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Abstract: The genus Megalocytivirus, represented by red sea bream iridovirus (RSIV), the 

first identified and one of the best characterized megalocytiviruses, Infectious spleen and 

kidney necrosis virus (ISKNV), the type species of the genus, and numerous other isolates, 

is the newest genus within the family Iridoviridae. Viruses within this genus are causative 

agents of severe disease accompanied by high mortality in multiple species of marine and 

freshwater fish. To date outbreaks of megalocytivirus-induced disease have occurred 

primarily in south-east Asia and Japan, but infections have been detected in Australia and 

North America following the importation of infected ornamental fish. The first outbreak of 

megalocytiviral disease was recorded in cultured red sea bream (Pagrus major) in Japan 

in 1990 and was designated red sea bream iridovirus disease (RSIVD). Following infection 

fish became lethargic and exhibited severe anemia, petechiae of the gills, and enlargement 

of the spleen. Although RSIV was identified as an iridovirus, sequence analyses of RSIV 

genes revealed that the virus did not belong to any of the four known genera within the 

family Iridoviridae. Thus a new, fifth genus was established and designated Megalocytivirus 

to reflect the characteristic presence of enlarged basophilic cells within infected organs. 

Indirect immunofluorescence tests employing recently generated monoclonal antibodies 

and PCR assays are currently used in the rapid diagnosis of RSIVD. For disease control, a 

formalin-killed vaccine was developed and is now commercially available in Japan for 

several fish species. Following the identification of RSIV, markedly similar viruses such as 

infectious spleen and kidney necrosis virus (ISKNV), dwarf gourami iridovirus (DGIV), 

turbot reddish body iridovirus (TRBIV), Taiwan grouper iridovirus (TGIV), and rock 

bream iridovirus (RBIV) were isolated in East and Southeast Asia. Phylogenetic analyses 
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of the major capsid protein (MCP) and ATPase genes indicated that although these viruses 

shared considerable sequence identity, they could be divided into three tentative species, 

represented by RSIV, ISKNV and TRBIV, respectively. Whole genome analyses have 

been reported for several of these viruses. Sequence analysis detected a characteristic 

difference in the genetic composition of megalocytiviruses and other members of the 

family in reference to the large and small subunits of ribonucleotide reductase (RR-1, 

RR-2). Megalocytiviruses contain only the RR-2 gene, which is of eukaryotic origin; 

whereas the other genera encode both the RR-1 and RR-2 genes which are thought to 

originate from Rickettsia-like -proteobacteria. 

Keywords: Iridoviridae; Megalocytivirus; RSIV; ISKNV; TRBIV 

 

1. Introduction 

The family Iridoviridae is a family of large dsDNA viruses that display icosahedral symmetry and 

range in size from 120–200 nm in diameter. The family consists of five genera, Iridovirus, 

Chloriridovirus, Ranavirus, Lymphocystivirus and Megalocytivirus [1]. Megalocytivirus is the newest 

genus within the family and, along with the Ranavirus and Lymphocystivirus genera, contains 

members that infect cold-blooded vertebrates. Although not yet formally adopted by the International 

Committee on the Taxonomy of Viruses (ICTV), the subfamily designation Chordiridovirinae has 

been proposed by Chinchar et al. for this group [2]. Red sea bream iridovirus (RSIV) is the first 

reported member of this genus and is the causative agent of severe disease in mainly East and 

Southeast Asian maricultured fish species. In recent years, many closely related viruses have been 

reported from this area. In this report, the history of research on RSIV is reviewed and the relationship 

between RSIV and other members of the genus Megalocytivirus is discussed.  

2. First Report of Megalocytiviral Disease: Clinical Signs, Pathology and Epidemiology of the 

Red Sea Bream Iridovirus Disease (RSIVD) 

The first outbreak of megalocytivirus-induced disease was recorded in cultured red sea bream 

(Pagrus major) in Japan in 1990 and designated red sea bream iridovirus disease (RSIVD) by 

Inouye et al. [3]. Since 1991, the disease has caused mass mortalities in more than thirty species of 

cultured marine fish in the western part of Japan. The disease infects mainly fingerlings but 

market-sized fish are also affected. The range of susceptible hosts consists mainly of species within the 

order Perciformes, but some species belonging to the orders Pleuronectiformes and Tetraodontiformes 

are also affected [4,5]. In the case of RSIVD in Japan, the disease occurs mainly in the summer, a 

period of relatively high water temperature. Diseased fish are lethargic, swim helplessly, and show 

severe anemia, petechiae of the gills, and enlargement of the spleen with 20–60% mortality. 

