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Abstract: Lymphocytic choriomeningitis virus (LCMV) has contributed to unveil some of 
the molecular mechanisms of lethal mutagenesis, or loss of virus infectivity due to 
increased mutation rates. Here we review these developments, and provide additional 
evidence that ribavirin displays a dual mutagenic and inhibitory activity on LCMV that can 
be relevant to treatment designs. Using 5-fluorouracil as mutagenic agent and ribavirin 
either as inhibitor or mutagen, we document an advantage of a sequential  
inhibitor-mutagen administration over the corresponding combination treatment to achieve 
a low LCMV load in cell culture. This advantage is accentuated in the concentration range 
in which ribavirin acts mainly as an inhibitor, rather than as mutagen. This observation 
reinforces previous theoretical and experimental studies in supporting a sequential 
inhibitor-mutagen administration as a possible antiviral design. Given recent progress in 
the development of new inhibitors of arenavirus replication, our results suggest new 
options of ribavirin-based anti-arenavirus treatments. 
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1. Introduction: complexity of LCMV populations 
 

Michael B.A. Oldstone wrote that “LCMV has proven to be a Rosetta stone for uncovering 
numerous phenomena in virology and immunology”. The several crucial achievements were listed by 
Oldstone in an introduction to an outstanding compilation of review articles on arenavirus biology [1]. 
Yet, arenaviruses pose important challenges regarding the mechanism of replication and regulation of 
gene expression of a segmented genome, as well as disease mechanisms, prevention and treatment. 
Persistent arenavirus infections are highly prevalent among rodents, and when some of the viruses 
infect humans they may cause severe disease, including hemorrhagic fevers [2-4]. The prototypic 
arenavirus LCMV is increasingly regarded as a neglected human pathogen [5-8]. Unfortunately, the 
number of preventive or therapeutic possibilities for arenavirus-associated disease is very restricted. 
Despite promising developments [9-12], no licensed vaccines are generally available, and current 
therapy is essentially limited to an off-label use of the antiviral agent ribavirin (1-β-D-ribofuranosyl-1-
H-1,2,4-triazole-3-carboxamide) (Rib) [13,14]. This is why arenavirus-related diseases are an 
interesting target to explore new antiviral designs. 

Lack of effective vaccines and antiviral treatments is a general difficulty for diseases associated 
with highly variable RNA viruses, due to quasispecies dynamics [15]. The root of the problem is that 
mutations occur at such a high rate during RNA genome replication that even what is generally termed 
the “wild type” virus is, at any time, an average of a multitude of sequences. Although our attention is 
often fixed on a consensus sequence or on specific mutants identified in mutant spectra, in reality we 
deal with mutant clouds of rather indeterminate composition despite transient dominance of some 
specific mutant residues. Analyses of mutant spectra by ultra-deep sequencing have confirmed the 
extreme complexity of viral populations in nature, in support of previous evidence obtained by 
molecular cloning and sequencing ([16,17], among other examples [15]). LCMV participates of high 
mutation rates and quasispecies dynamics, with a direct implication in viral persistence and disease 
([18-32]; reviews in [33,34]). The range of mutation frequencies calculated with genomes sampled 
from mutant spectra of LCMV populations passaged in cell culture in absence of mutagenic agents is 
in the range of 1.0 × 10-4 to 7.5 × 10-4 substitutions per nucleotide (s × nt-1), and mutation frequencies 
reached 3.6 × 10-3 and 1.1 × 10-3 s × nt-1 when the virus was passaged in the presence of 5-fluorouracil 
(FU) or Rib, respectively [35-40]. Mutation frequencies are in agreement with values of Shannon 
entropy, a measure of the proportion of different sequences in a genome distribution. Both parameters 
are used to quantify the complexity of mutant spectra, which is influenced by the number of passages 
from a clonal origin (i.e. starting with a plaque-purified virus), the multiplicity of infection (MOI), and 
the viral gene analyzed. Several studies indicate that the complexities of mutant spectra of LCMV are 
comparable to those determined for other RNA viruses [15]. 
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2. Contributions of LCMV to lethal mutagenesis 
 

