathway in an infected cell. 

The dashed arrows indicate the pathways for generating the motor-related particles that 

have been observed by fractionation and characterization. Duplication of the early stages 

represents cooperativity detected by single-molecule fluorescence microscopy [93]. The 

legend at the top indicates the color-coding of both the DNA molecule and the various 

proteins.  

 
 

Among the various previously proposed motor mechanisms, some aspects of a cycle based on 

thermal ratcheting [25,26] did survive the above tests. The definition used here for thermal ratcheting 

is external force-dependent rectification of thermal motion (see also [27,28]). At the earliest stage of 

packaging, one proposed rectifier was intracellular osmotic pressure; a second was motor/DNA 

binding initiated by reverse DNA motion [26]. Other investigators have subsequently adopted 

motor/DNA binding-based thermal ratcheting, at least in its most general form [23,29]. However, 
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details of a hypothesized thermal ratchet have not been proposed with cognizance of data obtained 

after 2003. 

In past studies of these details, most discussion has included the implicit assumption that each DNA 

packaging motor has a cycle of one type. However, isolation of motor-related particles from 

bacteriophage T3-infected cells revealed capsid hyper-expansion that suggested adding to the cycle 

previously investigated (type 1 cycle) of a second cycle (type 2 cycle) at the later stages of packaging, 

at least in vivo. The proposed type 2 cycle includes ATP-driven hyper-expansion and contraction of 

the shell [30].  

Although shell hyper-expansion has not been detected for other bacteriophages, some data suggest 

this possibility. First, a sudden decrease in resistance to in vitro bacteriophage  packaging has been 

observed at 90% packaging by single-molecule nanometry [31]. This decrease is possibly caused by 

shell hyper-expansion, although capsid rupture is the explanation proposed by the authors. Second, 

stabilization of a hyper-expanded  capsid is a possible explanation for the recent observation that a 

capsid-stabilizing, decoration protein of the  capsid (D protein) is required not only for DNA 

retention after packaging, but also for packaging of the last 15-20% of the  genome [32]. 

A possibly related phenomenon is that the shell subunits of some bacteriophages, such as HK97, are 

covalently joined to each other by chain-like cross-links established during assembly [33,34]. 

Assuming that the HK97 covalent cross-links are produced before packaging is completed, these cross-

links could have evolved to stabilize a hyper-expanded capsid at the end of DNA packaging. In this 

case, any change in cross-linked shell size would occur by refolding of each of the subunits, possibly 

via a rubber-like (and, by analogy, exothermic) stretching. The cross-links prevent hyper-expansion 

via inter-subunit translation and rotation. In confirmation, a recent study reveals that the procapsid-to-

mature capsid transition for HK97 (equivalent to the capsid I-to-capsid II transition for T3; Figure 1) 

occurs via change in protein folding [34]. This change is exothermic for bacteriophage P22 [35]. Given 

the structural analogy of the  D protein and the HK97 cross-links [36], at least some functions are 

likely to be the same for these two aspects of bacteriophage capsids.  

The objective of the current study is to derive a type 1 cycle that explains all current data and that 

provides means for initiating a type 2 cycle. To help compare studies of the various bacteriophages, 

the extent of packaging will be quantified by the ratio (F) of the length of DNA packaged to the 

mature genome length. 

In deriving the type 1 cycle proposed here, the assumption is made that the basics of the type 1 

cycle are the same for all bacteriophage DNA packaging motors. This assumption is confirmed by the 

structure-based similarity of the 29, P22, SPP1 and T7 connectors, without detected amino acid 

sequence similarity [37,38], and the sequence-based similarity of all terminases [7,11,12]. The  

N-terminal region of terminases has even been aligned with the DNA packaging ATPase of 

bacteriophage 29 [39]. Bacteriophage 29 has a monomeric DNA packaging substrate and has a 

packaging ATPase with no known endonuclease activity [6,41]. The proposed cycle has aspects that 

should be applicable to all double-stranded DNA viruses, including those of significance for both 

medicine and ecology. In addition, some aspects should be applicable to energy transducing systems of 

other types, including systems in which protein folding is assisted by chaperonins. 
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2. Examination of some past assumptions 

As reviewed in [5,6], most of the (type 1) cycles previously proposed for DNA packaging motors 

were based on the assumption that the ATP usage per base pair packaged is constrained to be uniform 

throughout packaging (constant ATP assumption) and is equal to 0.5 ATP cleavages per base pair 

packaged. The sources of the constant ATP assumption are chromatographic measurements of the 

number of ATP molecules used per base pair packaged during unsynchronized in vitro packaging in 

the case of 29 [41] and T3 [42]. But, the data of the latter two studies revealed ATP usage averaged 

over all values of F, because the packaging was not synchronized. The ATP usage per base pair 

packaged has never been measured as a function of F, to the author’s knowledge. Performing this 

measurement is a goal for the future, possibly achievable by single-molecule analysis because single 

ATP cleavages have been detected by use of single-molecule fluorescence microscopy ([43,44], for 

example). The constant ATP assumption cannot be rationalized by analogy to non-viral eukaryotic 

motors because DNA packaging motors evolved before non-viral eukaryotic motors and are not under 

the same constraints, as further discussed in Section 7.  

In addition, the constant ATP assumption implies usage of ATP that is less efficient than it would 

be if the ATP used per base pair packaged increased as F increased, based on two lines of evidence. 

