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Abstract: Small ruminant lentiviruses (SRLV) cause a multisystemic chronic disease 

affecting animal production and welfare. SRLV infections are spread across the world with 

the exception of Iceland. Success in controlling SRLV spread depends largely on the use of 

appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among 

these viruses, the fluctuant levels of antibody against them and the low viral loads found in 

infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism 

towards the monocyte/macrophage lineage and attempts have been made to identify the 

genome regions involved in tropism, with two main candidates, the LTR and env gene, 

since LTR contains primer binding sites for viral replication and the env-encoded protein 

(SU ENV), which mediates the binding of the virus to the host’s cell and has hypervariable 

regions to escape the humoral immune response. Once inside the host cell, innate immunity 

may interfere with SRLV replication, but the virus develops counteraction mechanisms to 

escape, multiply and survive, creating a quasi-species and undergoing compartmentalization 

events. So far, the mechanisms of organ tropism involved in the development of different 

disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but 
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different alternatives are proposed. This is an overview of the current state of knowledge 

on SRLV genetic variability and its implications in tropism as well as in the development 

of alternative diagnostic assays. 
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1. Introduction 

Small ruminant lentiviruses (SRLV), which include caprine arthritis encephalitis virus (CAEV) and 

visna/maedi virus (VMV), also called ovine progressive pneumonia virus (OPPV), cause a progressive 

multisystemic chronic disease clinically characterized by wasting (visna); breathing difficulty (maedi) 

associated with pneumonia; encephalitis; arthritis and/or mastitis that affect considerably animal 

welfare and production. The economic effect of SRLV, often underestimated and still under study, 

depends on factors related to environment, breed, individual susceptibility, production system, farming 

practices and age of culling [1,2]. The productive impact is partly due to the premature removal of 

diseased animals and the consequent increase in the replacement rate [3]. In addition, SRLV infected 

sheep have shown in some studies decreased fertility and number of lambs per birth, as well as decreased 

birth weight and decreased weight gain from birth to weaning in progeny of seropositives [4,5]. 

However, there are studies not claiming any impact of this infection in prolificacy and weight at birth 

or weaning [6–8]. Differences in disease status of the animals and in severity of mammary gland 

lesions might explain the discrepancies. Animals with advanced disease present a significantly reduced 

body weight at slaughter, and their carcass may not be qualified for consumption [9]. Furthermore, 

production losses in adult females may result from decreased milk production accompanied by loss of 

lambs in the first week of life or a weight shortfall at weaning. SRLV infections represent a serious 

threat to production in small ruminants especially in intensive milk production systems, because SRLV 

infection occurs primarily in these systems [2]. The impact of SRLV-induced mastitis on production is 

also a controversial issue. Some studies do not detect differences in the quantity and quality of milk 

from infected and uninfected goats [10–12]. Other reports show a reduction in milk production (9%  

in goats of the Murciano-Grenadine breed) without altering milk quality [13]. Finally, there are  

reports showing a 15% decrease in milk production, associated with low quality by reducing the fat 

content [14,15]. In dairy sheep, a mean annual decline in milk production and milk fat percentage of 

3.2 and 2%, respectively, has been observed [16]. In addition, SRLV infection in the small ruminants 

may negatively affect the quality of the milk, and it appears to trigger an increased number of somatic  

cells [15,17]. 

The intake of infected colostrum and milk by the offspring constitutes a major route of SRLV 

transmission, but the virus is also transmitted via the respiratory route, especially upon close contact, 

particularly under intensive housing or grazing conditions [2,18–22]. Both routes of transmission are 

not mutually exclusive, and the most probable scenario is that, after ingestion of infected colostrum, 

lambs are further exposed to the virus when raised together with infected adult animals (horizontal 

transmission). The horizontal transmission route has been widely accepted as responsible for SRLV 

spread between different geographic regions through programs involving export and exchange of goats 
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and sheep [2]. In fact, the presence of visna/maedi was first described after importing Iceland 20 

Karakul sheep from Halle, Germany in 1933 to improve Icelandic local breeds [23], and there are 

different documented examples that depict SRLV spread through the import of animals from Germany 

to Greece, Sweden to Finland, Denmark to Norway, Holland to France, Denmark to Scotland, Scotland 

to Canada, France to England, England to Hungary, Switzerland to USA, and USA to Mexico [2,24–27]. 

