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Abstract: The phenotype of HTLV-1-transformed CD4
+
 T lymphocytes largely depends 

on defined viral effector molecules such as the viral oncoprotein Tax. In this review, we 

exemplify the expression pattern of characteristic lineage markers, costimulatory receptors 

and ligands of the tumor necrosis factor superfamily, cytokine receptors, and adhesion 

molecules on HTLV-1-transformed cells. These molecules may provide survival signals for 

the transformed cells. Expression of characteristic surface markers might therefore 

contribute to persistence of HTLV-1-transformed lymphocytes and to the development of 

HTLV-1-associated disease. 
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1. Pathogenetic Properties of Human T Cell Lymphotropic Virus Type 1 (HTLV-1) 

Human T cell lymphotropic virus type 1 (HTLV-1), a delta-retrovirus, is the causative agent of a 

severe and fatal lymphoproliferative disorder of CD4
+
 T cells, adult T cell leukemia/lymphoma 

(ATLL), and of a neurodegenerative, inflammatory disease, HTLV-1-associated myelopathy/ tropical 

spastic paraparesis (HAM/TSP) [1–5]. Both diseases can develop as a consequence of prolonged viral 
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persistence in T cells after a latency of decades. The risk of developing ATLL among virus carriers is 

estimated to be 6.6% for males and 2.1% for females, while 1–4% of the infected individuals may 

develop HAM/TSP [6,7]. HTLV-1 has developed a unique strategy for lifelong persistence in the 

presence of an active immune system. This is achieved by replication of the virus mainly in its 

provirus form, stimulation of cell division by the virus, and, as a consequence, clonal amplification of 

infected cells. Virus-infected clones are detectable and can persist over many years even in 

non-leukemic individuals [8]. The stimulation of T cell proliferation in patients by viral gene 

expression was corroborated by cell dynamic studies which revealed a correlation of the in vivo 

proliferation rate of CD4
+
CD45R0

+
 cells, the main cell type infected with HTLV-1 in vivo [9], with 

viral expression ex vivo [10]. 

2. Viral Effector Molecules 

Upon infection, HTLV-1 integrates into the host cell genome and is mainly maintained in its 

provirus form (9.1 kb) which is flanked by long terminal repeats (LTR) in both the 5′ and 3′ region. In 

addition to structural proteins common for retroviruses, protease, and reverse transcriptase, HTLV-1 

encodes accessory and regulatory proteins [6]. While the accessory proteins p12, p30, p13 and HBZ 

are important for viral infectivity and replication, they are not required for lymphocyte immortalization 

[11,12]. HBZ, which is transcribed as an antisense transcript of HTLV-1 from the 3′ LTR, promotes 

proliferation of ATLL cells [13]. The regulatory proteins Tax and Rex are both essential for viral 

replication [14]. While Tax strongly enhances viral mRNA synthesis by transactivating the  

HTLV-1-LTR promoter, Rex controls the synthesis of the structural proteins on a posttranscriptional 

level [15,16]. 

Tax confers transforming properties on HTLV-1, as it can immortalize primary human T cells  

[17–19], and induce leukemia in transgenic mice [20]. Several Tax functions may contribute to its 

transforming capacity, including interference with cell cycle check points, tumor suppressors and DNA 

repair. To promote cell proliferation, Tax can stimulate the expression of cellular proteins controlling 

proliferation and survival [21–23]. Beyond that, Tax induces cellular genes which may contribute to 

HTLV-1-mediated pathogenesis such as the tumor marker and actin-bundling protein Fascin [24]. Tax 

is capable of stimulating cellular transcription by interacting with various signaling pathways such as 

both the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways [21,22,25,26], cAMP 

response element-binding protein (CREB) and serum response factor (SRF) pathways [14,27]. In the 

early phase of tumor progression in patients, Tax is required to initiate transformation. By contrast, 

Tax is no longer expressed in many ATLL-cells in late stages of tumor progression, while Tax-induced 

signaling pathways are still maintained [28]. 

3. Differentiation of Human T Lymphocytes and HTLV-1-Persistence 

The differentiation status of a T cell is important for its survival. CD4
+
 T cells, the main targets of 

HTLV-1-infection, are roughly grouped into different subsets (Figure 1), depending on the expression 

of surface markers, intracellular proteins and secretion of cytokines. Briefly, T cells are derived from 

progenitor cells in the bone marrow and become committed to their lineage in the thymus where they 

undergo positive and negative selection. Antigen recognition initiates proliferation of naïve T cells and 
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their differentiation to activated T cells leading to changes of the phenotype. The expression of 

activation markers like CD69 or CD25 is induced. Depending on the nature of antigen and the 

inflammatory milieu, antigen-specific effector T cells are induced to differentiate into at least two 

functionally distinct populations of effector T cells, T helper type 1 and 2 (Th1/ Th2) cells [29,30]. 