First, energetics-based computer simulations of packaging dynamics for bacteriophage 15 revealed 

“negligible” (<2 pN) requirement for force when F was less than 0.4 [45]. These simulations have 

been accurate in the past; they correctly predicted the randomness of newly packaged DNA 

conformation, for example [46]. Second, single-motor nanometry-based determination of packaging 

forces for bacteriophages 29 [47,48],  [31] and T4 [49] had previously yielded basically the same 

conclusion. Given that the osmotic pressure of the cytoplasm of Escherichia coli is about 5 

atmospheres [50], an ATP-independent, osmotically derived packaging force of about 6 pN would 

exist in vivo, independent of ATP consumption, if the capsid interior were empty. That is to say, when 

packaging occurs in vivo, ATP-derived energy is possibly not needed to package until F = ~0.3 [48].   

Both the simulations and the nanometry also agree that, as F increases, the force required for 

packaging is a steeply increasing function of F and can be as high as 125 pN at the end of packaging in 

the case of the 15 simulations, and 50-70 pN in the case of the nanometry; the capsid is assumed 

constant in size. The power delivered by the 29 motor decreases progressively to zero in vitro at the 

lower F values [48]. Thus, the constant ATP assumption implies that roughly half of the ATP to be 

cleaved is wasted before it is even needed. Viewed in the context of evolution, the constant ATP 

assumption produces an outcome likely to be subject to negative selection. The result of negative 

selection can be either F-dependence of the ATP utilization in the type 1 cycle or introduction of the 

type 2 cycle (or both). The type 1 cycle might not even begin in vivo until roughly one third of the 

DNA was packaged. To the author’s knowledge, nanometry-based tests have not yet been made of the 

effect of osmotic pressure gradients on the in vitro packaging of a bacteriophage DNA packaging 

motor. The type 1 cycle proposed here does not depend on the constant ATP assumption.  

Although a previous manuscript [26] does propose two cycles and does propose ATP usage (per 

base pair packaged) that increases as F increases, the detailed mechanisms proposed have other aspects 

that are in conflict with more recently obtained data. First, the small terminase subunit was attached to 

terminase and was the component of the motor that bound the DNA molecule during cycling. 
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However, the small terminase is not part of the 29 motor because 29 does not have this protein. Yet, 

the 29 connector has structure-based similarity to the connectors of terminase-dependent 

bacteriophages. The 29 packaging ATPase has sequence-based similarity to the terminases. 

Furthermore, the T4 motor does not need the small terminase protein after initiation of DNA 

packaging [51]. Thus, the DNA packaging ATPase (gp19 for T3; Figure 1) is assumed here to act 

without its smaller companion. In addition, several recent studies (described below) have produced 

data that indicate the need for further modification of the type 1 cycle proposed in reference 26. These 

data will form the basis for the proposal of a type 1 cycle revised in some, but not all, aspects. The type 

2 cycle will be subjected to only limited discussion here. 

3. Key data from previous studies of the type 1 cycle  

The key data discussed in this section will be used as the basis for the type 1 cycle to be proposed. 

Of course, other data exist. The author is not aware of any other data with which the type 1 cycle 

presented below is in conflict.  

3.1. Thermal ratcheting and its limitations 

An aspect of the type 1 cycle to be proposed is that this cycle includes a time period in which the 

DNA molecule does not move relative to the connector/ATPase multimer because the DNA molecule 

is bound to the ATPase multimer. This period of no DNA motion will be called a dwell, as proposed in 

[52]. The DNA molecule is packaged between dwells in a period called a burst. The evidence for 

dwells and bursts was the F vs. time relationship observed by high-resolution single-molecule 

nanometry of in vitro 29 DNA packaging [52]. The DNA molecule was under constant optical trap-

maintained force of 8 pN, equal to the DNA packaging force needed when F~ = 0.38 [48]. In the type 

1 cycle to be proposed, both a dwell and a burst will occur.  

Details of the nanometry provided additional information. The dwell time decreased with increase 

in [ATP], although the burst time was independent of [ATP]. This observation was interpreted to mean 

that binding of ATP caused the dwell (i.e., caused DNA binding) and that the burst occurred in-

between ATP binding-associated dwells [52]. However, this observation also implies that the bound 

ATP caused a change that occurred during the dwell and that increased in magnitude as the number of 

bound ATP molecules increased. Among the changes observed after ATP binding is decrease in the 

Gibbs free energy (tighter binding) of the bound ATP [52,53]. In the type 1 motor mechanism to be 

proposed, this decrease will be essential to activation of a component of the connector. Nonetheless, 

the ATP binding site is assumed to be on the ATPase (terminase) because, in the case of bacteriophage 

T3, a strong ATP binding site has been found on the T3 terminase, gp19, although no ATP binding site 

was observed on the connector, gp8 [42]. DNA binding-associated dwell-periods were also an aspect 

of the proposed thermal ratchet-based type 1 cycle of [26]. The thermal ratchet was biased by force 

from an osmotic pressure differential across the capsid’s shell (higher outside) and possibly a motor-

derived, oscillating electrical field that generated net force on the DNA molecule. 

A purely thermal ratchet-based motor mechanism is now in conflict with the following subsequent 

observation also made by high-resolution nanometry of the 29 DNA packaging motor. As the optical 

trap-derived force opposing packaging increased at a fixed F for packaging slowed by the methylation 
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of a patch of 10 DNA phosphates, the time taken to package this patch was reduced by an amount too 

low by over four orders of magnitude to be explained by diffusion only [16]. That is to say, the DNA 

movement of the burst was caused by forward-directed force (i.e., a force in the direction of 

packaging) and was not generated by passive diffusion. This force could not have had a significant 

component from osmotic pressure, based on the composition of the in vitro packaging mixture, which 

had no compound added to mimic the intracellular water activity. Thus, the motor has to be more than 

either a purely thermal ratchet or a purely osmotic pressure-biased thermal ratchet. Nonetheless, an 

osmotic pressure gradient is likely to provide some of the DNA-driving force in vivo and also in the 

case of in vitro systems that depend on the presence of polymer, such as those for P22 [54], T7 [55], 

T3 [56], SPP1 [57] and T4 in a recently developed system [17].  