In the search for SRLV ancestors, recent findings reveal that, together with humans, domestic animals 

including goats or sheep have travelled from the Fertile Crescent to different countries through the 

Mediterranean Sea. Viruses infecting those animals could have been the original ancestors of  

SRLV [28–30]. 

2. Viral Genetic Variability Sources 

As observed in other lentiviruses, the SRLV proviral genome consists in two identical positive-

sense single-stranded RNA subunits (8.4–9.2 kb). Both contain structural (gag, pol and env) and 

regulatory (vpr-like, vif and rev) genes flanked by non-coding long terminal repeat regions  

(LTRs) [28]. Despite the high evolution rate of lentiviruses, many elements in the lentiviral genome 

are conserved over time. One of the most conserved regions of the lentiviral genome is the RNAt
lys

 

primer binding site (PBS-GAACAGGGACUUGAA), where the host lysine transfer RNA hybridizes 

to the viral RNA genome, serving as a primer for reverse transcription. The polypurine tract, Rev 

responsive element (RRE) and other elements involved in replication and packaging of the viral 

genome are also conserved at different degrees among lentiviruses [31]. The gag and pol genes and 

some regions of the env gene are relatively conserved, but others, such as those encoding Env surface 

protein sites able to bind antibodies, are highly variable. Genetic diversity displayed as viral quasi-species 

is one of the hallmarks of retroviral infection. The concept of viral quasi-species was first proposed by 

Manfred Eigen [32] and is defined as a set of viruses found in an infected individual [33]. Under 

certain circumstances of selective pressure such as that exerted by the immune system, the frequency 

of genetic forms in the viral population can shift. An “archive” of earlier forms of the virus is retained 

in proviral DNA and these forms may re-emerge. The extent of genetic diversity within a quasi-species 

depends on a complex set of factors, including high viral turnover, high mutation rates, retroviral 

recombination and selection by the host immune system until the limits of genetic and phenotypic 

constraints to variation [33–36]. 

2.1. Mutation 

Mutations are the substrate for natural selection and underpin the ability of lentiviruses to evade the 

immune system. Like in other retroviruses, most SRLV mutations are introduced at the reverse 

transcription stage of the viral life cycle. The most prominent source of variation is attributed to the 

reverse transcriptase (RT) enzyme itself, which due to the lack of a proofreading capability leads to a 

high error rate (0.2–2 mutations per genome per cycle) [33,37]. This extremely low fidelity could 

explain the extremely high levels of genetic variation observed in vivo.  

However, the genetic heterogeneity observed in vivo cannot be fully attributed to the low fidelity of 

RT. The minority of subpopulations in the mutant spectrum of the quasi-species viral variants that 

were dominant in vivo early in the evolutionary lineage of a virus can also influence the subsequent 
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evolution of the quasi-species population [35]. In addition, early investigations into the mutation rate 

of human immunodeficiency virus (HIV) uncovered hypermutated retroviral genomes, where up to 

40% of all available guanine bases are substituted by adenines [38]. It is now appreciated that this type 

of hypermutation is the result of cytosine deamination by members of the APOBEC family of nucleic 

acid editing enzymes [39,40]. APOBEC proteins are packaged into lentiviral virions and associate with 

the reverse transcription complex in the target cell, where they deaminate cytosine residues to uracyl in 

the single-stranded DNA minus strand, leading to G-to-A mutation in the plus strand. The cytosine 

deamination does not occur randomly, since APOBEC family members have distinct dinucleotide 

preferences. Furthermore, terminally differentiated cell types, such as macrophages, have imbalanced 

intracellular dNTP pools, with an excess of dUTP (uracyl) [41]. Uracyl is a natural base in RNA, but is 

not normally found in DNA. However, it can be incorporated into DNA due to the inability of RT to 

distinguish between dTTP and dUTP. Consistent with an important role for uracyl in the retroviral life 

cycle, many macrophage-tropic non-primate lentiviruses (such as SRLV) encode a deoxyuridine  

5'-triphosphate nucleotidohydrolyase (dUTPase), which catalyzes the conversion of dUTP to dUMP, 

maintaining a low dUTP:dTTP ratio that ultimately prevents the misincorporation of dUTP by RT [42,43]. 