Mutations often entail a fitness cost, and this applies also to drug-escape mutants. The almost 
systematic selection of drug-resistant viral mutants can be explained by the existence of multiple 
pathways to resistance, some with limited fitness cost (under a genomic sequence context or a given 
environment), and to the selection of compensatory (fitness-enhancing) mutations in viral genomes 
that continue expressing the resistance phenotype [15]. Under this scenario, it has been amply 
recognized that new antiviral strategies must be investigated to avoid or minimize the selection of drug 
or multi-drug-escape mutants, and the consequent treatment failure. Strategies already implemented or 
under development are combination therapies, splitting of treatment between an induction and a 
maintenance regimen, use of drugs that target cellular functions, and combination of immunotherapy 
and chemotherapy. As reviewed in [15], none of these strategies is free of the problem of selection of 
escape mutants.  

An additional strategy now under investigation is lethal mutagenesis, also termed virus entry into 
error catastrophe, in recognition of its conceptual origins. It consists in achieving large reductions of 
viral load and ideally virus extinction by increasing the mutation rate of the virus above a critical error 
rate that sets a limit for virus viability. Current research involves the use of mutagenic base or 
nucleoside analogues which are converted intracellularly in the nucleoside-triphosphate derivatives 
which are incorporated into viral RNA during elongation. They do not act as chain terminators, a 
mechanism that results mainly in inhibition, but they allow continued chain elongation, a mechanism 
that results in mutagenesis. The latter is a result of the ambiguous pairing with the corresponding 
complementary purine or pyrimidine nucleotides, when the analogue is either a substrate or a template 
residue [41]. Lethal mutagenesis was inspired in the concept of crossing an error threshold, or 
transition into error catastrophe, established as an important corollary of quasispecies theory [42,43]. 
Crossing the error threshold implies loss of genetic information. It was reasoned that drugs that 
increase the mutation rate of a virus above a viability threshold may highly diminish the chances of 
virus escape. Mutagenesis can provide an advantage over conventional non-mutagenic inhibitors 
because mutagenized genomes may suppress the most infective subpopulations of genomes coexisting 
in the same quasispecies, as discussed in the next section. A number of base and nucleoside analogues 
are currently under development as potential new antiviral mutagenic agents [44-50]. 

At present it is not known whether in the context of a clinical application of lethal mutagenesis [51], 
mutagen-resistant mutants will be as readily selected as inhibitor-resistant mutants. Rib-resistant 
mutants have been isolated in cell culture [52-65], and in patients subjected to Rib monotherapy [66]. 
Rib resistance can have multiple mechanisms, as evidenced by the fact that resistance mutations have 
been mapped in several viral genes. When resistance is associated with amino acid substitutions in the 
polymerase, it can be due to restoration of polymerase activity or to alterations of nucleotide 
recognition. The latter can occur through at least three mechanisms: average increase of template-
copying fidelity, specific decrease of Rib-triphosphate incorporation (without a significant effect on 
general fidelity), or modulation of the transition types produced in the presence of Rib (without 
alteration of the average mutation frequency among the components of the mutant spectrum)  
[55,57-59,61].  
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LCMV has had an important contribution regarding the feasibility of a lethal mutagenesis-based 
approach in vivo [37], and in the proposal of the lethal defection model of virus extinction 
(participation of defective viruses in decrease of replicative competence of a viral quasispecies [67]), 
two of the highlights of lethal mutagenesis research (Table 1). In addition, early experiments 
evidenced that LCMV could be efficiently extinguished by enhanced mutagenesis [35] (comment by 
Eigen [68]). The transition towards extinction did not involve any modification of the consensus 
genomic sequence, and entailed a 102- to 103-fold decrease in specific infectivity of LCMV [36]. 
These were revealing observations to interpret the molecular events associated with virus extinction.  

 
Table 1. Some highlights in lethal mutagenesis research. 

 
Observation and implications References 

• J.J. Holland and colleagues explore for the first time quasispecies error 
catastrophe with real viruses and show that poliovirus and vesicular 
stomatitis virus have very limited tolerance to increased mutagenesis. 