After pathogen elimination, most effector cells die, but some survive to form long-lived memory T cell 

(T mem) clones, which can be discriminated by function and surface markers into central and effector 

T mem [31].  

Figure 1. Model of CD4
+
 T cell differentiation and of the phenotype of T cell subsets. The 

expression of characteristic surface expression markers (except FOXP3) is exemplified. 

Proliferation rate and susceptibility to apoptosis of the different T cell subsets are indicated 

by the bars on the right. Ag indicates antigen; dark bars, high; and, bright bars, low.  

 

 

Naturally occurring CD4
+
 regulatory T cells (T reg) develop either in the thymus, or they arise from 

mature T cells recruited to the regulatory population in the periphery [32]. They comprise less than 

10% of the CD4
+
 T cell pool in human blood. Functionally, T reg actively suppress activation of the 

immune system and prevent pathological self-reactivity, i.e., autoimmune disease [33]. Natural 

CD4
+
 T reg are mostly CD25 (IL2RA)

high
, CD127 (IL7R)

low
, and they express FOXP3 as well as other 

characteristic markers [34–36]. Different T cell subsets do not only differ in their proliferation rates, 

but also in their susceptibility to apoptosis. T mem clones, for example, are fast-proliferating compared 

to naïve T cell clones [37]. Moreover, persisting T mem clones exhibit a low susceptibility to apoptosis 

after clearance of antigen as the survival protein BCL-2 (B-cell lymphoma 2) is upregulated [38].  
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The persistence of HTLV-1 in T cell clones, which are detectable over many years, suggests that 

proteins mediating survival and proliferation of long-lived T cell clones could be crucial for HTLV-1 

persistence and, thus, be potential targets of its oncoprotein Tax. Comparison of gene expression 

profiles of HTLV-1-infected/transformed cells with those of uninfected cells revealed differences in 

the expression pattern [39–41] including Tax-dependent changes [42,43] and genes encoding surface 

proteins [44]. This review aims to depict various differentially expressed surface markers of HTLV-1-

transformed cells, which may be important for communication of the infected cells with their 

environment, thereby contributing to viral persistence, survival and longevity of HTLV-1-transformed 

T cell clones. 

4. Lineage and Activation Markers of HTLV-1-Infected Cells 

HTLV-1-infected cells express several lineage markers on their surface. For ATLL cells, an 

international consensus meeting provided phenotypic properties of ATLL cells. Typical ATLL cells 

are characterized by integration of the HTLV-1 provirus, their nuclei are lobulated (flower cells), and 

phenotypically, they resemble mature CD4
+
 T cells. ATLL cells express CD2, CD5, CD25 (IL2-RA), 

CD45R0, CD29 (integrin β 1), T cell receptor αβ, and HLA-DR [45]. Lack of CD7 and CD26 

(dipeptidyl peptidase 4) as well as diminished expression of CD3 are further characteristics [45,46]. 

Most ATLL cells are positive for CD52, although some patients lack this surface marker. Both CD52 

and the transferrin receptor (TFRC; CD71) are also overexpressed on HTLV-1-transformed cells 

[45,47]. The immunophenotype of several HAM/TSP patients compared to uninfected controls has 

been shown before [48].  

In HTLV-1-infected cells, several immunoreceptors and activation markers are deregulated. 

CD45R, also known as leukocyte common antigen (LCA), is a receptor-like protein tyrosine 

phosphatase (protein-tyrosine phosphatase receptor type c (PTPRC)), which regulates, amongst others, 

src family kinases. CD45R is expressed on all nucleated cells of the hematopoietic system and plays a 

critical role in antigen-stimulated proliferation of T lymphocytes. CD45R0, a light molecular weight 

isoform of CD45R, is expressed on activated T cells and memory T cells, while CD45RA, a high 

molecular weight isoform, is expressed on naïve T cells [49–51]. In vivo, CD4
+
CD45R0

+
 T cells are 

the main cell type infected with HTLV-1 [52]. In ATLL, the number of naïve T cells is reduced, while 

the number of memory T cells is increased and correlates with HTLV-1 provirus load [53]. Moreover, 

the pattern of CD45R0 expression can correlate with the clinical outcome of infection as acute-type 