Histopathology is characterized by development of enlarged cells in the spleen, heart, kidney, liver, 

and gills (Figure 1a) that display basophilic characteristics when stained with Giemsa [3]. These 
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enlarged cells have been termed inclusion body-bearing cells and their appearance is pathognomonic 

for RSIVD [6,7]. 

Figure 1. (a) Giemsa-stained impression smears of the spleen of RSIV-infected red sea 

bream display enlarged cells characterized by basophilic staining. (b) Electron micrograph 

of RSIV-infected spleen cells. (c) Higher magnification of the virions seen in panel B. All 

photographs were kindly provided by Dr. K. Inouye. 

 

3. Virological Studies and Pathogenicity of the Agent 

Icosahedral virions are found within the cytoplasm of enlarged cells (Figure 1). Each virion consists 

of a central electron-dense core (120 nm), an electron translucent zone, and measures 120–200 nm in 

diameter. Feulgen staining of enlarged cells demonstrated the presence of DNA in the viral inclusions. 

These morphological features suggested that the virus belonged to the family Iridoviridae and the virus 

was named red sea bream iridovirus (RSIV) after the species from which it was first isolated. RSIV 

replicated slowly and produced cytopathic effect (enlarged and rounded cells) in cultures of RTG-2, 

CHSE-214, FHM, BF-2 and KRE-3 cells at 20–25 °C. However, RTG-2, CHSE-214, and FHM 

cultures were not suitable for diagnosis because CPE developed very slowly and resulting viral titers 

(an indication of susceptibility) were low. Intraperitoneal inoculation into red sea bream fingerlings of 

a cell-free preparation that was prepared from the spleens of infected fish and filtered by passage 

through a 0.45 micron membrane induced pathological changes similar to those observed in naturally 

diseased fish [3]. Subsequently, the biological and physico-chemical properties of this virus were 

studied [8]. It was shown that the virus replicated in BF-2 and KRE-3 cells at an optimal temperature 

of 25 °C but that serial passage of the virus in both BF-2 and KRE-3 cells resulted in a gradual 

decrease in infectivity and loss of infectious virus. Consistent with the presence of a lipid membrane, 

both chloroform and ether treatment destroyed the infectivity of RSIV. Furthermore, the virus was acid 

(pH 3.0) and heat (56 °C 30 min) labile, and iododeoxyurdine inhibited viral replication by 3 log units. 

Membrane filtration suggested that virion diameter was less than 220 nm. The pathogenicity of RSIV 

isolates from various cultured marine fish species was confirmed by experimental infection using red 

sea bream as the host. In addition, pathogenicity of RSIV isolated from red sea bream for Japanese 

amberjack (Seriola quinqueradiata) was also demonstrated [9]. These results showed RSIV to be a 

newly identified and unique piscine iridovirus which, although initially isolated from red sea bream, 

displayed a remarkably broad host range.  

RSIV infected cell
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a b c

RSIV infected cellRSIV infected cell
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4. Establishment of a New Genus within the Family Iridoviridae 

Using a unique culture method involving persistently-infected Grunt Fin (GF) cells and subsequent 

virus purification, both polyclonal and monoclonal antibody preparations [10] specific to RSIV were 

produced. Comparison of infected cells stained by monoclonal antibody M10, which likely recognizes 

a virus induced non-structural protein which is expressed prior to the major capsid protein, and rabbit 

anti-RSIV polyclonal antibody, which recognizes viral structural proteins, showed (Figure 2) that the 

M10 target is expressed in all infected cells and widely distributed throughout the cell (Panel a), 

whereas structural proteins (Panel b) are expressed in only a fraction of infected cells and confined 

primarily to viral assembly sites. The observation that most infected cells failed to express viral 

structural protein explains why it is difficult to culture virus. Further serological analysis showed that 

RSIV was quite different from previously characterized fish and amphibian ranaviruses, i.e., no cross 

was noted between megalocytiviruses and frog virus 3 (FV3), epizootic haematopoietic necrosis virus 

(EHNV), European sheatfish virus (ESV) and Singapore grouper iridovirus (SGIV) [10,11]. In 

addition, partial genomic analysis was performed and the sequences of the DNA polymerase and 

ATPase genes were identified and deposited with Genbank (Acc. Nos. AB007366 and AB007376, 

respectively) [12]. Analysis of those sequences clearly showed that RSIV did not belong to the genera 

Lymphocystivirus, Ranavirus or Iridovirus, but rather represented a fifth genus equidistant, 

phylogenetically, from other genera within the family Iridoviridae. Furthermore, the RSIV major 

capsid protein (MCP) gene, which has served as a target for phylogenetic analyses, was also identified 

(Acc. AB080362) after the complete genomic sequence of a closely related virus, infectious spleen and 

kidney necrosis virus (ISKNV), was reported [13]. Reflecting the presence of characteristically 

enlarged cells within the spleen and other organs of infected fish, the new genus was named 

Megalocytivirus. 

