
Viruses 2013, 5, 792-805; doi:10.3390/v5030792 

 

viruses 
 ISSN 1999-4915 

www.mdpi.com/journal/viruses 

Article 

Mutation Distribution in the NSP4 Protein in Rotaviruses 

Isolated from Mexican Children with Moderate to  

Severe Gastroenteritis 

Guadalupe González-Ochoa *, Griselda E. Menchaca, Carlos E. Hernández, Cristina Rodríguez, 

Reyes S. Tamez and Juan F. Contreras 

Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N Ciudad 

Universitaria, San Nicolás de los Garza, Nuevo León, CP. 66451, México 

* Author to whom correspondence should be addressed; E-Mail: lupitaglezo@hotmail.com; 

Tel.:+(81)-82982734; Fax:+(81)-83-52-42-12.  

Received: 13 February 2013; in revised form: 4 March 2013 / Accepted: 5 March 2013 /  

Published: 11 March 2013 

 

Abstract: The NSP4 protein is a multifunctional protein that plays a role in the 

morphogenesis and pathogenesis of the rotavirus. Although NSP4 is considered an 

enterotoxin, the relationship between gastroenteritis severity and amino acid variations in 

NSP4 of the human rotavirus remains unclear. In this study, we analyzed the sequence 

diversity of NSP4 and the severity of gastroenteritis of children with moderate to severe 

gastroenteritis. The rotavirus-infected children were hospitalized before the rotavirus 

vaccine program in Mexico. All children had diarrhea within 14 days, 44 (88%) were 

vomiting and 35 (70%) had fevers. The severity analysis showed that 13 (26%) cases had 

mild gastroenteritis, 23 (46%) moderate gastroenteritis and 14 (28%) severe.  

NSP4 phylogenetic analysis showed three clusters within the genotype E1. Sequence 

analysis revealed similar mutations inside each cluster, and an uncommon variation in 

residue 144 was found in five of the Mexican NSP4 sequences. Most of the amino acid 

variations were located in the VP4 and VP6 binding site domains, with no relationship to 

different grades of gastroenteritis. This finding indicates that severe gastroenteritis caused 

by the rotavirus appears to be related to diverse viral or cellular factors instead of NSP4 

activity as a unique pathogenic factor. 
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1. Introduction 

Rotaviruses cause gastroenteritis in almost all mammals and some birds [1]. Group A, B and C 

rotaviruses are known to infect humans and animals; however, group A is responsible for 

gastroenteritis in children less than five years old [2]. The common symptoms of this disease are 

diarrhea, fever and vomiting [3]. Dehydration is a consequence of severe diarrhea that may cause 

infant death [2,3]. Statistics reveal that rotaviruses cause approximately 453,000 child deaths per year 

worldwide, with the highest mortality rates primarily in developing countries [4]. The rotavirus 

pathogenesis is related to the non-structural protein 4 (NSP4), which is a known enterotoxin [5].  

NSP4 induces an intracellular calcium imbalance, resulting in membrane instability and loss of water; 

the same effect would be present by phospholipase C-mediated inositol 1,4,5-trisphosphate production 

when NSP4 interacts with non-infected cells [2,68]. 

NSP4 is a glycosylated protein of 175 amino acids and a molecular mass of 28 kDa in its mature 

form. This protein is characterized by three hydrophobic domains named H1 (residues 721),  

H2 (2947) and H3 (6785) and a coiled α-helical domain (95137) [9]. The NSP4 amino-terminal 

region (144) is located in the lumen of the endoplasmic reticulum, whereas its carboxy-terminal 

region (45–175) is in the cytoplasm and interacts with different proteins including VP6 and VP4 

during rotavirus morphogenesis [1012]. NSP4 also interacts with some cellular proteins and 

extracellular matrix proteins [1315]. 