ATLL patients with CD45R0
+
 lymphocytes with intermediate expression show a better prognosis than 

those who lack CD45R0
+
 cells with intermediate expression [54]. In HTLV-1-transformed cell lines, 

the expression pattern of CD45R0 is divergent. While CD45R0 is expressed on interleukin 

2(IL2)-dependent growing, Tax-low cells, it is absent on most IL2-independent growing, Tax-high cell 

lines [55]. To comprehensively analyze surface marker expression, we performed surface staining of 

several differentiation markers including CD45R0 which are typical for long-lived T cell  

populations and examined their expression by flow cytometry (Table 1). Our analysis included four  

types of HTLV-1-transformed cell lines [41,43,56–58], namely (1) HTLV-1 in vitro-transformed, 

(2) ATLL-derived, (3) HAM/TSP-derived, and (4) Tax-transformed cell lines. With regard to 

CD45R0, we made comparable observations in similar cell types as CD45R0 was present in all cell 

lines except IL2-independent cell lines (C91-PL, MT-2, HuT-102). 
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Table 1. Expression of differentiation markers on HTLV-1-transformed cells detected by flow cytometry. 

% Expression
a
 

Origin Name IL2
b
 

PTPRC 

CD45R0 
CD69 

CD80 

B7-1 

TNFRSF18 

GITR 

TNFRSF7 

CD27 

TNFRSF 

4-1BB 

TNFSF9 

4-1BBL 

CCR7 

EBI1 

IL2RA
c
 

CD25 

IL7R 

CD127 

in vitro 

transformed 

C91-PL no 0 +/− 0 0 +/− 0 82 +/− 17 41 +/− 3 0 +/−0 38 +/− 11 68 +/− 9 73 +/− 42 99 +/− 1 3 +/− 1 

MT-2 no 1 +/− 0 1 +/− 1 84 +/− 15 76 +/− 7 0 +/− 0 39 +/− 9 74 +/− 6 79 +/− 46 99 +/− 0 2 +/− 1 

ATLL-

derived 

HuT-102 no 5 +/− 2 0 +/− 0 88 +/− 11 99 +/− 0 0 +/− 0 65 +/− 5 70 +/− 9 63 +/− 36 100 +/− 0 1 +/− 1 

ATL-3 40 96 +/− 1 ND
d
 74 +/− 8

c
 72 +/− 9 0 +/− 0 21 +/− 5 19 +/− 6 21 +/− 12 99 +/− 0 2 +/− 2 

Champ 20 88 +/− 5
c
 37 +/− 16 75 +/− 8

c
 83 +/− 8 1 +/− 1 43 +/− 4 31 +/− 5 31 +/− 18 99 +/− 1 3 +/− 1 

JuanaW 20 89 +/− 5 45 +/− 13 60 +/− 1
c
 92 +/− 3 0 +/− 0 18 +/− 6 24 +/− 8 55 +/− 32 98 +/− 0 2 +/− 2 

PaBe 20 96 +/− 3 5 +/− 1 66 +/− 13 39 +/− 0 0 +/− 0 7 +/− 3 21 +/− 3 19 +/− 11 100 +/− 1 3 +/− 2 

StEd 40 70 +/− 5 13 +/− 4 88 +/− 10 79 +/− 1 1 +/− 0 9 +/− 4 16 +/− 1 23 +/− 15 95 +/− 4 2 +/− 2 

HAM/TSP-

derived 

Abgho 40 95 +/− 1 31 +/− 15 67 +/− 10
c
 71 +/− 10 1 +/− 0 26 +/− 8 18 +/− 4 27 +/− 2 95 +/− 1 4 +/− 2 

Eva 20 80 +/− 3 28 +/− 9
c
 75 +/− 5

c
 76 +/− 6 1 +/− 0 39 +/− 4 24 +/− 3 38 +/− 2 96 +/− 2 7 +/− 2 

Nilu 20 72 +/− 3 9 +/− 2
c
 45 +/− 8

c
 41 +/− 4 0 +/− 0 6 +/− 1 12 +/− 3 18 +/− 5 92 +/− 0 1 +/− 0 

Xpos 20 62 +/− 14 38 +/− 26
c
 60 +/− 5 91 +/− 3 1 +/− 1 31 +/− 3 16 +/− 2 60 +/− 12 99 +/− 1 5 +/− 0 