5. Diagnostic Methods for RSIVD 

Analysis of virus-infected cells using Giemsa-stained impression smears of the spleen (Figure 1a) [3] 

has been commonly used for the rapid diagnosis of RSIV-infected fish. However, this method provides 

only a presumptive diagnosis and does not confirm the presence of RSIV. Moreover, isolation of virus 

in cell culture using susceptible cell lines such as BF-2, KRE-3 and GF is time-consuming and 

may require 1 to 2 weeks to complete. Therefore, M10, a monoclonal antibody that recognizes a  

180–230 kDa virus-induced, non-structural protein was selected and used for development of a rapid 

test for RSIV detection [14]. This assay can be used, not only with spleen impression smears from 

infected fish, but also with infected cell cultures and tissue sections. The use of monoclonal antibody 

M10 is described in the Manual of Diagnostic Methods for Aquatic Animals published by the World 

Organization for Animal Health (OIE) and is applicable to both RSIV and ISKNV. Other rapid and 

more sensitive confirmatory diagnostic methods, such as PCR [12,15–18], have also been developed. 

Unfortunately, one of the PCR tests [17] was subsequently shown to be incorrect since it detected a 

contaminant bacterial species closely related to Acholeplasma laidlawii rather than RSIV. 
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Figure 2. Immunofluorescent assay. (a) RSIV-infected Grunt Fin (GF) cells were 

incubated with monoclonal antibody M10 and ballooned, infected cells were identified by 

the presence of diffuse staining throughout the cell; (b) RSIV-infected GF cells were 

incubated with polyclonal rabbit anti-RSIV serum which detects structural proteins. 

In contrast to panel A, staining is seen only within viral assembly sites. Viral assembly 

sites are indicated by arrows. The assembly site becomes granulated and is gradually 

dispersed throughout the whole cell (Panel c); (c) Higher magnification of stained cells 

filled with granules. 
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6. Control of RSIVD by Vaccination 

For the control of RSIVD, an effective formalin-inactivated vaccine was developed by 

Nakajima et al. [19,20]. This injectable vaccine is now commercially available in Japan for red sea 

bream as well as for fish belonging to the genus Seriola, striped jack (Pseudocaranx dentex), Malabar 

grouper (Epinephelus malabaricus) and orange-spotted grouper (Epinephelus coioides). Protection of 

fish species belonging to the genus Oplegnathus by vaccination is difficult because of the high 

susceptibility of these species to RSIV infection. This vaccine represents the first viral vaccine for 

marine fish in the world. A vaccine has also been developed in Taiwan for Taiwan grouper iridoviral 

disease, a similar megalocytiviral disease. 

7. Diseases Similar to RSIVD in East and Southeast Asia 

During the past 15 years, RSIV-like viruses from cultured marine and freshwater fish and tropical 

ornamental fish have been reported mainly in East and South East Asia [2,6,7,21–37]. The various 

isolates include infectious spleen and kidney necrosis virus (ISKNV) (22), Taiwan grouper iridovirus 

(TGIV) [2,22], turbot reddish body iridovirus (TRBIV) [28], rock bream iridovirus (RBIV) [30] and 

dwarf gourami iridovirus [6,33]. These viruses are closely related to RSIV morphologically and 

genetically, and the pathology of infected fish is similar to RSIVD. Given the wide host range of 

RSIV, some of these viruses are likely isolates of RSIV, whereas others likely represent different, but 

closely related, viral species. Genetic analysis suggests that two additional viral species exist in the 

genus Megalocytivirus. One of those is represented by ISKNV isolated from freshwater Chinese perch 

(Siniperca chuatsi) and another by TRBIV isolated from turbot (Scophthalmus maximus).  