[69] 

This study was the birth of experimental studies on the application of the 
concept of error catastrophe developed by M. Eigen, P. Schuster and 
colleagues. 

 

• L.A. Loeb, J. Mullins and colleagues show that a mutagenic pyrimidine 
analogue impairs HIV-1 replication in cell culture. They coin the term 
“lethal mutagenesis”. 

[70] 

This study suggested the use of mutagenic agents as antiretroviral drugs.  

• E. Domingo, P. Lowenstein and colleagues show that lymphocytic 
choriomeningitis virus and foot-and-mouth disease virus can be 
extinguished by mutagenic agents, and that low viral load and low viral 
fitness favor extinction. 

[35, 71] 

These experiments suggested that modification of virus population 
parameters, specifically a decrease in fitness and low viral load, may help 
in producing virus extinction. 

 

• S. Crotty, R. Andino, C.E. Cameron and colleagues demonstrate that the 
antiviral ribonucleoside analogue ribavirin is mutagenic for poliovirus.  

[72] 

This important discovery implied that ribavirin might be exerting some of its 
antiviral clinical activity as a mutagen. This is still a debated issue, but 
there is evidence that ribavirin is mutagenic for a number of RNA viruses 
including LCMV. 

 

• 5-Fluorouracil impeded the establishment of a persistent LCMV infection 
in mice. 

[37] 

This experiment constitutes a proof of principle of the feasibility of a lethal 
mutagenesis-based antiviral approach in vivo. 
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Observation and implications (Continuation) References 

• Experimental and theoretical evidence for the lethal defection model of 
virus extinction. 

[67] 

These results introduced the concept that a mutagenic agent may not only 
“kill” virus but that, more subtly, the agent may be generating interfering 
genomes that participate in the impairment of viral replication and eventual 
extinction. The results suggested also the possibility of guiding internal 
interactions within mutant spectra to achieve extinction through modest 
mutagenic intensities. 

 

• When a mutagen participates in therapy, a sequential inhibitor-mutagen 
administration might have an advantage over the corresponding combination 
treatment. 

[73-75] 

These studies illustrate that the interactions among drugs must be 
considered with regard to efficacy, in particular in the case of antiviral 
inhibitors used with virus-specific mutagenic agents. The general advantage 
of a combination therapy need not apply when a mutagen is involved in 
therapy. 

 

• 5-Azacytidine can induce lethal mutagenesis of HIV-1 [76] 
This result suggests that some nucleotide analogues can be incorporated 
both into RNA and DNA during the retroviral life cycle. It shows also that 
there is room for classic antiviral and anti-cancer agents to find an 
application in lethal mutagenesis. 

 

• First clinical trial involving administration of a pyrimidine analogue to 
AIDS patients. The resident HIV-1 was mutagenized although no virus 
extinction was achieved. 

[51] 

In addition to representing the first clinical trial based on lethal 
mutagenesis, this result opens the possibility of improved efficacy in vivo 
using either combination or sequential administration of inhibitors and 
mutagens, in conjunction with provirus mobilization from carrier cells, a 
point under active investigation. 

 

 