On the other hand, the NSP4 sequence analysis has revealed at least 14 genotypes named E1E14 

(for Enterotoxin). The human rotavirus genotypes are E1 (Wa-like), E2 (Kun-like) and E3 (AU-1), 

previously known as genotypes B, A and C, respectively [16]. Information related to rotavirus 

infection and the role of NSP4 pathogenesis in humans has not been described in detail. Some reports 

indicate that changes in the sequence of NSP4, VP4 and VP7 are related with asymptomatic strains 

isolated from humans [17,18], but amino acids variation in NSP4 has not always been associated with 

asymptomatic infections [1921]. In this study, we analyzed NSP4 of human rotavirus strains in 

Mexican children with different grades of gastroenteritis to determine the genotype, distribution and 

frequency of mutations in NSP4. 

2. Results and Discussion 

2.1. Rotavirus Positive Samples and Gastroenteritis Severity 

A total of 123 diarrheic feces collected from October 2004 to March 2005 from hospitalized 

children with gastroenteritis in Monterrey, Nuevo Leon, México, were analyzed to detect rotavirus.  

Of all the analyzed samples, sixty-six (53.7%) were positive for the presence of a rotavirus. This is a 

high percentage, because usually rotavirus infection is associated with 2539% of hospitalizations for 

acute gastroenteritis [22]. To further analyze the gastroenteritis severity, 16 of the 66 rotavirus positive 

samples were discarded due to incomplete data about the infected children or their symptoms.  

The remaining 50 gastroenteritis cases were considered in this study and the signs and symptoms of 

the rotavirus gastroenteritis were examined. Twenty-eight (56%) cases were male children and 22 

(44%) were female children. Most of the rotavirus gastroenteritis cases (86%) were related to children 

under two years old, this is in agreement with previous reports on rotavirus infection [2325]. All the 
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infected children included in this study had diarrhea within 1 to 4 days, 44 (88%) of them were 

vomiting and 35 (70%) had a fever. The results of the rotavirus gastroenteritis severity showed that 13 

(26%) cases had a score ≤ 10, whereas 23 (46%) infections showed a score ≥ 11 and 14 (28%) cases 

had a score ≥ 15. Those scores were grouped as mild, moderate and severe gastroenteritis, respectively 

(Table 1). Although some studies describe breastfeeding as an important factor to avoid severe 

gastroenteritis, we did not find a relationship between breastfeeding and the rotavirus gastroenteritis 

severity [2628]. This type of analysis of rotavirus regarding the prevalence and severity of the 

gastroenteritis may represent a basis to compare the epidemic seasons of the rotavirus before and after 

the introduction of the Rotarix® vaccine (GSK) [29]. In this aspect, some studies have shown that this 

vaccine can diminish the cases of hospitalization by the rotavirus from 40 to 60% [3032]. 

Additionally, studies in Latin America have shown the efficiency of the vaccine to decrease the 

severity of the rotavirus gastroenteritis [33,34]. 

2.2. The NSP4 Genotype 

NSP4 is a main factor of rotavirus pathogenesis [35,36]. Therefore, in this study we have focused 

on the analysis of the NSP4 genotype and its sequence relationship with the rotavirus gastroenteritis 

severity. To amplify and identify the NSP4 genotype in all the rotavirus positive samples we used a 

combination of different primers that have been previously described [20,21,37]. This was a useful 

strategy that identified 61 (92.4%) of the samples as NSP4 genotype E1. The predominant NSP4 

genotype E1 identified in the studied area is commonly reported; some studies identified the E2 

genotype as the second common genotype [3841]. Furthermore, others reported non-common NSP4 

genotypes E3, E5, E6 and E13 in human rotavirus strains in Thailand, Brazil, Bangladesh and  

Kenya [4246]. 