8. Complete Genomic Analysis of Megalocytiviruses 

The megalocytiviral genome is a linear, dsDNA molecule that is circularly permuted and terminally 

redundant. However, at this time, the percent terminal redundancy is not known. Currently, complete 

genomic sequence information is known for five megalocytiviruses, ISKNV (AF371960) [13], 

RSIV-Ehime1 strain (BD143114, AB104413) [29,38] rock bream iridovirus (RBIV) (AY532606) [39], 

orange-spotted grouper iridovirus (OSGIV) (AY894343) [40], TRBIV (GQ273492) [41], and large 

yellow croaker iridovirus (LYCIV) (AY779031). GC content and genome lengths range from 53–55% 

and 110,104–112,636 bp, respectively, and are more similar to ranaviruses than to viruses within other 

iridoviral genera. Similar to other vertebrate iridoviruses, it is likely that megalocytivirus genomes are 

highly methylated, as evidenced by the existence of a DNA methyltransferase (DMT) gene and the 

difficulty of cloning of viral genomic fragments using E. coli strains which lack tolerance for 

methylated DNA. There are 116 open reading frames (ORFs) encoded by RSIV Ehime-1 (Figure 3) 

and this number is similar to that seen in other megalocytiviruses. In the case of RSIV, most ORFs are 

non-overlapping and all are intronless. RSIV genes are divided into two categories: (1) those genes 

common to all iridoviruses (~30 genes); and (2) RSIV-specific genes (86 genes). The former includes 

genes encoding the major capsid protein (MCP), the viral DNA polymerase, the two largest subunits of 

the viral RNA polymerase, an XPG/RAD2 family gene, and DMT (common to only vertebrate 

iridoviruses). Supporting the suggestion that RSIV belongs to a fifth genus within the family Iridoviridae, 
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phylogenetic analyses of the MCP indicates that megalocytiviruses cluster closely together and form a 

distinct group apart from those containing ranaviruses or lymphocystiviruses (Figure 4). 

Figure 3. Genome structure of RSIV-Ehime 1 strain. Blue arrows indicate genes common 

among the Megalocytivirus, Ranavirus, Lymphocystivirus and Iridovirus genera. Green 

arrows show genes found among all vertebrate iridoviruses. The single purple arrow shows 

a gene which is not encoded by the genus Ranavirus. Yellow arrows show RSIV-specific 

genes, red annotations indicate putative virus-host interaction genes, and the red arrow 

shows a possible attachment protein gene. 
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Analyses of various megalocytivirus genomes provided important information regarding the 

evolution of the family. Among iridoviruses, major replicative and transcriptive enzymes likely 

originated from their eukaryotic hosts [29,42]. The presence of similar genes among all genera within 

the family suggests that the ancestral iridovirus must have accessed genes from its eukaryotic host 

prior to the later differentiation of the family into the current five genera [29]. Genes originating from 

eukaryotes are also commonly found in other large DNA virus families, but iridoviral genes of 

eukaryotic origin display higher levels of identity to eukaryotic genes than those in other families [29]. 

It is thought that the evolution of iridovirus genes takes place more slowly than that seen in other 

families of large DNA viruses. This may be explained by the acquisition by the ancestral iridovirus of 

a XPG/RAD family gene which functions in DNA repair and helps maintain the integrity of the 

genome [29]. 

Figure 4. Iridovirus phylogeny. The tree was constructed based on amino acid sequences 

of the major capsid protein (MCP) by the neighbor-joining method [43] using MEGA 

(version 4) [44]. The Poisson correction was selected as the distance parameter and 

pair-wise deletion was used to handle sequence gaps. The numbers indicate the percentage 

bootstrap support for each node following 1000 replicates. Ascoviral homologs were added 

as an out-group. Accession numbers are attached to each operational taxonomic unit (OTU). 
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Iridovirus homologs of ribonucleotide reductase, an enzyme that plays a critical role in eukaryotic 

DNA synthesis, deserves special mention. Genes encoding the large and small subunits of 

ribonucleotide reductase (RR-1 and RR-2, respectively) are found in all iridoviruses except the genus 

Megalocytivirus and are thought to be derived from Rickettsia-like eubacteria (Figure 5). Moreover, 

the RR-1 gene from the genus Iridovirus has an intein structure, whereas those of Ranavirus and 

Lymphocystivirus, the vertebrate iridoviral group, do not. RR-1 with an included intein is very rare and 

is only seen in particular bacteria and phage. In contrast, megalocytiviruses encode only the RR-2 gene 

and it shows only very low homology to those of other iridoviruses. Phylogenetic analysis suggests 

that the megalocytivirus RR-2 gene appears to have originated from a past eukaryotic host. Thus, the 

absence of a virally-encoded RR1 gene, as also seen among some poxviruses, suggests that formation 

of a functional RR tetramer likely requires the association of the megalocytivirus RR2 with host 

RR1 [45]. Phylogenetic analysis of RR genes suggests that megalocytivirus RR genes are evolutionarily 

divergent from those of other iridovirus genera (Figure 4). Other megalocytivirus genes of interest 

include a cytokine suppressor gene and three ankyrin repeat-containing genes that possibly encode 

repressors of the host immune response. In addition, a laminin EGF-repeat-containing gene product or 

a putative cell attachment protein containing the RGD motif may serve as viral receptors.  