 
3. Lethal defection and the anti-arenavirus activity of ribavirin 
 
Lethal defection introduced a role of internal interactions among components of a mutant spectrum in 
the process of virus extinction. The key observation was that when a persistent LCMV infection of 
BHK-21 cells was perturbed by addition of the mutagen FU, viral infectivity decreased at a faster rate 
than the level of viral RNA [67]. The unexpectedly faster kinetics of loss of infectivity than viral RNA 
was interpreted as due to the presence of a class of defective genomes, termed “defectors”, that were 
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generated as a consequence of mutagenesis. Defectors could replicate their RNA but jeopardize 
formation of infectious particles, contributing to a decline of infectivity that was more substantial than 
the decline of viral RNA. The experimental findings were supported by in silico simulations of the 
outcome of LCMV replication in the absence or presence of defectors under different mutagenic 
intensities [67,77]. The combination of theory and experiment led to the proposal of the lethal 
defection model, according to which defectors play an important role in virus extinction. The term 
defector had been previously used to refer to other types of non-functional genomes in models of RNA 
virus evolution [78,79]. In lethal mutagenesis, a defector is a genome that manifests some defect 
during its replication cycle, that may or may not complete production of infectious particles, but that is 
competent in RNA replication. The latter feature is essential to express an interfering activity against 
fully infectious viral genomes, as documented with specific foot-and-mouth disease (FMDV) capsid 
and polymerase mutants displaying high or low levels or RNA replication [80]. Furthermore, an 
interfering, replication-competent virus with two polymerase substitutions lost its interfering activity 
when a third polymerase mutation that abolished RNA replication was introduced in the genome [80]. 
Current models suggest that interference can come about through expression of non-functional or 
suboptimal viral proteins by the defectors, since a majority of viral proteins are multi-functional and 
active through formation of homomeric or heteromeric complexes with viral or host proteins (for 
example, proteins that must interact to form the viral capsid or RNA replication complexes). A protein 
that includes an amino acid substitution at critical contact site, and that is encoded by a subset of 
genomes from a mutant spectrum, may contribute to formation of either non-functional or suboptimal 
complexes, thereby decreasing the replicative efficiency of the viral genomes that exploit that 
particular protein complex. In a mutagenized mutant spectrum, this mechanism may have a 
multiplicative effect as a result of the action of many low frequency variants harboring “defector-
prone” mutations that may adversely affect one or more viral functions. This view is an extension of 
interference as defined in classic genetics [81], applied to a context of multitudes of micro-interference 
events in a mutant cloud [15]. 
A direct biochemical evidence of formation of suboptimal protein complexes as a result of 
mutagenesis is still lacking. However, interference by mutant spectra has been reported for a variety of 
virus-host systems in cell culture and in vivo, and suppression can limit replication of high fitness, 
virulent or drug-resistant mutants [32, 67, 82-85]. Internal interactions within mutant spectra confer 
viral quasispecies an identity as units of selection, a hallmark of the quasispecies concept [42]. In the 
original quasispecies theory the unit of selection was founded on the cross-talk through mutation 
among components of the same mutant spectrum. In viruses the cross-talk occurs through interactions 
among expression products. Such interactions represent an important conceptual departure over classic 
models that viewed quasispecies (or “intra-host variations”, as sometimes inaccurately named) as mere 
aggregates of mutants resulting from a mutation-selection equilibrium [15,86]. Both, in theoretical 
quasispecies and in viral quasispecies an interacting mutant ensemble is the unit of selection. 
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4. Sequential versus combination antiviral treatments 
 
4.1. The advantage of combination treatments to control viral quasispecies may not apply universally  

 
There is little question that administration of combinations of two or more drugs diminish the 

probability of selecting drug-escape mutants for rather obvious statistical reasons, a concept that has 
been amply supported by theoretical studies and clinical practice (reviewed in [15]). A similar 
argument applies to the control of variable infectious cellular agents such as bacteria (accentuated in 
those displaying a mutator phenotype), parasites or cancer cells [87-89]. 

Initial experiments on mutagenesis-based extinction of FMDV and HIV-1 showed that the addition 
of an antiviral inhibitor to a mutagenic agent facilitated extinction, in particular when the target viruses 
displayed high replicative fitness [90,91]. Since low viral load favored extinction by mutagenesis [71], 
the advantage of a combination of a mutagen and an inhibitor was interpreted as being a consequence 
of the reduction of viral load caused by the inhibitor. However, upon further examination of FMDV 
extinction mediated by Rib mutagenesis and inhibition by guanidine hydrochloride (an inhibitor of 
picornavirus RNA replication), alternative protocols were compared. They involved serial virus 
passages in the presence of the following drugs: (i) guanidine alone; (ii) Rib alone; (iii) a combination 
of guanidine and Rib; and (iv) first guanidine followed by Rib. Unexpectedly, protocol iv rendered the 
lowest viral loads and earliest extinction [73]. The results were supported by a theoretical model on the 
predicted consequences of a mutagenic agent and an antiviral inhibitor acting simultaneously or 
sequentially on a viral quasispecies [73]. A mutagen can display potentially conflicting activities: it 
may increase the frequency of defectors to favor extinction or the frequency of inhibitor-resistant 
mutants to hinder extinction. In addition, it was shown experimentally that the presence of guanidine, 
but not of Rib, prevented the interference exerted by specific FMDV mutants [73], in agreement with 
the fact that interfering mutants must replicate their RNA to exert interference [80]. Thus, at least on 
two grounds (the effects of a mutagen and an inhibitor acting on a replicating mutant spectrum and a 
diminished interference due to the presence of an inhibitor that prevents replication of defectors), a 
combined administration (simultaneous presence) of an inhibitor and a mutagen might limit the 
efficacy of lethal defection-mediated extinction. 