Tax-

transformed 
Tesi 40 57 +/− 4

c
 1 +/− 1

c
 ND 93 +/− 2

c
 0 +/−0

c
 13 +/− 7

c
 15 +/− 1 9 +/− 1

c
 96 +/− 1 2 +/− 1

c
 

a
 Values represent the mean of percent surface expression +/− SE (rounded values) as detected by flow cytometry of HTLV-1-transformed cell lines  

(n ≥ 3). Antibodies and protocol are given in the Appendix (Table 2); 
b
 Cell lines were grown without interleukin 2 (no IL2) or in the presence of either 20 

or 40 U/mL IL2; 
c
 Two experiments were performed; 

d
 ND, not done. 
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Among activation markers, CD80 (B7-1) and CD86 (B7-2) are upregulated on HTLV-1-infected 

cells [59,60]. Both are structurally similar members of the immunoglobulin superfamily expressed on a 

variety of hematopoietic cell types. CD80 and C86 interact with CD28 costimulatory and CTLA4 

inhibitory receptors on T cells [61]. Following infection with HTLV-1, CD80 and CD86 are 

constitutively expressed suggesting that HTLV-1-infected CD80
+
/CD86

+
 T cells serve as antigen 

presenting cells, leading to a sustained proliferation of T cells [62]. In freshly-isolated PBMC from 

ATLL patients, both CD80 and C86 were upregulated after short-term culture and spontaneous Tax 

expression [63]. We confirmed consistent overexpression of CD80 on all types of HTLV-1-transformed 

cell lines including the Tax-transformed cell line Tesi, whereas the expression profile of the early T 

cell activation marker CD69 was divergent (Table 1). In ATLL patient cells, however, CD69 was not 

expressed, but could be induced following mitogenic stimulation [64]. 

5. Costimulatory Receptors of the Tumor Necrosis Factor Receptor (TNFR) Superfamily  

Activation of T cells requires two different signals including (1) a signal provided by the T cell 

receptor complex after recognition of peptides presented by MHC II molecules on antigen-presenting 

cells, and (2), a second, costimulatory signal which is provided by CD28, a member of the 

immunoglobulin superfamily, upon ligation with CD80 or CD86. Generally, costimulatory signals 

provided by CD28 are necessary to initiate T cell activation. The same holds true for costimulatory 

receptors of the tumor necrosis factor (TNF) receptor superfamily, although most of them deliver their 

signals after CD28 [65].  

The TNF receptor (TNFR) superfamily comprises three groups: (1) death domain (DD)-containing 

receptors, (2) decoy receptors, and (3) TNF receptor associated factor (TRAF) binding receptors 

including costimulatory receptors [65]. Although HTLV-1-transformed cells express receptors of all 

three subtypes [66–69], costimulatory TRAF binding TNFR will be focused on here due to their 

importance for proliferation.  

TRAF binding receptors are type I transmembrane proteins that contain intracellular motifs  

of 4-6 amino acids which function to recruit TRAF proteins. In general, these receptors are associated 

with cellular activation, differentiation, and survival signaling. Upon binding of ligands, which are 

type II cell surface glycoproteins, signaling pathways are induced and determined by intracellular 

TRAFs [65,70]. Activation of the costimulatory TNF receptors OX40 (TNFRSF4) and 4-1BB 

(TNFRSF9), e.g., leads to activation of the NF-κB and the phosphoinositide-3-kinase (PI3K)/AKT 

pathways, and to increased expression of anti-apoptotic molecules including BCL-2, BCL-XL 

(BCL2L1) and BFL1 (BCL2A1) [70]. As a consequence, 4-1BB (TNFRS9) and OX40 (TNFRSF4) 

mediate survival and proliferation of long-lived T cell clones and could therefore be crucial for 

HTLV-1 persistence and, thus, be potential targets of its oncoprotein Tax. While being mostly absent 

from naïve T cells, they are present on long-lived T lymphocyte clones like T reg and T mem [35,70]. 

In the latter, they can augment proliferation and survival by providing anti-apoptotic signals several 

days after a naïve T cell encounters antigen. These signals allow continued turnover of cells and 

provide survival signals to prevent excessive T cell death. Consequently, the number of effector cells 

entering the memory pool is increased [38,70,71].  