9. Phylogenetic Analysis and Host Range of Megalocytiviruses 

Phylogenetic analyses using MCP and ATPase genes have been performed for multiple 

megalocytivirus isolates. Analysis of the MCP (Figure 6) and ATPase (Figure 7) genes show that the 

genus Megalocytivirus can be divided into three clusters represented by RSIV, ISKNV and TRBIV 

[29,30,35–37]. Although the amino acid divergence among these three clusters is small, it is about the 

same magnitude as that seen among BIV, TFV, and FV3 (genus Ranavirus, Figure 4) suggesting that 

RSIV, ISKNV, and TRBIV could be considered distinct viral species. When we focused on the RSIV 

cluster, the RSIV-type viruses can be further divided into two subclusters: genotype I, to which RSIV 

Ehime-1 (the type strain of RSIV) belongs, and genotype II, which includes the other major RSIV 

strains found in Japan. It is clear that the virus from Thailand designated grouper sleeping disease virus 

(GSDIV) [24], RBIV isolated in South Korea, and other viruses found in East and Southeast Asia are 

likely strains of the same viral species and belong to RSIV genotype II. Although GSDIV was reported 

as the causative agent of grouper sleeping disease [24], Singapore grouper iridovirus (SGIV), a 

member of the genus Ranavirus, was also reported to be the causative agent of the disease [46]. The 

host range for RSIV is very wide and includes most of the important maricultured fish species. The 

fact that viruses similar to Japanese RSIV are also found in Southeast Asia suggests that RSIV was 

introduced into Japan from Southeast Asia via imported fish seedlings, a hypothesis consistent with the 

one-way movement of seedlings into Japan. 
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Figure 5. Phylogenetic analysis of the small subunit of ribonucleotide reductase (RR-2). 

The tree was constructed by the neighbor-joining method [43] using MEGA (version 4) [44]. 

Poisson correction was selected as the distance parameter and pair-wise deletion was 

chosen to handle gaps. The numbers indicate the percentage bootstrap support for each 

node from 1,000 replicates. 

 

Homo sapience
Brachydanio rerio
Xenopus laevis

VACV
ECTV
VARV
MYXV
SFV
SWPV
LSDV
TANV

Urechis caupo
Spisula solidissima

Homo sapience p53R2
SlMNPV

LdMNPV
Drosophila melanogaster
Aedes albopictus

Saccharomyces cerevisiae 4
Saccharomyces cerevisiae

Schizosaccharomyces pombe
Emericella nidulans
Neurospora crassa
Lentinula edodes

Encephalitozoon cuniculi
Leishmania mexicana amazonensis

Trypanosoma brucei
Dictyostelium discoideum

Cryptosporidium parvum
Plasmodium falciparum

PBCV1
Arabidopsis thaliana

Glycine max
Nicotiana tabacum
Oryza sativa
Caenorhabditis elegans
HZV1

RSIV
ISKNV

McMNPV
SeMNPV
WSSV

ASFV
EsV1

HHV4
SaHV2

GaHV1
GaHV2

HHV1
HHV3

Streptomyces coelicolor
TFV

SGIV
LCDV-1

CIV
Caulobacter crescentus

Bradyrhizobium japonicum
Ehrlichia ruminantium
Rickettsia prowazekii
Rickettsia conorii

Pseudomonas aeruginosa
Pseudomonas putida

Ralstonia solanacearum
Chlamydia trachomatis

Halobacterium sp.
Tropheryma whipplei

Bacteroides flagilis
Treponema pallidum

Clostridium perfringens
Aquifex aeolicus

Fusobacterium nucleatum nucleatum
Synechocystis sp.

Helicobacter pylori
Campylobacter jejuni
Bacillus halodurans

Oceanobacillus iheyensis
Listeria monocytogenesis

Xanthomonas campestris campestris
Xylella fastidiosa

Escherichia coli B
Salmonella typhimurium

Yersinia pestis B
Haemophilus influenzae
Pasteurella multocida
Neisseria meningitidis