A related aspect of the type 1 cycle is coordination among ATPase multimer subunits in producing 

ATP binding-induced DNA binding. This coordination was deduced in the case of the 29 DNA 

packaging motor from the sharpness of a plot of the frequency of any given dwell time vs. dwell time. 

The sharpness of this plot implied a minimum of 2 ATP binding events to generate a dwell [52]. The 

ATPase multimer was five-membered during packaging in this system [21,58]. One possible 

mechanism for coordination is ATP binding-induced contraction of a ring of ATPase molecules. The 

result would be DNA binding via steric clamping by the ATPase ring of the DNA molecule being 

packaged. Steric clamping will be a non-essential part of the mechanism proposed here (clamping was 

originally suggested to the author by S. C. Hardies). Other modes of binding are also consistent with 

the data, although no consensus DNA binding site has yet been reported in the N-terminal ATPase 

domain (motor domain) of terminases.  

3.2. Connector dynamics in the type 1 cycle 

Another aspect of the proposed type 1 cycle is that the connector has two essential functions, 

transmission of information and transduction of force. This aspect is based on the following 

observations of the bacteriophage SPP1 connector. (1) The DNA channel of the SPP1 connector is 

narrow enough to contact a DNA molecule in the channel. The channel is ~18.1 Å in diameter at its 

narrowest point, as found by obtaining the x-ray crystallographic structure of a connector protein  

13-mer and extrapolating the structure of the 13-mer to the 12-mer present in bacteriophage particles 

[38]. This diameter is, in fact, about 20% smaller than the diameter of the narrowest channel that could 

contain a DNA molecule without contact with the connector. (2) Blockage of packaging occurred 

when both intra- and inter-connector subunit motion was inhibited by disulfide cross-linking of 

connector subunits to each other; reversing the cross-links restored the packaging activity [59]. (3) 

Some point mutations of the SPP1 connector protein either abolished or decreased both DNA 

packaging and the ATPase activity of the packaging ATPase without disrupting assembly of the 

connector in the SPP1 procapsid [38,60].  

The conclusion drawn was that DNA packaging-associated “cross-talk” existed between the 

connector and the packaging ATPase and that the connector was part of the DNA packaging motor 

[38,60]. Assumption of this cross-talk is supported (although not proven) by the observation that the 

rate of ATP binding to the 29 motor is independent of the nanometry-determined force on the motor 

[53,61], as though the force is sensed by one motor component and the ATP binding is to another. In 
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the type 1 cycle to be proposed, the force sensor will be the connector; the ATP binding element will 

be the ATPase multimer. An explanation will be provided for evolution of the partitioning of these 

functions to two proteins. Both functions are in a single protein in the case of non-viral eukaryotic 

motors. 

The proposed details for the above activities of the connector include change in conformation of 

peptide segments of the connector subunits. This aspect is based, first, on the analytical calculation 

that peptide segments have the capacity for achieving up to 4.7 different conformations for which 

neither stability nor activation energy is comparable to the energy of thermal motion [62]. This number 

is approximately the number of conformations that can be an independent part of a type 1 cycle of a 

DNA packaging motor. The value, 4.7, depends primarily on the number of different amino acids 

(twenty) and is independent of peptide chain length. The conformational mobility aspect is also based 

on the finding of regions of assembled connector proteins that are channel-proximal and that are likely 

to be conformationally mobile (to be called mobile peptide segments), in that they are without regular 

secondary structure.  

The connector has subunits each of which has two mobile peptide segments by these criteria. To 

illustrate the mobile peptide segments in relation to the rest of the motor, Figure 2a shows the DNA 

molecule (tan), connector (yellow), packaging ATPase (green) and outer shell (blue). The first of these 

two peptide segments is a C-terminal, 40 residue peptide segment without a unique structure 

(disordered), seen next to the widest end (crown) of the SPP1 connector, inside of the outer shell 

(Figure 2b) [38]. In the smaller 29 connector, this disordered peptide segment is 24 residues long and 

encompasses the region that corresponds to the crown of SPP1 [22,38]. The second of these two 

peptide segments forms a loop in the SPP1 connector (tunnel loop) that is attached at both ends to an 

-helix and projects into the axial channel at the smallest diameter of the channel (~18.1 Å) 

(Figure 2b) [38].  

For the tunnel loop, genetic analysis supports a function in SPP1 DNA packaging. Among SPP1 

connector-associated packaging mutations, five were in the tunnel loop region; four of the 15 amino 

acids in the SPP1 tunnel loop were mutated. One of these mutations reduced both the efficiency of 

packaging and the activity of the SPP1 packaging ATPase [38]. The tunnel loop is disordered in the 

29 [21,22], but not the SPP1 [38], connector. The tunnel loops of the 12 SPP1 connector subunits can 

simultaneously all engage the major groove of the DNA double helix, but they must be translated 

relative to each other along the connector axis because of the tightness of fit [38]. In the proposed type 

1 cycle, the conformational changes of the mobile peptide segments have two functions, motion 

sensing/signal initiation and force transduction. Both C-terminal and tunnel loop segments are 

assumed to be participants, although the evidence for the tunnel loop is more complete in the case of 

SPP1. In the case of 29, the tunnel loop may be redundant at the earlier stages of packaging because a 

preliminary study [63] has revealed that deletion of the tunnel loop inhibits packaging only near the 

end.  