Further elaboration of the theoretical model, together with additional experiments with FMDV, 
delimited a range of parameters (in particular the intensities of mutagenesis and inhibition) under 
which a sequential inhibitor-mutagen administration could have an advantage over the corresponding 
combination treatment [74,75]. These studies indicated that the efficacy of a sequential treatment was 
restricted to an inhibitor-mutagen administration (not the converse) and was more prominent when 
high initial inhibitory concentrations were used. In contrast, the model predicts that a combined 
administration is always preferred over a sequential administration when either two inhibitors or two 
mutagens are involved in therapy [73-75]. The case of two inhibitors has been amply demonstrated, 
and a preference of combination over sequential treatments is currently reflected in standard clinical 
practice. In the light of the experimental results with FMDV and the predictions of the theoretical 
model of viral dynamics [73-75], we have now explored alternative lethal mutagenesis protocols with 
LCMV. 
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4.2. Ribavirin in sequential versus combination administration for lethal mutagenesis of LCMV 
 

LCMV infection offered a unique opportunity to further test a possible advantage of a sequential 
inhibitor-mutagen versus a combination protocol since Rib displays a dual mutagenic (at low 
concentrations) and inhibitory (at high concentration) activity on LCMV in cell culture [39]. The 
efficiency of a sequential Rib → FU versus a combination [Rib + FU] treatment, was investigated 
using three Rib concentrations (20, 40 and 60 µM), and a fixed FU concentration (35 µg/ml). The 
range of Rib concentrations was such that its activity went from being mainly mutagenic (20 µM) to 
mainly inhibitory (60 µM) [39]. FU was used at a concentration which is mutagenic but permissive for 
continued LCMV replication [35]. Treatment with a single drug (either FU or Rib), as well as 
sequential and combination anti-LCMV protocols with the two drugs were compared in the course of a 
single infection of BHK-21 cells (without virus passage). The experimental procedures were those 
used in our previous studies [35-39]. Viral infectivity in the cell culture supernatants was determined at 
different hours post infection (hpi) (Figure 1). At early times (12 and 18 hpi), the sequential treatment 
yielded lower levels of infectious virus under all conditions tested, with a ratio of titers of sequential 
versus combined administration (measured at the same time p.i.) in the range of 0.07 to 0.12 
(calculated from the data shown in Figure 1). The same ratio calculated at 24 hpi yielded a range of 
0.48 to 0.62. Interestingly, an advantage (lower yield of infectious virus) of the sequential Rib (60 µM) 
→ FU over the corresponding combination was noted at 48 hpi, with a titer ratio of 0.02 and 1.73 with 
60 µM Rib and 20 µM Rib, respectively. The higher effectiveness of the Rib → FU sequential 
treatments occurred despite exposure to each drug for 48h during the combination treatment, and 24h 
during the sequential administrations (compare arrows in Figure 1B, C). The decrease in infectious 
virus yield at 48 hours post infection correlated with the concentration of Rib, either in monotherapy or 
in the combination and sequential protocols involving Rib and FU (p<0.05, Spearman correlation test). 
This is expected from previous studies that showed an inhibitory activity of Rib on LCMV production, 
that increases with Rib concentration [39]. At 48 hours post infection, a lower LCMV yield in the 
sequential relative to the combined administration of Rib and FU was observed only with Rib 
concentration of 40 µM and 60 µM, and in both cases the differences were statistically significant 