Vibrio cholerae
Shewanella oneidensis
Buchnera aphidicoda

T4
Bacillus subtilis F
SPbc2

Staphylococcus epidermidis
Deinococcus radiodurans
Lactococcus lactis lactis

Streptococcus agalactiae F2
Lactobacillus plantarum

Mycoplasma pneumoniae
Streptococcus agalactiae F1

Bifidobacterium longum
Mycobacterium tuberculosis G

Corynebacerium ammoniagenes
Mycobacterium tuberculosis F

Wigglesworthia brevipalpis
Agrobacterium tumefaciens

Brucella suis
Yersinia pestis F

Salmonella typhimurium F
Escherichia coli F
Shigella flexneri

Geobacillus thermoleovorans
Mycobacterim tuberculosis X

Sulfolobubus solfataricus

99

99

99

99

99

99

99

94

99

85

83

99

99

99

98

74

74

91

36

61

99

99

83

78

99

99

99

95

99

99

99

99

99

62

99

95

99

99

99

99

99

99

99

99

99

53

91

95

99

95

99

99

98

56

99

99

99

99

99

97

99

99

71

99

99

30

99

99

99

67

95

38

99

99

99

92

99

99

99

41

99

81
85

99
53

45

83

95

98

38

99

99

9

91

81

74

31

99

79

99

0.2 substitutions / site 

Herpesviridae

other genera of 
family Iridoviridae

Poxviridae

Baculoviridae

Baculoviridae

Megalocytivirus

αproteobacteria

Eukaryote

Eubacteria
（include some Archaeon）

Homo sapience
Brachydanio rerio
Xenopus laevis

VACV
ECTV
VARV
MYXV
SFV
SWPV
LSDV
TANV

Urechis caupo
Spisula solidissima

Homo sapience p53R2
SlMNPV

LdMNPV
Drosophila melanogaster
Aedes albopictus

Saccharomyces cerevisiae 4
Saccharomyces cerevisiae

Schizosaccharomyces pombe
Emericella nidulans
Neurospora crassa
Lentinula edodes

Encephalitozoon cuniculi
Leishmania mexicana amazonensis

Trypanosoma brucei
Dictyostelium discoideum

Cryptosporidium parvum
Plasmodium falciparum

PBCV1
Arabidopsis thaliana

Glycine max
Nicotiana tabacum
Oryza sativa
Caenorhabditis elegans
HZV1

RSIV
ISKNV

McMNPV
SeMNPV
WSSV

ASFV
EsV1

HHV4
SaHV2

GaHV1
GaHV2

HHV1
HHV3

Streptomyces coelicolor
TFV

SGIV
LCDV-1

CIV
Caulobacter crescentus

Bradyrhizobium japonicum
Ehrlichia ruminantium
Rickettsia prowazekii
Rickettsia conorii

Pseudomonas aeruginosa
Pseudomonas putida

Ralstonia solanacearum
Chlamydia trachomatis

Halobacterium sp.
Tropheryma whipplei

Bacteroides flagilis
Treponema pallidum

Clostridium perfringens
Aquifex aeolicus

Fusobacterium nucleatum nucleatum
Synechocystis sp.

Helicobacter pylori
Campylobacter jejuni
Bacillus halodurans

Oceanobacillus iheyensis
Listeria monocytogenesis

Xanthomonas campestris campestris
Xylella fastidiosa

Escherichia coli B
Salmonella typhimurium

Yersinia pestis B
Haemophilus influenzae
Pasteurella multocida
Neisseria meningitidis

Vibrio cholerae
Shewanella oneidensis
Buchnera aphidicoda

T4
Bacillus subtilis F
SPbc2

Staphylococcus epidermidis
Deinococcus radiodurans
Lactococcus lactis lactis

Streptococcus agalactiae F2
Lactobacillus plantarum

Mycoplasma pneumoniae
Streptococcus agalactiae F1

Bifidobacterium longum
Mycobacterium tuberculosis G

Corynebacerium ammoniagenes
Mycobacterium tuberculosis F

Wigglesworthia brevipalpis
Agrobacterium tumefaciens

Brucella suis
Yersinia pestis F

Salmonella typhimurium F
Escherichia coli F
Shigella flexneri

Geobacillus thermoleovorans
Mycobacterim tuberculosis X

Sulfolobubus solfataricus

99

99

99

99

99

99

99

94

99

85

83

99

99

99

98

74

74

91

36

61

99

99

83

78

99

99

99

95

99

99

99

99

99

62

99

95

99

99

99

99

99

99

99

99

99

53

91

95

99

95

99

99

98

56

99

99

99

99

99

97

99

99

71

99

99

30

99

99

99

67

95

38

99

99

99

92

99

99

99

41

99

81
85

99
53

45

83

95

98

38

99

99

9

91

81

74

31

99

79

99

0.2 substitutions / site 

Herpesviridae

other genera of 
family Iridoviridae

Poxviridae

Baculoviridae

Baculoviridae

Megalocytivirus

αproteobacteria

Eukaryote

Eubacteria
（include some Archaeon）



Viruses 2012, 4  

 