Lebedev et al. [38] have already proposed that engagement of tunnel loops with the major groove of 

the DNA double helix is either signaling or force-delivering in character. In the latter case, the 

proposed type 1 cycle is a high-detail version of the rotating connector-driven forward motion 

originally proposed [18], but with the DNA molecule rotating relative to an immobile connector, not 

the connector rotating relative to the outer shell and the DNA molecule. Rotating the DNA molecule 
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relative to an immobile connector has the disadvantage that supercoils will be introduced in the DNA 

as it is packaged. In addition, this mechanism is unlikely, based on the observed packaging of 

mismatched regions in the case of 29 [16] and T4 [17] and unpaired single-stranded regions in the 

case of  [64], as further discussed below. The type 1 cycle proposed here does not have these 

conflicts with the data. 

Figure 2. The components of the proposed type 1 cycle, side view. To simplify the 

drawing, the correct symmetry of the ATPase multimer, assuming it to be five-fold, is not 

represented. (a) The connector (yellow) is shown as represented in Figure 1 (lower left, in 

isolation) and also at higher resolution while embedded in the shell (light blue) with 

terminase (green) attached to it. (b) The components of the signaling center of the motor 

are shown at higher magnification with the labeling used in the text. (c) The motor is 

shown at the beginning of a cycle with DNA molecule undergoing forward thermal 

motion, i.e., thermal motion into the cavity of the shell. (d) The motor is shown with DNA 

molecule undergoing reverse thermal motion. (e) The motor is shown at the beginning of a 

dwell, with ATP (yellow oval with orange border) bound to terminase and terminase 

bound to DNA molecule. (f) The motor is shown at the end of a dwell with mobile peptide 

segments activated; coiling illustrates activation, but the true activated conformation is not 

known. (g) The motor is shown at the beginning of a burst, with terminase no longer 

binding the DNA molecule, ATP cleaved and mobile peptide segments pushing on the 

DNA molecule as they begin to deactivate. (h) The motor is shown in the middle of a 

burst. As the burst proceeds, the motor returns to its state in (c, d). 
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3.3. Fine structure of the single-molecule nanometry 

Finally, the type 1 cycle proposed here was developed with the constraint that it must explain the 

recently observed fine structure of the F vs. time relationship obtained by high-resolution, single-

molecule 29 nanometry. When observed at high resolution and force also relatively high, 40 pN, 

dwells were separated not by a single burst, but by a series of four “mini-bursts”. The DNA molecule 

moved 2.5 base pairs per mini-burst [52]. The non-integral DNA progression during mini-bursts has 

been a mystery. The type 1 cycle proposed here explains the number of these mini-bursts and their 

production of non-integral DNA progression during packaging.  

4. The proposed type 1 cycle 

The type 1 cycle proposed here begins with the connector’s mobile peptide segments in contact 

with the DNA molecule being packaged. The axial channel is so small at its narrowest point (~18 Å in 

diameter at the tunnel loops, as derived from packaging non-active particles in [38]) that the mobile 

peptide segments (C-terminal and tunnel loop) are not in a unique relationship to the DNA molecule, 

although they contact the DNA molecule. The data are not yet sufficient to propose the details for the 

initiation of packaging, i.e., the events that occur before the state of Figure 2a, b is achieved.  

4.1. The ratcheting component 

As previously proposed [26], the DNA molecule now moves by diffusion, either into (forward) or 

out of (reverse) the capsid. An osmotic pressure gradient biases diffusion in the forward direction, as 

supported by the promotion of DNA packaging in some in vitro systems by neutral polymers 

(discussed above). This polymer-enhancement of DNA packaging is an osmotic pressure-generated, 

not an excluded volume-generated, effect [65]. Forward motion causes stretching of the mobile peptide 

segments in the forward direction (Figure 2c). As discussed above, the osmotic pressure present in vivo 

is sufficient so that the type 1 cycle need not proceed further until F = ~0.3.  

Eventually, reverse diffusion occurs (Figure 2d). The probability and magnitude of reverse 

diffusion increase as obstacles to packaging increase. These obstacles include steric and charge-charge 

repulsive interactions of both packaged DNA segments (reviewed in [4]) and comparatively small 

molecules accidentally packaged. One of the proposed purposes of the mobile peptide segments is to 

sense this reverse motion by changing conformation (Figure 2d). This changed conformation initiates a 

signal that is part of the connector/ATPase cross-talk previously observed for bacteriophage SPP1 

[38]. This signal is transmitted through the connector to the packaging ATPase (terminase) multimer.  

The type 1 cycle continues with a dwell-response to the signal sent to the ATPase multimer from 

the connector. The dwell-response begins with increase in ATP binding by the ATPase subunits. As 

shown in Figure 2e, ATP binding to the ATPase eventually results in ATPase/DNA binding that stops 

the reverse motion and produces a dwell. The DNA binding possibly, but not necessarily, occurs by 

clamping. During the period of the dwell, the mobile peptide segments are held in a conformation 

(Figure 2e) previously generated by strain during reverse motion of the DNA molecule (Figure 2d). 

The conformation of mobile peptide segments cannot return to the original because forward DNA 

motion is prevented and the unoccupied space in the channel is insufficient. The DNA molecule may 
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also be under compressive strain from ATPase-DNA binding during reverse DNA motion and trapping 

at the other end by the mobile peptide segments (Figure 2e). Analysis of connector-proximal DNA (by 

Förster resonance energy transfer between dyes at two places on the DNA molecule) has revealed 

DNA compression during in vitro T4 DNA packaging stalled from outside of the capsid [51]. 