2.3. The NSP4 Sequence Analysis 

According to the gastroenteritis severity analysis (Table 1), the rotavirus positive samples were 

classified as mild (26%), moderate (46%) and severe (28%). Based on these results a stratified random 

sampling was done to select representative samples to the NSP4 sequence analysis, this selection 

included 4(31%) of 13 samples of mild cases, 7 (30%) of 23 cases of moderate and 5 (36%) of 14 

severe cases. The analysis of the deduced amino acid sequences of NSP4 reported in this study showed 

three clusters inside the same genotype E1 (Figure1). The NSP4 sequences MX04-29, MX05-58, 

MX05-126 reported here grouped in the cluster I; the samples MX05-48, MX05-71, MX05-88,  

MX05-137, and MX05-144 were in the cluster II and the samples MX04-27, MX04-28, MX05-36, 

MX05-51, MX05-64, MX05-68, MX05-107 and MX05-119 in the cluster III (Table 3).  

Previous reports have shown the presence of at least two clusters within this genotype, and in some of 

them the clusters were related to the location or to the isolation date of the rotavirus strains, in this 

study we did not observed such relation [41,47,48]. The NSP4 amino acids variations showed in the 

cluster I (amino acids AK in position 136-137 respectively) were related with rotavirus strains reported 

in Italy, China, Spain, United States of America (USA) and Russia (Accession number ACF77154, 

AFU36983, ADU55685, ADO78536 and ACY01369). The sequences in the cluster II share the same 

amino acid variations in the positions 141-145 with sequences from China, Russia, Thailand and USA 
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(AAOO6852, ACQ99541, AFQ20926, ADO78564) and the cluster III shared common amino acid 

variations in aa 141,142, 144 and 145 with the strain Vanderbilt isolated in USA (AEB80046).  

Further analyses on NSP4 were performed using the amino acid frequency in each specific position in 

the protein. The analysis of 349 NSP4 sequences from the GenBank database showed that this protein 

is highly conserved in some specific domains (Table 2). These conserved regions include the 

glycosylation sites (aa 8 and 18), the hydrophobic region H1, H2 and H3 (aa 721, 2947 and 6785), 

the transmembrane domain (aa 2244) and the coiled α-helical domain (aa 97137) where the 

frequency of the consensus amino acid in a specific position was 97.6 to 100%; however, the H3 

domain showed an amino acid frequency of 88.9% for I72 and 87.4% for I76 ( Table 2).  

Conversely, punctual variations in the NSP4 sequence fell in the VP4 binding site domain where the 

lowest amino acid frequency was at position 141 with a valine present for 58% of the studied 

sequences, and also the VP6 binding site where a serine at position 169 had a frequency  

of 56% ( Table 2). Most of the amino acids variations in the NSP4 sequences reported were positioned 

in the carboxyl terminal region (Table 3). However, the samples MX04-29, MX05-58 and MX05-126 

showed punctual variations in conserved amino acids 111, 136 and 137 (85.792.8%),  

respectively (Table 3). In addition, five of the NSP4 sequences reported in this study had an 

uncommon amino acid change at position 144, where a methionine was replaced by a valine.  

Usually methionine is present in this position in 97.9% of all the 349 NSP4 sequences analyzed 

(Figure 1), and thus this amino acid variation is unique in our sequences. Moreover, we did not find 

valine in this position in any other NSP4 genotype E1 sequence in the NCBI database.  

The replacement of a methionine may be not significant when it is replaced by another hydrophobic 

amino acid such as valine, because both amino acids can play a role in binding or recognition of 

hydrophobic ligands such as lipids. However, the sulfur atom in methionine can be involved in binding 

metals [49] and NSP4 presents a metal binding domain between residues 114 and 135 [50,51]; 

nevertheless, further analysis is required to explain the importance of the mutations in such conserved 

amino acid position within NSP4. 
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Table 1. Characteristics and symptoms of the children infected with the rotavirus and the analysis of the rotavirus severity score from slight to 

severe according to the Ruuska score [52]. 