Inactivation of the dUTPase in CAEV and feline immunodeficiency virus (FIV) leads to an increase in 

the mutation rate with the accumulation of guanine to adenine mutations. Both, dUTPase and vpr-like 

deletions appear to be implicated in the RT fidelity [44]. The dUTPase defective recombinant viruses 

have a less efficient replication in macrophages and fibroblast-like cells. This may confer an advantage 

to the host in vivo leading to a decreased viral replication and pathogenesis, since dUTPase is 

apparently required to eventually develop lesions such as those involved in bilateral carpal  

arthritis [42,44]. The effect of dUTPase defect has been recently proposed also in infections with a 

field isolate (genotype E1)—whose genome naturally lacks the dUTPase encoding region and the  

vpr-like gene—which do not appear to ever reach clinical stages, including carpal arthritis [45]. 

Another genotype E variant (E2), also lacking dUTPase, however, showed certain pathogenic features 

in vitro and in vivo. Strikingly, neither E1 nor E2 genome exhibit high mutation rates [46]. Overall, 

these findings, together with recent reports describing alternative dUTPase functions may re-issue the 

study on the role of dUTPase in lentiviral replication [47]. Additional mechanisms altering 

dUTP:dTTP ratio in the cell, the docking of cellular DNA glycosylates, or the counteraction of host 

apolipoprotein (APOBEC3) by viral vif [48] may also result in a major source of viral heterogeneity 

and define the infection outcome [39].  

2.2. Recombination 

Mutation alone is unlikely to explain the adaptive flexibility of lentiviruses. Recombination may 

occur frequently in the viral genome, as shown in the env gene of VMV strain 1514 in vitro and  

in vivo [49,50]. This mechanism of genetic diversification can efficiently shuffle mutations within a 

quasi-species; can rapidly assemble beneficial genetic combinations that would be difficult to generate 

by mutation alone; and can also effectively remove deleterious mutations. In contrast with the slow 

and steady changes caused by mutation, recombination is a much more powerful evolutionary force. 

First, recombination facilitates the repair of viral genomes. This can be due to physical repair at 

genome or breaks accumulating deleterious mutations via a copy choice mechanism [36]. In the 
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absence of recombination, organisms tend to accumulate deleterious mutations that reduce viral fitness 

in each replication cycle. Multiple recombination events take place, with estimates generally falling 

between three and nine recombination events per genome per replication cycle [51]. 

Efficient recombination in retrovirus arises as a result of the co-infection of two viruses in the same 

cell and co-packaging of two copies of the RNA genome into each virion [52]. When a cell becomes 

co-infected by two or more different viruses, the corresponding RNA genomes can become co-packaged 

into the viral progeny. During subsequent reverse transcription, the viral reverse transcriptase readily 

switches between these two templates [53,54], which leads to the production of recombinant cDNA. If 

these templates are identical, then template switching will be genetically neutral and recombination 

will not be detected. Conversely, if these two genomes are non-identical, template switching will lead 

to viral recombination and progeny virus will be genetically distinct from the parental strains [36]. In 

natural infections, SRLV recombinations between different genetic groups (CAEV (B)-VMV (A)) [55] 

and between genetic variants of the same group (B1 CAEV) in goats have been identified [25]. 

Recombinant viruses may contain recombinant env genes involved in SRLV tropism, so that they may 

exhibit a modified range of targets (cell, tissue, and host species). 

3. Phylogeny 

The existence of high genetic variability among SRLV has given rise to numerous studies on the 

phylogenetic relationships among sequences obtained in different countries [56]. The classification of 

viral genotypes into groups and subtypes proposed in the last decade [27] in studies involving two long 

segments of the SRLV genome (gag-pol segment 1.8 kb; and pol segment 1.2 kb) is widely accepted at 

present. Accordingly, SRLV are classified into five groups (A–E). Following HIV classification  

criteria [57], genotype groups differ by 25% to 37% in their nucleotide sequences. However, genotypes 

A, B and E may further be distributed into different subtypes, differing in 15% to 27% of their 

sequence. Genotype D has been only described in Swiss and Spanish sheep, and only regarding pol 

sequences. However, there are no other studies confirming the existence of this genotype. Rather, 

phylogenetic analysis on additional (gag) sequences of the same (group D) isolates, classify these 

sequences with genotype A, suggesting that genotype D is in fact genotype A, exhibiting divergence in 

pol gene. 