However, the interpretation of this latter study was compression via a power stroke of the ATPase. A 

power stroke of the ATPase does not occur in the type 1 cycle proposed here. Thus far, the type 1 

cycle proposed here is not distinguishable from the cycle of a (power stroke-free) thermal ratchet.  

4.2. The non-ratcheting component: ATP-driven mobile peptide segment activation 

After the start of the dwell, the proposed type 1 cycle differs from the cycle of a thermal ratchet in 

that the connector’s mobile peptide segments are activated as the dwell continues (Figure 2f; activation 

is illustrated by coiling of the mobile peptide segments). After the dwell starts and before activation, 

the activation is made energetically possible by lowering of the Gibbs free energy of the bound ATP 

molecules. The dwell provides time for both this lowering and the linked, seesaw-like raising of the 

Gibbs free energy of the mobile peptide segments. The activation occurs while the ATP is bound, not 

while (or after) the ATP is cleaved. The activated, connector-associated mobile peptide segments have 

conformations not accessible in the absence of the pathway for Figure 2,c-f. In support of this 

sequence of events, non-sigmoidal (non-cooperative) [ATP]-dependence of both 29 packaging 

velocity [53] and mean 29 dwell time [52] has led to the conclusion that an initial ATP binding is 

followed by tightening of ATP binding, thereby short-circuiting the cooperativity otherwise expected 

[52]. The mobile peptide segments, as drawn in Figure 2, are schematic illustrations and are not 

accurate representations of conformation.  

The apparent paradox of energetic linkage via DNA “stillness” is resolved by the following. 

Although the DNA molecule does not move relative to the motor, movements within the ATPase and 

connector subunits still occur. ATPase/connector cross-talk via these movements is physically realistic 

because movements of this type have already been shown to occur in the case of ABC transporters. In 

the case of the ABC transporters, movements within dimeric ATP binding domains occur after ATP 

binding and before ATP cleavage, as proposed above. The movements of the ATP-binding domains 

cause movements in transport-generating, -helix-rich transmembrane domains that sometimes, like 

the connector subunits of bacteriophage DNA packaging motors, are in a separate protein [66,67]. 

Thermal oscillations potentially assist transfer of energy from ATPase (terminase)-bound ATP to the 

connector-associated mobile peptide segments. Sufficient information does not exist to propose either 

complete detail for ABC transporters [66,67] or any details for bacteriophage DNA packaging motors. 

The process involved for DNA packaging motors may be analogous to protein folding promoted by 

immobilization in the internal cavity of a chaperonin complex, a process that sometimes occurs at the 

expense of ATP binding energy [68-70].  

The lowering of the Gibbs free energy of ATPase-bound ATP signals the ATPase multimer to 

cleave the ATP molecules and, thereby, to release (perhaps unclamp) the DNA molecule and start a 

burst (Figure 2g). During the burst, the connector’s activated mobile peptide segments deactivate while 

pushing the DNA molecule. To illustrate additional details of the deactivation/pushing, Figure 3 begins 

by schematically illustrating the end of the dwell in projection along the DNA axis (Figure 3a). Each 
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coiled fiber represents both activated C-terminal and activated tunnel loop segments of one connector 

subunit; each dark yellow ball represents (schematically) the rest of a connector subunit. For clarity, 

the drawings of Figure 3 are not true projections (see legend to Figure 3).  

Figure 3. A transverse section-based representation of the firing of the connector subunits. 

A coiled peptide segment and a dark sphere represent an activated connector subunit. An 

uncoiled peptide segment and a light sphere represent a completely deactivated connector 

subunit. The DNA molecule is in the middle. This representation of the connector is a 

section with some details missing and modified to avoid confusion. Specifically, the clip 

and crown are, together, represented by one circle and only one peptide segment is shown; 

the subunits are not in contact. (a) The motor is shown at the end of a dwell with all 12 

subunits activated. The motor is shown at the end of the (b) first, (c) second, (d) third and 

(e) fourth mini-bursts. (f) The motor is shown during a stalled mini-burst. (g) The motor is 

shown after an activation of the mobile peptide segments that began after a stalled mini-

burst. 

 
 

The following aspect of connector-based energy transduction directly satisfies the empirically 

derived [16] constraint of four mini-bursts per burst. The connector’s 12 subunits act sequentially in 

four groups of three subunits. That is to say, one group of three subunits initially pushes the DNA 

molecule (fires, in the terminology of an internal combustion engine) and is followed by the other 

three groups, one firing after the other (Figure 3,b-e). Firing is represented in Figure 3 by lightening of 

a yellow ball and uncoiling of the attached fiber. To reduce the tightness of fit in the channel [38], (1) 
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the unfired subunits of Figure 3 rotate at the clip so that their crowns are further from the channel’s 

axis (and away from each other) than crowns of fired subunits and (2) after firing and uncoiling, 

mobile peptide segments move away from the channel. This latter movement is not represented in 

Figure 3. The physical basis for firing in groups of three is, therefore, proposed to be steric constraint 

on the number of mobile peptide segments that fit in the channel together with the DNA molecule.  

In addition to explaining the results of nanometry and making room for the mobile peptide 

segments, firing in four groups of three keeps the DNA molecule centered. Unlike firing in four groups 

of three, firing in six groups of two would not avoid thermal motion-generated de-centering. The 

remaining alternative is firing in three groups of four, which would keep the DNA molecule centered, 

but might cause problems with tightness of fit. 