Gastroenteritis 

severity 

(Ruuska score) 

Gastroenterit

is severity 
Incidence Breastfeeding 

Sex Age* 

(months) 

diarrhea 

episodes*  

/24 h 

Days with 

diarrhea* 

Vomiting 

episodes* / 

24hrs 

Days of 

vomiting* 
M F 

≤ 10  Mild 13 (26%) 61.5% 6 7 8 6.1 2.4 2.6 1.0 

≥ 11 Moderate 23 (46%) 82.3% 15 8 12 8.1 3.1 4.8 2.7 

≥ 15 Severe 14 (28%) 71.4% 7 7 14 10.4 4.3 9.3 3.6 

* Average Data 
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Table 2. Consensus NSP4 sequence and the frequency of each amino acid in a specific position from residues 1 to 175. The analysis was 

obtained from 349 NSP4 sequences from the GenBank and is complemented with the description of some of the NSP4 domains. 

Abbreviations: GS: Glycosylation site, H: Hydrophobic domain. 

                                            

Transmembrane site (2244)                 
GS1 

H1 (aa 721) 
GS2 

      

                                        

Consensus seq M D K L A D L N Y T L S V I T L M N D T L H S I I 

Frequency % 100 98.5 99.7 98 97.6 99.5 100 99.7 100 99.4 99.4 92.7 99.7 97.9 98.2 99 100 99.4 97.9 98.8 100 98.8 98.8 100 98.8 

                          
aa position 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 

        
H2 (2947) 

      

              

  Transmembrane domain (2244)             

Consensus seq. Q D P G M A Y F P Y I A S V L T V L F T L H K A S 

Frequency % 97.6 99.7 100 100 96.4 100 100 100 97.8 100 98.8 100 99.7 99.4 100 100 994 99.4 99.7 98.4 100 99.4 99.4 100 99.4 

                          
aa position 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 

                                  

H3 ( aa 67-85)                                   

                                  

Consensus seq. I P T M K I A L K T S K C S Y K V I K Y C I V T I 

Frequency % 99.4 99.4 99.1 99 99.7 99.4 100 99.4 96.6 99.4 100 98.8 99.1 100 99.7 100 99.4 97.9 99.1 98.5 98.8 88.9 99.1 99.4 95.5 

                          
aa position 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

  

H3 (6785) 

                  

Alpha coiled Domain (95137)                     

                    

Consensus seq. I N T L L K L A G Y K E Q V T T K D E I E Q Q M D 

Frequency % 87.4 99.7 98.5 100 99.1 98.8 98.2 98.8 100 99.4 98.5 100 99.1 96.7 98.8 98 99.1 98.5 98.8 99.7 100 98.2 99.7 99.7 99.1 

                          
aa position 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 

  Alpha coiled Domain (95137) 

                        VP4 Binding site (112148) 

                            Enterotoxin (114135) 

Consensus seq. R I V K E M R R Q L E M I D K L T T R E I E Q V E 

Frequency % 99.7 98.8 99.1 99 99.7 99.4 99.7 100 98.5 99.7 93.4 99.4 99.7 99.1 99.1 100 100 98.8 99.1 99.7 99.7 99.7 99.7 99.4 100 

                          
aa position 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 

  Alpha coiled Domain (95137)                           

  VP4 Binding site (112148)     

  Enterotoxin (114135)                               

Consensus seq. L L K R I H D N L I T R P V D V I D M S K E F N Q 

Frequency % 99.4 100 99.7 99 99.7 92.8 99.1 78.6 100 90.7 93.4 87.1 78.4 88 89.8 58 76 99.4 97.9 64.3 99.1 99.1 97.3 99.1 100 

                          
aa position 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 

                                  

VP6 Binding site (167175)                                   

                                  

Consensus seq. K N I K T L D E W E S G K N P Y E P S E V T A S M 

Frequency % 98.8 99.7 94 93 100 99.7 98.2 99.1 100 95.8 77 99.7 97.6 99.1 100 100 99.1 100 56 99.1 99.4 99.7 100 98.8 100 
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Table 3. Sequence analysis of the amino acid variations in the NSP4 protein from rotavirus strains reported in this study. 