Several costimulatory receptors and ligands of the TNF family are deregulated in 

HTLV-1-transformed cells. gp34 was first identified in cells expressing HTLV-1 [72]. Its expression is 
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inducible by Tax via NF-κB responsive elements in the promoter [73]. Later, gp34 was described as a 

type II transmembrane protein belonging to the TNF family, TNFSF4, and found to be the ligand for 

OX40 (OX40L) [74,75]. OX40L is expressed on normal T and B cells upon antigen stimulation while 

mitogens, phorbol ester, ionophores and IL-2 fail to induce OX40L in human T cells. In addition to 

OX40L, the receptor OX40 (TNFRSF4) is specifically upregulated in HTLV-1-infeceted cells by 

Tax-mediated promoter upregulation [76], suggesting an autocrine loop. In contrast to OX40L, OX40 

was also present on freshly isolated ATLL cells and found on infiltrating cells of skin biopsies of 

ATLL patients [63,77]. Moreover, expression of OX40 increased significantly after cultured ATLL 

cells expressed high amounts of Tax spontaneously [63]. 

The costimulatory TNFR GITR (glucocorticoid-induced tumor necrosis factor receptor 

family-related gene; TNFRSF18; AITR) is expressed at low levels on resting T cells, but it is 

upregulated upon activation or antigen-stimulation of CD4
+
 and CD8

+
 T cells. On naturally occurring 

T reg, GITR is constitutively expressed and important for maintenance of T reg in the periphery, while 

it is not essential for their development [78]. Overexpression of GITR was identified in the presence of  

HTLV-1 using massively parallel signature sequencing [79]. In addition, a high frequency of GITR 

surface expression was a unique feature of all different types of HTLV-1-transformed cell lines 

(Table 1) and extends earlier observations of protein expression in in vitro-transformed cell lines [79] 

and of transcript expression in primary ATLL cells [80].  

Although both CD40 (TNFRSF5) and its ligand CD40L can be upregulated by Tax, CD40L 

expression is absent in HTLV-1-transformed cell lines due to epigenetic mechanisms, but can be 

restored in cells from ATLL patients. This indicates, that CD40L is downregulated by distinct 

mechanisms in HTLV-I transformed cell lines and ATLL patients [64,81]. Upregulation of the ligand 

CD70 (TNFSF7, CD27L) was identified in freshly HTLV-1-in vitro immortalized peripheral blood 

mononuclear cells (PBMC) compared to proliferating T cells using gene expression arrays and 

Northern blot analysis [39]. Expression of CD70 protein could also be detected on HTLV-1-transformed 

cell lines and on fresh PBMCs from ATLL patients [44]. Thus far, CD70 expression could not be 

associated with survival advantages of HTLV-1-transformed cells [44]. Interestingly, the natural 

receptor of CD70, CD27 (TNFRSF7), is not expressed on HTLV-1-transformed cells (Table 1) ruling 

out a possible autostimulatory mechanism of the CD27/CD70 receptor-ligand pair. 

To identify additional costimulatory receptors, which are Tax-dependently expressed, our group 

screened mRNA from T cells with repressible Tax expression and found that among all costimulatory 

receptors, transcripts of 4-1BB (TNFRSF9) were increased most strongly [43]. Upregulation of 4-1BB 

was a consistent feature of HTLV-1-transformed cell lines (Table 1) and was caused by efficient 

transactivation of the 4-1BB promoter by Tax via the NF-κB pathway. Additionally, the ligand of 

4-1BB, 4-1BBL (TNFSF9) was expressed on HTLV-1-transformed cells (Table 1) suggesting 

auto-stimulation. In the presence of Tax, 4-1BB expression was strongly stimulated on the surface of 

CD4
+
 T cells isolated from HTLV-1-infected patients. [43]. Thus, the costimulatory receptor 4-1BB is 

a target of Tax stimulation in cultured cells and in patients, and is likely to support the survival of 

HTLV-1-infected T-cell clones. Taken together, the presence of several costimulatory receptors and 

their ligands on HTLV-1-transformed cells suggests that costimulatory signals contribute to growth 

and survival of the infected cell, and therefore favor a transformed phenotype. 



Viruses 2011, 3              

 

 

1446

6. Chemokine Receptors 

Chemokine receptors belong to the family of G protein-coupled receptors (GPCRs), which contain 

seven transmembrane domains. Upon binding of the respective ligand, they mediate transduction of 

signals via intracellularly located heterotrimeric G-proteins. Several chemokines and their receptors 

are involved in migration of lymphocytes [82]. As ATLL is frequently accompanied by infiltrations of 

leukemic cells into various organs like lymph nodes or skin [83], an altered expression pattern of 

chemokine receptors and their ligands may be expected. 