In Figure 3, the conjecture is made that the three firing subunits of a mini-burst are symmetrically 

located, even though not linked to each other and restricted to thermal motion before firing begins. 

This conjecture has some basis (but, is not proven) from analysis of electrical systems in that 

promotion of symmetrical response via combination of more than one independent noise patterns has 

been found in theory [71].  

A type 1 cycle must account for the observations that (1) perturbations of DNA structure do not 

necessarily inhibit the pushing of the DNA molecule and (2) the number of base pairs (2.5) packaged 

per mini-burst is non-integral [16]. The perturbations include mismatched, double-stranded regions 

(29: 10 basesT4: 10 bases [17]) and unpaired single-stranded regions ( 19 bases [64]). These 

observations conclusively demonstrate that recognition of a unique DNA secondary structure is not 

necessary. (They also indicate that firing can occur less often than one would calculate from the 

average ATP usage per base pair.) Thus, the firing of the connector subunits is proposed to push the 

DNA molecule via non-specific forward sweeping of the DNA molecule by the mobile peptide 

segments. The sweeping is accomplished by steric interaction (i.e., contact with the DNA molecule is 

involved) and possibly also hydrodynamic interaction of the activated mobile peptide segments with 

the DNA molecule. No structure-specific engaging of a DNA component, such as the major or minor 

groove, occurs in the proposed type 1 cycle.  

Sweeping drives the DNA molecule forward until either (1) the activation energy for all 12 

connector subunits is dissipated and sweeping stops (Figure 3e) or (2) the motor has to work against a 

force that is high enough so that the sweeping is not completed and the DNA molecule undergoes 

reverse thermal motion before the final sweep (mini-burst) is completed (stall; Figure 3f). A stall arises 

from resistance to packaging produced both by the DNA segments already packaged and by small 

molecules (RNAs and proteins, for example) that have been accidentally packaged in an infected cell. 

Thus, the proposed type 1 cycle will not stall as often (or maybe not at all) in vitro, unless the 

macromolecular composition of the cellular cytoplasm is mimicked.  

The reverse thermal motion of the stall of Figure 3f initiates a type 2 cycle via the following 

proposed mechanism. This reverse DNA motion causes a dwell and, then, refolding of the mobile 

peptide segments, as it did at the beginning of the type 1 cycle. But, the mobile peptide segments from 

only nine subunits have completed firing. Thus, the dwell is altered in that only nine mobile peptide 

segments refold to the conformation of Figures 2f and 3a. The remaining three mobile peptide 

segments have not completed firing and are in a space larger than experienced in an unaltered type 1 

cycle. Therefore, these three mobile peptide segments refold to an altered, although activated 
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conformation (Figure 3g) while the DNA molecule is bound to the ATPase multimer and the Gibbs 

free energy of the bound ATP is lowered. As in a type 1 cycle with an unaltered dwell, the next event 

is ATP cleavage, followed by a burst. However, the altered activated conformation causes an altered 

burst. The altered burst includes movements of the connector that initiate capsid hyper-expansion and, 

then, the rest of the type 2 cycle. The author reserves proposing further details until more information 

is obtained about the type 2 cycle, while noting that an empirical precedent exists in that the 

bacteriophage T4 connector initiates a capsid expansion roughly equivalent to the expansion that 

occurs during the capsid I to capsid II transition in Figure 1 [72].   

5. The type 2 cycle and terminase cleavage of a concatemer 

The details of the type 2 cycle are also not proposed here beyond what has previously been 

proposed in [26]. The proposed interaction of the two cycles is the following. (1) The type 2 cycle 

restarts the type 1 cycle by hyper-expansion-generated reduction of the concentration of packaged 

DNA segments and pumping-generated removal of the accidentally packaged small molecules from 

the DNA-containing cavity of the capsid. (2) The pumping works by expansion/contraction, coupled 

with changes in permeability, of the shell. (3) The type 2 cycle stops when not triggered by the type 1 

cycle. (4) The type 1 cycle continues running and re-triggers the type 2 cycle when the type 1 cycle 

again stalls. (5) Eventually, both cycles undergo a stall (called a co-stall). In the case of T3 DNA 

packaging in vivo, the first type 2 cycle occurs at F ~ 0.28 [30]; in the case of  DNA packaging in 

vitro, the F value at packaging force reduction suggests that the only type 2 cycle occurs at F ~ 0.9 

[31].  

The hypothesis presented here is extended to propose that a co-stall initiates the maturation 

cleavage of a concatemer (Figure 1). The proposed mechanism is alternative channeling of the energy 

of bound ATP, since this energy can no longer be channeled to DNA packaging. Specifically, as the 

time of co-stalling increases, the probability increases that the energy of bound ATP is alternatively 

channeled to expose the DNA molecule to the endonuclease domain of terminase. When that happens, 

the maturation DNA cleavage occurs. Sufficient information does not exist to propose further details. 

By this proposal, the probability of maturation cleavage is never zero at any stage of packaging. Thus, 

a background of erroneous maturation cleavages occurs and erroneous cleavages are made more 

frequent by a dwell or a stall during the normal cycling of the motor. 

In support of these proposals, observation has been made of prematurely cleaved, incompletely 

packaged T3 genomes in capsids obtained from bacteriophage T3-infected cells [30,46] (see Figure 1). 

Based on the lengths of the cleavage products, cleavage positions are sometimes quantized, as though 

occurring during the type 1 cycle stalls that trigger the type 2 cycle [30]. In further support of the 

proposed cleavage-promoting alternative pathway, artificial slowing of in vitro T3 packaging 

accelerates the maturation cleavage of concatemers [73]. Involvement of the connector is suggested by 

the observation that some bacteriophage P22 connector mutations cause delay of maturation cleavage. 