   Amino acid variability and distribution 

NSP4 

Sequence 

 

Severity 

scores 

Cluster H3 * TD ACD * E/VP4 * VP4 * VP6 * 

76 77 85 94 111 132 136 137 141 142 144 145 161 169 172 173 174 175 

MX04-29 16 I     N  A K           

MX05-58 14 I     D  A K           

MX05-126 16 I  V   D  A K           

MX05-48 8 II V  H      T   T N I     

MX05-144 13 II V        T   T N I     

MX05-137 15 II V        T   T N I     

MX05-88 16 II V        T   T N I     

MX05-71 0 II V        T   T N M     

MX04-27 11 III         S V V T  I     

MX04-28 14 III         S V V T  I     

MX05-36 8 III         S V V T  I     

MX05-51 14 III      N   S V V T  I I    

MX05-64 12 III         S V V T  I     

MX05-68 8 III    G     S V V T  I     

MX05-107 14 III         S V V T  I     

MX05-119 15 III         S V V T N I     

Consensus amino acids I N Y E E D T R V I M S S S T A S M 

Frequency % 86 99.7 99.4 99.1 89.4 99.4 92.8 85.7 56.2 75.9 99.4 61 76 56 100 100 99 100 

* H3: hydrophobic region 3; TD: Tetramerization Domain; ACD: Alpha Coiled Coil Domain E: Enterotoxin Domain; VP4: VP4 Binding site domain; VP6: VP6 binding site domain 
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Figure 1. Phylogenetic analysis of the deduced amino acid NSP4 sequences reported in 

this study and other NSP4 genotypes previously reported in the NCBI. The phylogenetic 

tree was constructed based on the neighbor-joining method. The bootstrap consensus tree 

inferred from 500 replicates is taken to represent the evolutionary history of the taxa 

analyzed. The evolutionary distances were computed using the p-distance method and are 

in the units of the number of amino acid differences per site. Evolutionary analyses were 

conducted in MEGA5 package [54]. Accession number of the sequences reported in this 

study in the GenBank: MX04-28: JX458969, MX04-29: JX458970, MX04-27:JX458971, 

MX05-51:JX458972, MX05-144: JX458973, MX05-58: JX458974, MX05-68: JX458975, 

MX05-71:JX458976, MX05-88:JX458977, MX05-119:JX458978, MX05-107: JX458982, 

MX05-126: JX458983, MX05-137: JX458984. 
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3. Experimental Section 

3.1. Samples Recollection and Gastroenteritis Severity Score 

A total of 123 stool samples were collected from hospitalized children with gastroenteritis in 

Monterrey, Nuevo León, México, from October 2004 to March 2005. The inclusion criteria were the 

age of the child, up to five years old, and the hospitalization for nonbacterial gastroenteritis.  

Diarrhea, vomiting and fever were used as registered symptoms to calculate the gastroenteritis 

severity, and formed the basis of the Ruuska score [52]. 

3.2. Extraction of Rotavirus RNA. 

The feces samples were used to isolate, purify and detect the rotavirus RNA genome by TRI 

Reagent® (Molecular Research Center, Cincinnati, OH) as suggested the by supplier. The viral RNA 

was loaded onto a 10% polyacrylamide gel under native conditions, and then stained by a  

silver-staining procedure. A sample was considered positive to the rotavirus when a characteristic 

double-stranded RNA genome was observed in the gel [53]. 

3.3. NSP4 Genotype Identification and Sequence 

RNA positive samples for the rotavirus were retro transcribed and amplified by PCR to isolate the 

NSP4 gene using the primers Beg16-End722 or NSP41F-NSP42R [20,21]; although in several 

experiments, combinations of both primer pairs were required to achieve amplification.  

NSP4 genotype identification was performed by a multiplex-seminested PCR, with 10END722 or 

NSP42R as the external primers and Wa, Kun or RRV as the internal primers, which corresponds to 

genotypes E1, E2 and E3, respectively [37]. Samples of the amplified NSP4 gene were cloned using 

the pGEM-T vector (Promega Inc, Madison, WI) according to the manufacturer´s instructions.  