Over-expression of the secreted, anti-apoptotic chemokine I-309, as well as expression of its 

cognate receptor CCR8 on ATLL-derived cells, were suggested to generate an anti-apoptotic autocrine 

loop which could contribute to the growth of ATLL-cells [41]. CCR9, which is involved in T-cell 

homing to the gastrointestinal tract, was found in ATLL cells infiltrating the gastrointestinal tract and 

expressed on cell lines carrying HTLV-1 [84]. Chemokine receptor 7 (CCR7/ EBI1/ CMKBR7) is 

naturally expressed on central T mem [37] and required for in vivo function of CD4
+
CD25

+
 T reg [85]. 

Enhanced expression of CCR7 in ATLL patients correlated with lymphoid organ involvement [83]. 

Additionally, CCR7 expression was also a consistent feature of all HTLV-1-transformed cell lines 

(Table 1), although the expression levels exhibited a broader variation and lacked continuity, which 

may be due to receptor internalization, a characteristic of chemokine receptors. CCR7 overexpression 

could be an important mechanism for the establishment of a persistent viral infection of lymphoid cells 

which is not limited to HTLV-1 infection. Other persisting viruses such as the B-lymphotropic EBV 

are known to transactivate CCR7 expression via the EBV nuclear antigen 2 (EBNA2) [86]. 

Interestingly, besides CCR7, additional chemokine receptors including the skin homing receptors 

CCR4 and CCR10 are also expressed on ATLL cells from patients [87]. Among these receptors, CCR4 

has been studied most intensively because of the association between predominant CCR4 expression  

on ATLL cells with skin involvement and unfavorable outcome [88,89], CCR4 has been  

successfully tested as a target for immunotherapy in ATLL in a phase I study [90,91]. Interestingly, 

HTLV-1-infected T cells Tax-dependently produce CCL22, the ligand of CCR4, too. Thereby, they 

can selectively interact with CCR4
+
CD4

+
 T cells, resulting in preferential transmission of HTLV-1 to 

CCR4
+
CD4

+
 T cells [92]. In conditionally Tax-expressing lymphocytes, activation of SDF-1/CXCR4 

signaling correlated with Tax expression [93]. This pathway was shown to be important in other 

systems, too, as the use of a CXCR4 antagonist suppressed migration of cultured cells from ATLL 

patients and of murine lymphoblastoid cells from HTLV-I Tax transgenic mice [94]. Taken together, 

chemokines and their receptors are massively exploited during HTLV-1-mediated pathogenesis.  

7. Interleukin Receptors 

Tax stimulates expression of cellular interleukins and their receptors including interleukin 2 (IL2) 

and the alpha subunit of the IL2 receptor (IL2RA, CD25), IL13 and the receptor chains IL4RA and 

IL13RA, IL15 and its receptor IL15 (reviewed by [22]), as well as IL21 and the IL21 receptor (IL21R) 

[95]. By contrast, low IL7R (CD127) expression is, apart from ATLL-derived cell lines [96], a 

common feature of all types of HTLV-1-transformed cells (Table 1).  

Among the interleukin receptors, IL2RA was the first cellular gene reported to be upregulated by 

Tax [97,98]. High expression of IL2RA is also a consistent feature of HTLV-1-transformed cell lines 
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(Table 1). Together with the subunits IL2RB (CD122) and the common γ chain, IL2RG (CD132), 

IL2RA forms a functional IL2 receptor (IL2R). In addition to IL2RA, Tax stimulates the IL2 promoter 

[99–101] which led to the hypothesis of T cell proliferation through an autocrine IL2/IL2R loop in 

HTLV-1-transformed cells [22]. However, most HTLV-1/Tax-immortalized cells or ATLL-patient-

derived cells in culture do not express high levels of IL2 [102] and even require exogenous IL2 for 

their growth [19,56,103]. Therefore, the role of an IL2/IL2R autocrine loop in leukemogenesis and 

transformed growth in culture remains to be determined. 

Additionally, Tax also induces expression of IL15 [104], which signals through a functional IL15 

receptor composed of the Tax-inducible IL15RA chain [105] and two components of the IL2 receptor, 

IL2RB and the common γ chain IL2RG. The existence of an IL15 autocrine loop was suggested in 

PBMC from HAM/TSP patients [106]. IL9, which unlike its IL9RA chain is also activated by Tax, 

shares the common γ chain with IL2 and IL15 receptors and functions by a paracrine mechanism in 

ATLL [107]. A recent study emphasized the relevance of IL2-, IL9-, and IL15-mediated signaling for 

HTLV-1-associated pathogenesis. Ex vivo spontaneous proliferation of PBMCs from ATLL and 

HAM/TSP was inhibited using a selective inhibitor of Jak3, which blocks signaling mediated by IL2, 

IL9 and IL15 [108]. 