 

531

Figure 6. Phylogenetic analysis of the megalocytivirus MCP. The tree was constructed by 

the neighbor-joining method [43] using MEGA (version 4) [44]. Tamura and Nei’s 

parameters and pair-wise deletion of gap handling were selected. The numbers indicate the 

percentage bootstrap support for each node from 1,000 replicates. The tree was rooted 

using MCP sequences from Singapore grouper iridovirus (SGIV), genus Ranavirus. Stop 

codons were excluded from the analysis. The red arrow shows the position of African 

lampeye iridovirus (ALIV). Accession numbers, host, year sampled, and location of 

isolation are attached to each OTU. 
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Figure 7. Phylogenetic analysis. This tree, based on the megalocytivirus ATPase gene, was 

constructed as described in the legend to Figure 6. Accession numbers, host, year sampled, 

and locations are attached to each OTU. 
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ISKNV-like viruses show less genetic variation than RSIV and differ in biological characteristics, 

e.g., marine isolates of ISKNV are easier to propagate in culture than RSIV but DGIV, one of the 

freshwater strains of ISKNV, is more difficult to propagate in culture than RSIV. Recently, sequences 

of the MCP and ATPase genes of viruses isolated from Bangaii cardinal fish (Pterapogon kauderni) 

and marble sleepy goby (Oxyeleotris marmorata) have been deposited within Genbank (Acc. Nos. 

HM067835, AB669096, EU753256, AB669097). Phylogenetic analysis revealed that these viruses are 

also members of ISKNV cluster but differ from all other reported ISKNV isolates and belong to a new 

genotype (genotype II) (Figure 6). Moreover, the isolation of an ISKNV-like virus in North America 

from imported Bangaii cardinal fish underscores the need to ensure that infected fish are not 

introduced into megalocytivirus-free regions. Clearly, the host range of ISKNV is relatively broad but 

freshwater and brackish water fish species are the predominant species affected. African lampeye 

iridovirus (ALIV) is considered to be the same viral species as ISKNV based on MCP gene sequence 

analysis, but it clusters with RSIV by ATPase gene sequence analysis (Figure 7). It is not clear whether 

the origins of these two entries of ALIV sequences are the same or not, even though the sequence data 

were deposited by the same researcher [24]. There are two possibilities for this result: either viruses 

similar to ISKNV and RSIV were both isolated from African lampeyes or ALIV is a chimeric virus 

displaying the MCP of ISKNV and the ATPase of RSIV. Further research is required to resolve this 

question. Recently, a number of studies have been undertaken to identify gene function in ISKNV  

[47–51]. These expanding biochemical studies will clarify the function of specific ISKNV genes and 

indicate whether megalocytiviruses display replicative strategies unique to this viral genus.  

TRBIV, the last tentative species within this genus, includes flounder iridovirus (FLIV-JJ) [31] and 

other viruses from bastard halibut (Paralichthys olivaceus). Interestingly, viral hosts belong mainly to 

the order Heterosomata, (see Figure 6). Exceptions include barred knifejaw (Oplegnathus fasciatus), 

the host for RBIV-KOR-CS [30], a strain of TRBIV, and sea perch (Lateolabrax sp.). In the latter case, 

sequence data from a virus designated perch iridovirus CH-1 (Acc. HM067603) indicated that the 

isolate was related to TRBIV. Barred knifejaw and the related spotted knifejaw (O. punctatus) are 

known to be markedly susceptible to RSIV (and TRBIV) and vaccination of these species is not 

effective in protecting them from RSIVD. Given the impact of megalocytiviruses on mariculture, 

further research is needed to determine whether TRBIV should be considered, along with RSIV and 

ISKNV, as an OIE-reportable disease.  

10. Distribution of Megalocytiviruses 

Although genotype II predominates, both RSIV genotypes I and II are widely distributed in East 

and Southeast Asia. In contrast, in Japan and South Korea outbreaks, with the exception of a single 

outbreak caused by genotype I virus in Ehime prefecture Japan in 1992, have been caused by genotype 

II. Until recently, natural hosts of RSIV were thought to be restricted to marine fish. Recently, 

genotype and host range analysis of megalocytiviruses infecting Chinese perch, the first reported host 

of ISKNV, were undertaken in China [36]. The result showed that not only ISKNV, but also RSIV 

genotype I (named to ISKNV-XQ, and -XT,) and genotype II (named to ISKNV-HT and -Hzhj) were 

present. These are first reports of RSIV from freshwater fish. Based on these findings, it is possible 

that this freshwater fish species may be a “mixing vessel” for megalocytiviruses and underlies the 
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danger of identifying a virus based only on the species of fish infected. Except for ornamental fish, the 

distribution of ISKNV remains restricted to Southeast Asia, Taiwan and China and has not yet been 

found in Japan or South Korea. In contrast to RSIV and ISKNV, TRBIV has only been reported from 