(p=0.0015 and p=0.0011, respectively; Mann-Whitney test). In contrast, no such advantage of the 
sequential treatment was observed when the Rib concentration was 20 µM (p=0.0557; Mann-Whitney 
test), concentration at which Rib acts as a mutagen [39]. In fact, the tendency was the contrary: with 20 
µM Rib, the sequential administration produced a 1.7-fold higher LCMV yield than the corresponding 
combined administration (Figure 1). This is in agreement with theoretical predictions based on 
experimental parameters obtained with FMDV that suggest that when either two inhibitors or two 
mutagens (rather an inhibitor and a mutagen) are involved in therapy, a combination treatment will 
generally be more effective that the corresponding sequential treatment [76]. The differences in virus 
yield between sequential and combined administrations, measured at earlier times post infection, are 
also statistically significant (p<0.05; Mann-Whitney test). The decreases in infectivity were paralleled 
by decreases in viral RNA production (data not shown).   
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Figure 1. LCMV production following different drug treatments. The time of 
preincubation (Preinc.) with the indicated drugs, and the time of measurement (expressed 
in hours) of the virus titer in the cell culture supematants is indicated with the arrow at the 
top of each panel. +LCMV indicates infection of BHK-21 cells with LCMV Arm 53 at a 
multiplicity of infection of 10 PFU/cell. Titiers, obtained by plaque assay on Vero cell 
monolayers, are expressed in PFU/ml and are the average (+ SD) of three determinations, 
FU was used at 35 µg/ml, and Rib at the indicated µM concentrations, as justified in the 
text. “No drug” means the same infection protocol in the absence of any drug at any time. 
The top panel (A) corresponds to LCMV infectious progeny production following 
treatment with either FU or Rib alone (monotherapy). The middle panel (B) corresponds to 
LCMV production following combination [Rib+FU] treatments. The bottom panel (C) 
corresponds to LCMV production following Rib, FU sequential administrations. To change 
the drug in the culture medium, the medium was removed, the monolayer washed three 
times with medium (DMEM with 5% foetal calf serum), and the new medium with the 
desired drugs added to the monolayer. The middle panel gives the production following the 
combined [Rib + FU] administrations. The statistical significances of the differences 
between infectious LCMV production under different drug concentrations and 
administration protocols are given in the text. Toxicity of drugs for BHK-21 cells, 
procedures for drug treatments, LCMV infections and plaque assay have been previously 
described [35,36,38-40,56]. 

 
Figure 1. Find panel C in the next page      
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Figure 1. cont. 
 

 
 
The results indicate that the previously documented benefits of a sequential inhibitor-mutagen 

administration described with FMDV and supported by a model of virus dynamics [73-75], applies 
also to LCMV, and the advantage was more pronounced when the virus titer was measured at late time 
(48 hpi). It must be noted that the design of the experiment with LCMV (Figure 1) differs from the 
previous one with FMDV [74-76] in that rather than completing several passages (each of them until 
overt cytopathology was observed) in the presence of either an inhibitor, a mutagen or both, here we 
have sampled the supernatant of the same cell culture at different times post infection, as in previous 
protocols of lethal mutagenesis of LCMV [38, 67]. The different design with FMDV and LCMV is 
partly justified by the cytolytic nature of FMDV infections versus persistence of LCMV (with no 
detectable cytopathology) in BHK-21 cells (compare Figure 1 with the experimental schemes reported 
in [73,75]). 