The IL4/IL13 receptor complex provides stimulatory signals via the IL4RA chain. In contrast to IL4, 

IL13 is upregulated and secreted in HTLV-transformed cells and in cultured ATLL-cells derived  

from patients [109,110]. In HTLV-cells, IL13 expression is upregulated by Tax dependent on a 

NF-κB-responsive element in the promoter [111]. IL13 is linked to leukemogenesis, since in both 

Hodgkin's lymphoma cells and HTLV-1-transformed cells, it seems to act through an autocrine 

mechanism [22]. 

8. Adhesion Molecules on HTLV-1-Infected Cells 

The Tax protein also affects T cell interactions as it stimulates the expression of adhesion molecules 

like the CD2 receptor CD58 (LFA-3), intercellular adhesion molecule-1 (ICAM-1, CD54) [112,113], 

and vascular cell adhesion molecule 1 (VCAM-1) [114]. While VCAM-1 could be detected on freshly 

isolated T cells from HAM/TSP patients [115], ICAM-1 and LFA-1 were downregulated on ATLL cell 

lines [116]. By contrast, another study showed consistent and high expression of ICAM-1 and an 

active form of LFA-1, which is a counter-receptor for ICAM-1, on fresh PBMC from ATLL 

patients. It was proposed that the proliferation of ATLL cells occurs in sequential events, including 

(1) homotypic and calcium-dependent adhesion through LFA-1/ICAM-1, (2) signal transduction 

through these adhesion molecules, (3) production of cytokines, and (4) proliferation [117]. Not only 

proliferation of the infected cell population, but also of uninfected cells may be regulated by adhesion 

molecules. In coculture experiments, irradiated or fixed HTLV-1-infected clones from HAM/TSP 

patients induced the proliferation of autologous, uninfected T cells dependent on CD2/LFA-3, 

LFA-1/ICAM1, and CD25 [118]. This hints at bystander effects of adhesion molecules on uninfected 

cells. In HTLV-1-infected T cells, stimulation of ICAM-1 on the cell surface in combination with 

intracellular Tax protein expression is sufficient to trigger polarization of the microtubule-organizing 

center (MTOC) at the virological synapse [119,120].  

Interestingly, the HTLV-1 accessory protein p12 downregulates ICAM-1, ICAM-2 and MHC class 

I molecules, thereby avoiding immune recognition [121]. Additionally, the initially described capacity 
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of p12 to increase T cell contact by clustering of lymphocyte function-associated antigen-1 (LFA-1) 

[122], was mapped to the viral p8 protein, which is generated from p12 by removal of an 

endoplasmatic reticulum retention signal. p8 also increases inter-cellular conduits thereby enhancing 

cellular communication and virus transmission [123,124].  

Recently, the cell adhesion molecule tumor suppressor in lung cancer (TSLC1; IGSF4), a member 

of the immunoglobulin superfamily, was found to be overexpressed in acute-type ATLL cells [125]. 

Due to the ability of TSLC1 to enhance self-aggregation of ATLL cells and their adhesion to vascular 

endothelial cells, the authors speculated that TSLC1 may participate in tissue invasion, which is 

frequently found in ATLL. Function and properties of surface molecules important for adhesion, 

binding and entry of HTLV-1 including glucose transporter 1 (GLUT1), neuropilin 1 (NRP1) and 

heparan sulfate proteoglycans have recently been reviewed by Ghez et al. [126].  

9. Contribution of Cell Surface Markers to Longevity and Pathogenesis  

The data summarized in this review provide evidence that HTLV-1-transformed cells assume 

biological features of long-lived T cell clones as they express characteristic expression markers like 

CD4
+
CD25

+
CD45R0

+
CD127

low
4-1BB

+
GITR

+
CCR7

+
 on their surface. These differentiation markers 

include, amongst others, characteristic lineage markers, costimulatory receptors, chemokine receptors, 

interleukin receptors and adhesion molecules. Signals provided by the receptors and their ligands 

might contribute to survival and growth of the HTLV-1-infected cell, and thus, contribute to longevity 

of infected T cell clones. Moreover, the infiltrations observed in ATLL could be supported by 

expression of several chemokine receptors and adhesion molecules.  