China and South Korea. The distribution of this virus is still restricted to areas around the Yellow Sea 

in East Asia and has not yet been found in Southeast Asia. Hong Kong, a base for fish seedling export, 

is a hotspot for megalocytiviruses. Presence of ISKNV and RSIV genotypes I and II has been 

confirmed in Hong Kong and it is possible that all Asian megalocytiviruses, except TRBIV, spread 

from this area. 

11. Differential Diagnostic PCR Primers for Megalocytiviral Diseases 

Except for diseases found in freshwater ornamental fish, the OIE Reference Laboratory for RSIVD 

designates both genotypes of RSIV and ISKNV as causative agents of RSIVD. The reason for 

including ISKNV is the severe impact of this virus on many kinds of maricultured fish species in 

China, Taiwan and many Southeast Asian countries. Megalocytiviruses of freshwater ornamental fish, 

such as DGIV and ALIV, have almost no opportunity to affect marine fish culture even if these viruses 

are pathogenic to marine fish species. TRBIV disease is not yet listed in the OIE manual as a 

reportable infection because the virus is considered to be an agent of low pathogenicity, but this 

suggestion needs to be more thoroughly tested. Thus, it is important that a simple diagnostic test be 

developed that is able to differentiate among these viruses. In addition, the presence of multiple viral 

strains has caused problems in designing primers for diagnostic PCR. Using genomic DNA sequence 

information for the MCP gene, it is possible to propose new PCR primers for differentiation among the 

three viral species of the genus Megalocytivirus viz. RSIV, ISKNV and TRBIV (Table 1). The forward 

primer MCP-uni332-F3 (5'-aggtgtcggtgtcattaacgacctg-3') and the reverse primer MCP-uni1108-R8  

(5'-tctcaggcatgctgggcgcaaag-3') amplifies a fragment 777bp in length and are proposed as a universal 

PCR primer pair for all megalocytiviruses. Forward primer MCP-excT37-F1 (5'-ttcatcgacatctccgcgttt-3') 

and reverse primer MCP-excT512-R1 (5'-aatgggcaaattaaggtagrcg-3′) pair, which amplify a fragment 

486bp in length are proposed as the RSIV- and ISKNV-specific primer pair, although the lack of 

reactivity to TRBIV needs to be confirmed. In addition, as a TRBIV-specific primer pair,  

MCP-specT37-F1 (5'-ttcatcgacatctccgctttc-3') and MCP-specT490-R1 (5'-tstgaccgttggtgataccggag-3') 

pair, which amplify a fragment 453bp in length is proposed. While it is hoped that these primers have 

the desired specificities, they are only tentative until testing with further TRBIV samples is undertaken. 

For the purpose of differentiating RSIV and ISKNV, the following primer sets are used. Primer set MCP-

specR697-F4 (5'-cccgcactgaccaacgtgtcc-3') and MCP-specR888-R6 (5'-cacagggtgactgaacctcaggtcg-3') 

which amplifies a fragment 191bp in length is specific for RSIV. Primer set MCP-specI465F3  

(5'-ggtggccggcatcaccaacggc-3') and MCP-specI879-R6 (5'-cacggggtgactgaacctg-3') which amplifies a 

fragment 415bp in length are specific for ISKNV. Please note that the specificity of primer sets for 

RSIV and ISKNV has been confirmed but the specificity of the TRBIV primer sets remains unknown. 

The OIE Reference Laboratory for RSIVD welcomes comments with regard to information on the 

proposed primers for improvement of diagnostic PCR tests for RSIVD. 
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Table 1. Primer pairs for universal and selective amplification of megalocytivirus isolates. 

Viruses Identified Forward Primer a Reverse Primer Amplicon Size (bp) 
RSIV, ISKNV, TRBIV MCP-uni332-F3 MCP-uni1108-R8 777 
RSIV, ISKNV MCP-excT37-F1 MCP-excT512-R1 486 
TRBIV MCP-specT37-F1 MCP-specT440-R1 453 
RSIV MCP-specR674-F4 MCP-specR888-R6 191 
ISKNV MCP-specI465-F3 MCP-specI879-R3 415 

a The sequence of each primer is listed in the preceding paragraph. 
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