Group A has so far 15 recognized subtypes, A1–A15, group B has three subtypes, B1–B3 and group 

E has only two subtypes, E1 and E2 (Table 1). Although SRLV infection in small ruminants is widely 

distributed in all continents [27,58], little information is available on the genetic variants circulating in 

different geographic regions (Table 1). SRLV complete genomes have been sequenced and are 

available in the GenBank derived from goat (CAEV-CO [59,60], 1GA [61,62], Gansu [63],  

Shanxi [64], FESC-752 [25], Seui [46] Roccaverano [45] and A4 [27] viruses) and sheep (Fonni [30], 

Volterra [30], 496 [65], SA-OMVV [66], KV1514 [67], KV1772 [68], LV1 [69], EV1 [70],  

P1OLV [71], 85/34 [72] and 697 [73] viruses) (Figure 1). In addition, partial sequences have been 

published in Brazil [74–76], Canada [77], Finland [78], France [27,79–81], Greece [82], Ireland [83], 

Japan [84], Netherlands [85], Poland [86,87], Russia [88], Slovenia [89], South Korea [90] and  

Turkey [29,30].  
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Table 1. Distribution of SRLV genotypes and subtypes which infect goats and sheep from different countries.  

Country 
Genotype A Genotype B Genotype C Genotype D Genotype E 

References 
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 B1 B2 B3 C D E1 E2 

Brazil G/S               G      [74–76] 

Canada  S              G      [77] 

China                G      [63,64] 

England S                     [70] 

Finland S S                    [78] 

France S     G/S          G/S G/S     
[27,79–81, 

91,92] 

Greece     S                 [82] 

Iceland S                     [67–69] 

Ireland G                     [83] 

Italy G       G G/S G G/S     G/S S G/S   G G 
[30,45,46, 

89,93,94] 

Japan                G      [84] 

Mexico                G/S      [25] 

Netherlands S                     [85] 

Norway S                  G/S   [61,62] 

Poland G/S           G/S G/S   G S     [86,87] 

Portugal S                     [71] 

Russia                G      [88] 

Slovenia     S         G S G      [89] 

South 

Africa 
S                     [66] 

South Korea                G      [90] 

Spain S  S              S   G/S  [65,73] 

Switzerland S  G/S G/S G G/S G         G S   S  [27,95] 

Turkey  S S  S    S  S       S    [29,30] 

USA  S              G/S      [59,60,72,96] 

G = Goat; S = Sheep. 
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Figure 1. Phylogenetic tree involving SRLV complete sequences obtained from GenBank 

(accession numbers in bold and underlined) that include the name of isolate and country 

origin. Country abbreviations: CHI - China (Gansu AY900630 and Shanxi GU120138); 

ENG - England (EV1 S51392); ICE - Iceland (KV1514 M60610, LV1 M10608 and 

KV1772 L06906); ITA - Italy (Roccaverano EU293537, Seui GQ381130, Fonni 

JF502416 and Volterra JF502417); MEX - Mexico (FESC-752 HM210570); NOR - 

Norway (1GA AF322109); POR - Portugal (P1OLV AF479638); SOA - South Africa 

(SAOMVV M34193); SPA - Spain (496 FJ195346 and 697 HQ848062); SWI - 

Switzerland (A4 AY445885); USA - United States of America (CAEVCo M33677 and 

85/34 AY101611, U64439). The SRLV genotypes and subtypes are indicated. 

 

According to the most recent phylogenetic information, mostly based on the gag gene, the types B, 

C and D and only nine of the 15 group subtypes A (A1, A3, A4, A5, A6, A9, A11, A12 and A13) 

infect both sheep and goats. Other groups and/or subtypes have only been described in one of the 

ruminant species: sheep (A2 and A15), or goats (A7, A8, A10 [93], A14, E1 and E2). However, as 

more information is generated, SRLV species restrictions are likely to dwindle (Table 1). 
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4. Tropism 

SRLV tropism is linked to both, host genetics and viral genome heterogeneity, and can be studied 

according to differences in the targets addressed regarding: (a) host species (goats or sheep, or both); 

(b) tissue, differing according to the form of disease (mastitis, arthritis, encephalitis and/or pneumonia); 

and (c) cell type. 

4.1. Host Species Restriction 

Studies from several countries have confirmed that CAEV and VMV, originally established as 

specific pathogens in goats and sheep respectively, often cross the species barrier infecting the new 

host, persisting in it and spreading across the new host population. The first evidence of this 

transgression was obtained by experimentally infecting sheep and goats with CAEV or VMV [97–102]. 