Expression of many of these surface markers could be attributed to expression of the viral Tax 

oncoprotein. However, there are differences in viral gene expression between cell lines and freshly 

isolated PBMC from ATLL patients. While Tax is uniformly expressed in cell lines with varying 

amounts [58], most freshly isolated ATLL patient cells do not express Tax spontaneously [68,127]. 

This can be explained by genetic modifications of Tax, DNA methylation or deletions in the 5’ LTR of 

the provirus resulting in silencing of viral gene expression (reviewed in [127]). Paradoxically, a 

persistently activated cytotoxic T lymphocyte (CTL) response to Tax, the immunodominant target that 

is recognized by CTL, is found in most infected patients [68,128,129] and thought to regulate 

viral gene expression. Removal of CD8
+
 T cells from patient samples ex vivo leads to spontaneous 

expression of Tax after short-term culture [68]. Concomitant with the loss of Tax expression in 

ATLL-patients, several of the markers, like 4-1BB, are, as indicated before, induced after spontaneous 

expression of Tax in CD4
+
 T cells of ATLL patients. Other markers, like CCR4, are expressed in 

ATLL patient samples independent of Tax expression [130]. It is unlikely that all markers regulated by 

Tax and/or involved in immune-signaling are expressed at once and at high levels in PBMC in ATLL 

cells as this would require permanent Tax expression in several cases and induce immune response. 

The individual role of each marker, its temporal regulation and fine-tuning of its expression during 

HTLV-1-persistence and development of pathogenesis remains to be analyzed in more detail in 

infected ATLL patients.  

Despite several therapeutic approaches, ATLL still has a very poor prognosis due to resistance to 

chemotherapy. Interestingly, targeting of several of the described cellular surface proteins on 

malignant cells has already been used as an alternative therapeutic approach [131,132]. Monoclonal 
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antibodies targeting IL2RA (CD25), CD2, CD52, and CCR4 were already tested in clinical trials [45]. 

Therefore, further investigation of the surface phenotype may elucidate novel targets for therapy of 

HTLV-1-associated disease. 
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Appendix 

Table 2. Monoclonal antibodies and isotype controls used in flow cytometry. 

Antigen Conjugate Isotype Clone Origin Company 

CCR7 FITC IgG2a 150503 mouse 
R&D systems, Wiesbaden, 

Germany 

CD25 (IL2RA) PE IgG1 M-A251 mouse BD, San Jose, CA, USA 

CD27 (TNFRSF7) FITC IgG1 O323 mouse 
NatuTec, Frankfurt/M., 

Germany 

CD45RO (PTPRC) FITC IgG2a UCHL1 mouse NatuTec 

CD69 PE IgG1 L78 mouse BD 

CD80 FITC IgG1 MEM-233 mouse 
EuroBioSciences, 

Friesoythe, Germany 

CD127 (IL7R) PE IgG1 hIL-7R-M21 mouse BD 

CD137 (TNFRSF9/ 4-1BB) FITC IgG1 4B4-1 mouse AbD Serotec, Oxford, UK 

CD137L (TNFSF9/ 4-1BBL) R-PE IgG1 C65-485 mouse BD 

GITR (TNFRSF 18) FITC IgG1 110416 mouse R&D Systems 

IgG1 isotype control R-PE IgG1 MOPC-21 mouse BD 

IgG1 isotype control FITC IgG1 MOPC-21 mouse BD 

IgG2a isotype control FITC IgG2a  mouse NatuTec 

IgG indicates immunoglobulin G; FITC, fluorescein isothiocyanate; PE, phycoerythrin. 

Analysis of Surface Expression by Flow Cytometry 

Expression of differentiation markers was analysed by flow cytometry. Briefly, 1 × 10
6
 cells were 

washed in FACS-buffer (PBS without Ca
2+

 and Mg
2+

 containing 5% FCS and 0.01 % NaN3) and fixed 

in 2% paraformaldehyde in PBS. Thereafter, cells were stained with monoclonal antibodies (Table2) 

and the respective isotype control antibodies for 45 min on ice. After two wash steps in FACS-buffer, 

fluorescence was measured on a flow cytometer (FACS Calibur, BD, San Jose, CA, USA). Data were 

evaluated with FCS Express version 3 [133] and the mean of % positivity of surface expression +/− 

standard error (SE) of three independent experiments was calculated.  
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