To investigate whether Rib and FU exerted a mutagenic activity in the course of the different 
treatments (Figure 1), we determined the complexity of the mutant spectra of LCMV populations at 48 
hpi produced under either sequential of combined drug treatments. To this aim, RNA extracted from 
the cell culture supernatant was subjected to RT-PCR amplification and molecular cloning under 
conditions of excess viral RNA template to ensure that the resulting molecular clones were a non-
redundant sample of the viral genomes in the population. This procedure and its controls were carried 
out as detailed previously [39]. The results (Table 2) show that for each Rib concentration tested, the 
complexity of the mutant spectrum was significantly higher in samples subjected to sequential than to 
combined administration (p<0.05; χ2 test). The types of mutations indicate a dominance of A → G 
transitions during the combined treatment, either with 20 or 60 µM Rib. Since A → G and U → C are 
the most frequent mutation types associated with FU mutagenesis of LCMV and FMDV [35-39,71, 
90,92], this bias suggests a dominance of the mutagenic activity of FU even when Rib was present at a 
mutagenic concentration. The sequential treatment resulted in an increase of G → A transitions 
although the difference between the populations subjected to 20 and 60 µM Rib was not significant. In 
the sequential administration, when the medium with 60 µM Rib was removed to apply the medium 
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containing FU, Rib might have reached a transient, intracellular mutagenic concentration, allowing 
viral replication and, as a consequence, an increased mutant spectrum complexity. Alternatively, 
60 µM Rib may have a mutagenic activity as an intermediate mechanism before the inhibition is 
manifested. In our previous study on Rib mutagenesis [39] we did not distinguish whether the 
inhibitory activity of Rib was independent of its mutagenic activity or linked to it. It is possible that at 
early times after infection, the advantage of a sequential administration was not observed with 60 µM 
Rib because it was acting as a mutagen [74,75]. The possibility that high Rib concentrations might be 
inhibitory as a consequence of lethal mutagenesis of LCMV cannot be excluded, and it begs further 
investigations. 

 
4.3. Implications and prospects for anti-arenavirus interventions 
 

The results that we have reported here (Figure 1 and Table 2) have confirmed that Rib can be 
mutagenic for LCMV [39] and that a double mutagenic activity by Rib and FU was reflected in the 
mutant spectra of treated LCMV populations. Previous studies from our laboratory showed that a 
mutagenic activity can help extinguishing a virus resistant to another mutagen [93], a use of two 
mutagens that must be distinguished from their combined action. When present together, the outcome 
of two mutagens with different mutagenic specificities may be difficult to predict. Complex 
interactions have been previously described when two mutagenic activities (exogenous 5-azacytidine 
and endogenous APOBEC3G) acted on HIV-1 [94]. There is increasing evidence that the activity of 
two drugs often cannot be explained as the sum of activities of each drug when acting independently 
[74,75,95]. This fact, together with the dynamics of quasispecies replication (which involves changes 
in frequency of multiple subpopulations), should be considered in the design of antiviral strategies 
[15,74,75]. 

It may be viewed as premature that we emphasize the possibility of sequential inhibitor-mutagen 
protocols against arenavirus infections. At the time of this writing, a mutagenic activity of Rib against 
arenaviruses in vivo has not yet been demonstrated. However, animal model systems are available to 
test a possible mutagenic activity of Rib in vivo, and the search and design of antiviral base and 
nucleoside analogues is an expanding area of chemical pharmacology. In addition, several new  
non-mutagenic anti-arenavirus inhibitors are under investigation [11-13,96-101]. Thus, following the 
recent pioneer clinical trial with AIDS patients treated with a mutagenic pyrimidine analogue [51], 
arenaviruses offer a great potential for exploration of efficacy of alternative lethal mutagenesis 
protocols in vivo, while monitoring the composition of mutant spectra. This undertaking should be 
facilitated by the use of second- and third-generation massive sequencing techniques. 

 



Table 2. Quasispecies analysis of LCMV populations in combined and sequential administration of Rib und FU. 



5. Concluding remarks 
 

Quasispecies did not exist as a scientific concept until 1971, when Manfred Eigen published his 
pioneer treatise [102]. Since its completion by Eigen and Schuster [42], the theory has been extended 
to finite populations of replicons under non-equilibrium conditions, and several of its ground-breaking 
predictions (adaptability, limitations for sustained maintenance of information, ensembles of mutants 
as units of selection, etc.) have been applied and confirmed with complex biological entities such as 
the RNA viruses, with their highly compact genomes. Despite many unknowns in viral dynamics, the 
new insight provided by quasispecies is now permeating several aspects of RNA virus biology, 
including medical aspects such as the design of antiviral therapies. Treatment of arenavirus infections 
may also benefit from these developments. 
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