The observed result is that P22 packages an oversized genome [74]. Unlike the T3/T7 maturation 

cleavage, the P22 maturation cleavage is not nucleotide sequence-specific. The packaging of an 

oversized genome by the P22 mutants is explained by assuming that the mutants have more rapid 
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transmission of energy from ATPase ring to connector-associated peptide segments. That is to say, 

packaging continues further than it normally does, at the expense of cleavage.  

In the case of bacteriophage T4, the above pathway for the terminase-catalyzed maturation cleavage 

explains the following otherwise puzzling observation. The small terminase protein, although not 

needed for the packaging motor, stimulates the ATPase activity of terminase and, thereby, inhibits 

premature (random) cleavage of a concatemer during packaging [8]. The blockage of premature 

cleavage is explained by the small terminase protein’s blocking of the alternative (DNA-cleaving) 

pathway for energy usage by removing the source of energy, the terminase-bound ATP. The small 

terminase protein also forms a multi-subunit ring that has a symmetry mismatch with the terminase, in 

the case of both T4 [8] and P22 [75].  

Unlike the observation for bacteriophage  [31], a drop in nanometry-observed, packaging-resisting 

force has not been observed at the later stages of bacteriophage 29 in vitro packaging, in spite of the 

extensive nanometry-based studies of 29, as referenced above. Bacteriophage 29 also has a 

procapsid (equivalent to T3 capsid I) with a shell that is not smaller than the mature 29 shell [58,76]. 

These two observations suggest that, in fact, 29 does not have an operative type 2 cycle. In support, 

29 packages a monomeric DNA molecule, not a concatemer, in vivo and has a relatively short 

genome [6,40], thereby reducing the selection for mechanisms to accelerate packaging in the later 

stages. The crown region of the 29 connector may have evolved to be relatively small because the 

primary function of the crown is either initiating or conducting the type 2 cycle. An outstanding 

question is whether or not 29 is the product of reductive evolution from ancestors that had a complete 

terminase and, by inference, a type 2 cycle.  

6. Comparison with thermal ratcheting in other systems 

The feedback-controlled, ATP-dependent, DNA binding/releasing aspect of the mechanism 

proposed here is in the category of an ATP-dependent thermal ratchet. A thermal ratchet rectifies 

thermal motion and, as a general concept, includes miniaturized mechanical ratchets, as articulated in 

[77]. The sweeping-of-DNA aspect of the type 1 cycle proposed here is outside of the concept of a 

thermal ratchet, as are reach/bind/pull mechanisms for DNA packaging, one version of which has been 

called a “ratchet model” [78]. That is to say, some terminology is inconsistent.  

Thermal ratcheting, as opposed to bind/pull, is not a new idea. Huxley [79] proposed an ATP-

driven, bind/release thermal ratchet-based mechanism for muscle contraction a long time ago. Even 

earlier, Donnan ([80]; page 320) approached this concept in his discussion of the interaction of 

statistical mechanics and biology, but did not fully articulate it, because of the absence of knowledge 

of molecular biology. Currently, thermal ratchet-based cycles are in active consideration for 

actin/myosin and kinesin/microtubule motors (reviewed in [28,29,43,81,82]). Recent data indicate that 

thermal ratcheting of these eukaryotic motors is, as proposed here, part of a cycle that also has a non-

ratcheting component [28].  

In contrast to what occurs in non-viral eukaryotic motors, the bacteriophage DNA packaging 

ATPase does not perform the non-ratcheting component of the type 1 cycle proposed here. If this type 

1 cycle is correct, an explanation is needed for separation of function to not only two different 

proteins, but also two different multimers. This explanation will ideally include an explanation for the 
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symmetry mismatches among the components of the motor. Bacteriophages have had 1.6 billion years 

of evolution to match non-viral eukaryotic motors in incorporating these functions in one protein.  

7. Symmetry mismatches, evolution and non-viral eukaryotic motor proteins 

The type 1 cycle proposed here provides a new explanation for previously unexplained symmetry 

mismatches, including the connector/ATPase, 12/5 symmetry mismatch of the bacteriophage 29 

motor [58] and the symmetry mismatches of the T4 motor [8,83]. This explanation is that symmetry 

mismatching reduces thermal motion (noise)-derived signaling errors between the connector and 

ATPase multimers. Thus, evolutionary selection for symmetry mismatching occurs, even though the 

motor would work with a symmetry match that would simplify assembly of the motor.  

This explanation has support from calculations that reveal the following in the case of 

communication networks. Although non-random events (signaling errors, in the case of the 

connector/ATPase multimer) can be generated from adding the thermal noise from two symmetry 

related sources, this occurrence of non-random events is suppressed by breaking the symmetry [84] 

and potentially yields greater signal amplification via stochastic resonance [84,85]. In the case of the 

proposed type 1 cycle, breaking the symmetry means having a symmetry mismatch between two 

multimers. By this reasoning, separating signal source (connector) and target (terminase/packaging 

ATPase) to separate multimers evolved to reduce thermal motion-induced signaling errors that occur 

in a single protein. 

Symmetry mismatching to reduce thermal motion-derived signaling errors is a concept that extends 

to the long-unexplained symmetry mismatch between connector ring and outer shell of the capsid 

[5,6,76] and also to the symmetry mismatches in some chaperonin-protease complexes [86]. As shown 

directly for the connector during DNA packaging [23], facilitation of rotation [18] is not likely to be 

the reason for evolution of the mismatch in the case of the chaperonin-protease complexes either [87]. 