The plasmid with the NSP4 insert was purified by the Wizard SV Minipreps kit (Promega Inc, 

Madison, WI) and sequenced by the dideoxynucleotide chain termination method, using an ABI Prism 

Big Dye Terminator Cycle Sequencing Ready Reaction
 

kit (PE Applied Biosystems,  

Whashington, DC). The DNA sequence was confirmed by sequencing both DNA strands of each of the 

different clones using the pUCM13 sense and antisense standard primers. The resulting sequences 

were analyzed with MEGA 5.0 and compared with other sequences reported in the GenBank data base; 

the phylogenetic tree was determined by the Neighbor joining method [54]. The GenBank accession 

numbers of NSP4 sequences used in sequence analysis were AB361285, AB008233, AB008237, 

AB213391, AB326290, AB326294, AB326963, AB361282, AF170830, AF260930, AY159640, 

AY159642, AY353740, AY353800, DQ909069, DQ909070, EF033202, EF033203, EF672575, 

EU679377, EU679382, U42628, U83798, AAO06852, AAT48079, AB008229 - AB008231, 

AB008234-AB008236, AB008238-AB008245, AB008247-AB008257, AB008259 - AB008263, 

AB022772, AB043026, AB043069-AB043078, AB196491, AB196492, AB196958, AB196959, 

AB211987-AB213392, AB232699, AB269688, AB303218, AB326286-AB326289, AB326293, 

AB326295, AB326297, AB326334, AB326336, AB326337, AB326347, AB326348, AB326962, 

AB326966, AB326969, AB326971, AB361276, AB361281, AB361284, AB361286-AB361288, 
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ABK62862, ABU49806, ACF77153, ACF77154, ACJ54826, ACJ66758, ACJ66769, ACL80635, 

ACL80638, ACQ99541, ACY01369, ACY01381, ACZ51671, ADA70484, ADK46705, ADK46715, 

ADO78533, ADO78536, ADO78564, AEB79485, AEB79550, AEK69633, AET43468, AF161810-

AF161815, AF170831-AF170833, AF173179, AF173181-AF173208, AF173211 - AF173214, 

AF174300 - AF174302, AF260928, AF260929, AF284776-AF284778, AF469676 - AF469679, 

AF506016, AF541921, AFJ68184, AFJ68397, AFK27432, AJ236757 - AJ236770, AJ236772 - 

AJ236774, AJ236778 - AJ236782, AJ400634, AY159630 - AY159632, AY159634 - AY159639, 

AY159641, AY159643, AY159644 - AY159647, AY353727, AY353728, AY353730 - AY353739, 

AY353741 - AY353746, AY353753 - AY353765, AY353767 - AY353790, AY353792 - AY353805, 

AY601540 - AY601544, AY629562, BAD84188, BAF97950, CAB36938, D88830, DQ146647, 

DQ146658, DQ146669, DQ146680, DQ189233 - DQ189237, DQ189240, DQ299876, DQ339147 - 

DQ339151, DQ490543, DQ492678, DQ525182 - DQ525188, EF011980, EF033204, EF059918, 

EF059919, EF059924, EF159574, EU679378 - EU679380, GAU78558, Q9YJN7, U59108, U59110.  

4. Conclusions 

The presence of intra-genotypic clusters and punctual amino acid variations in the NSP4 genotype 

E1 may indicate that NSP4 mutates mainly via accumulation of single point mutations. Since most of 

the variations in NSP4 fell in the carboxylic terminal region, especially in the VP4 binding site 

segment, it is important to consider that NSP4 is involved in morphogenesis and pathogenesis 

activities. Further analysis of NSP4 in the VP4 and VP6 binding site segment should be studied, 

especially with respect to structural conformational changes caused by amino acid variations. NSP4 is 

an important factor in rotavirus pathogenesis, and in this study an analysis examining the amino acid 

variations in the sequence and the gastroenteritis severity score was performed. The results failed to 

show a relationship between punctual variations in NSP4 and the severity of rotavirus gastroenteritis. 

The study of the NSP4 protein and its interaction with other viral proteins may aid our understanding 

of the pathogenesis of the rotavirus. 
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