In the case of eukaryotic cellular (in contrast to viral) motors, the larger number of cooperating, non-

symmetrically placed motors would, by the ideas presented here, reduce thermal motion-induced 

signaling errors enough to allow evolution of motor proteins with signal source and target in the same 

protein molecule.  

Eukaryotic non-viral motors, such as kinesin/tubulin and myosin/actin motors, also (1) do not work 

against a predictably increasing load and (2) evolved long after bacteriophage DNA packaging motors. 

Thus, in the type 1 cycle proposed here, the relatively long distances for transmission of both 

information and energy are not in conflict with the finding of shorter transmission distances in 

eukaryotic cellular motors.  

In support of the above interpretation of the symmetry mismatches, evidence exists that the 29 

connector/ATPase symmetry mismatch is not biophysically necessary for DNA packaging. An 

artificially generated, non-mismatched hexameric ATPase (and associated hexameric packaging RNA 

molecule) can be effective for in vitro DNA packaging [19,88]. Even assuming that the in vitro system 

used does not precisely mimic packaging in vivo, this observation means that 29 could have evolved 

to make use of the assembly advantages of symmetry matching [89], unless something else promoted 

evolution toward symmetry mismatching. The motor mechanism proposed here predicts that this 

“something else” is suppression of signaling errors generated by thermal noise. A test of the proposed 



Viruses 2010, 2              

 

 

1837

role of errors in the evolution of symmetry mismatching is the determining of how the frequency of 

errors (other than premature concatemer cleavage) depends on whether or not the 29 motor is 

symmetry mismatched. 

A pure thermal ratchet-based cycle is more primitive than the type 1 cycle proposed here, especially 

when ratchet-associated binding is chemically non-specific, as it is for clamping. Thus, the working 

assumption is that, whatever the most advanced bacteriophage DNA packaging motors are today, they 

started as thermal ratchets, perhaps without the packaging ATPase and with ATP-derived energy 

coming from only a type 2 or related cycle. In this case, the DNA would be packaged less tightly than 

has been described [4,90,91] for packaging ATPase-dependent bacteriophages such as 29, , P22, T3, 

T4, T5 and T7. Perhaps, such low DNA density, packaging ATPase-less bacteriophages still exist in 

environmental niches that favor them.  

8. Other, recently proposed type 1 cycles: Predictions of the cycle of Figures 2 and 3  

At this point in time, the type 1 cycle proposed here appears to be alone in meeting all of the data-

based constraints described in Section 3. Other proposed type 1 cycles include bind/pull cycles with all 

pulling dynamics occurring within the packaging ATPase multimer. One such proposed cycle is based 

on details of structure for the 29 and T4 terminases [83], but (1) does not account for the 

subsequently obtained data of [52] in that it uses uncoordinated (though regulated) cleavage of ATP 

and (2) does not account for the data of [38] and [59] in that it does not incorporate the connector in 

the energetics. Moffitt et al. [52] have proposed a bind/pull mechanism with the pull generated by lock 

washer-like distortions of the relationships of at least four subunits within the ATPase ring (thereby 

explaining coordination), but again without considering the connector and introducing the concept that 

one of the 5 ATPase molecules in the multimer is different from the others. Yu et al. have more 

recently proposed a sterically driven push and roll mechanism whereby eccentric DNA motion assists 

the movement between ATPase molecules and ATP binding is delayed after four ATPase molecules 

have fired [92]. However, again, the connector is not incorporated in the motor. 

Among the previous proposed type 1 cycles, one does have the connector and DNA packaging 

ATPase integrated in the motor. In this type 1 cycle, the connector initially blocks DNA motion from 

an ATPase-delivered power stroke; the connector later releases the DNA molecule in a burst [17,51]. 

This cycle basically has the roles of the connector and packaging ATPase inverted in relation to the 

type 1 cycle presented here. The proposed cycle of [17,51] presumably will be updated to explain the 

four minibursts subsequently revealed.  

The type 1 cycle proposed here makes at least two predictions that are not made by bind/pull-based 

cycles and that can be tested. The first prediction is that the previously demonstrated dwells of the type 

1 cycle are preceded by reverse motion of the DNA molecule. In fact, high-resolution nanometry of in 

vitro 29 packaging does have an approximation of this pattern when packaging is dramatically 

slowed (to create a pause) by methylating the phosphates of a 10 base pair patch of DNA. In this case, 

forward movement interrupts the pause and is followed by several backward movements, each 

followed closely by forward movement (Figure 2 of [16]). One interpretation of the repeated 

backward/forward motion is the operation of the type 1 cycle with time scale stretched and forward 

motion inhibited by DNA methylation. That is to say, movements normally too rapid and small to 



Viruses 2010, 2              

 

 

1838

resolve are made resolvable by the methylation. However, this potential interpretation of the data was 

not a focus of [16]. More probing of the interpretation of the repeated backward/forward motion is 

needed before the nanometry can be considered a test.  

The second prediction is that the motions of the connector-associated, mobile peptide segments are 

both the signaling and DNA-driving aspects of the motor. This prediction can be tested by real time 

single motor fluorescence microscopy/nanometry of the DNA packaging process ([23], for example) 

with the various regions of the connector labeled with fluorescent probes and use of Förster resonance 

energy transfer, for example, to monitor packaging associated changes in peptide conformation.  

In addition, the structural details of the type 1 cycle proposed here (or any proposed type 1 cycle) 

can tested by cryo-EM with 3-D reconstruction of DNA packaging motors with DNA still in the 

connector/ATPase channel. The cryo-EM will be dependent on the isolation and preliminary 

characterization of these various “motor intermediates” in a state as native as possible. 
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