Subsequently, evidence has been obtained from phylogenetic analysis of sequences derived from 

French sheep infected by viruses closer to CAEV (group B2) than to VMV (group A) [79–81,91,92]. 

On the other hand, molecular epidemiology studies have demonstrated direct virus passage from sheep 

infected with VMV-like strains (A4) to goats [95]. In line with this, the genotype B1 had been 

considered strictly caprine until the description of B1 infected sheep [103]. Thus, even if some 

genotypes might have been originally assigned to a single host species, the host species spectrum may 

be wider in nature. 

Cell receptor usage explains, at least in part, different patterns in SRLV host restriction. As 

indicated above, the high variability of the ENV protein may be due to its interaction with the immune 

system and the generation of viral escape mutants [49,104]. Thus, changes in env may affect the ability 

of the virus to bind the putative cell receptor(s) and co-receptor(s). Differences in receptor usage have 

been observed between VMV and CAEV strains [105]. Also, differences in permissivity have been 

found in vitro between cell lines of heterologous origin (chicken, hamster, human, monkey and quail), 

which are permissive to SRLV infection and Chinese ovary hamster cells non-permissive to the  

infection [106,107]. Specific amino acid residues of the viral SU protein (see below) have been linked 

to cell receptor recognition [108]. Some of these residues may also be related to the presence of  

arthritis [104]. 

Another explanation for the host-specific viral restriction lies in the individual genetic background. 

Besides adaptive immunological correlates of protection according to immunization studies [109], cell 

molecules of the innate immunity may be involved in delimiting host restriction. Among these, 

APOBEC and TRIM5 are the most widely studied, as they act in different species directly by mutating 

viral genome and interacting with viral capsids, respectively, showing species specificity [110,111]. 

However, the virus has developed mechanism to counteract proteins of different host species. VMV 

studies have shown that the viral Vif protein can neutralize a broad number of A3Z3 proteins 

(APOBEC) irrespective of the species of origin (sheep, humans, macaques, cows and cats) [112].  

4.2. Viral Genetics by Organ and Tissue 

Amino acid motifs conserved at specific viral protein positions involved in the viral entry 

(“signature patterns”) [113] have been found in individuals presenting the same form of disease in  
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HIV [114] and FIV [115] infections. Signature patterns that define organ tropism (disease form) have 

not been found so far in SRLV infections [116,117]. At the single individual level infected with a 

lentiviral quasi-species, each particular virus variant may be confined to one particular compartment, 

organ or tissue within the individual. In HIV infections it is known that these viral populations change 

to adapt to local media within the individual through genetic drift (founder principle) or selection 

pressure. However, when the flow of genes between viral subpopulations within the individual is 

significantly restricted, then each subpopulation can become genetically distinct. This phenomenon 

named compartmentalization [115,118,119] may be derived from micro-evolution and/or the presence 

of various but phylogenetically related genotypes [120–122]. High viral mutation rate in vivo can 

quickly enhance the genetic distance between subpopulations. Also, differences in selective pressures 

imposed by the immune system can result in divergent evolution of the virus, affecting cell tropism, 

phenotypic characteristics and/or pathogenesis, as shown in HIV infections [123–126].  

Regarding the particular viral genetic region involved in tropism, LTR and env have been the most 

widely studied in lentiviral infections. LTR, being a non-coding region responsible for docking 

important cellular transcription factors, is essential for viral replication and may affect viral phenotype 

in cell culture [127,128]. This LTR function is achieved through LTR transcription factor binding sites 

within the U3 region, some of which are related to cell tropism [129]. Tissue tropism has been 

evaluated ex vivo by studying SRLV LTR sequences in different tissue samples but, again, no 

signature patterns have been found so far [130]. Alternatively, in other lentiviruses, genomic regions 

such as hypervariable regions of the env gene involved in compartmentalization have been found 

implicated in tropism. This is the case of the V3 hypervariable region of env in HIV infections, being 

determinant of cell tropism and replication efficiency as it relates to the fusion and virus adsorption to 

the cell in macrophage-tropic strains [113]. In SRLV genomes, five variable (V1 to V5) and four 

conserved (C1 to C4) regions in the envelope protein have been identified [108,131]. The SRLV  

env hypervariable region (V4) is structurally and functionally analogous to the V3 region of  

HIV [108,132,133]. To colonize different organs (lung, mammary gland, brain, joints) SRLV can 

undergo variations in the V4 region of the env gene during early infection giving rise to different viral 

subpopulations, as shown in other lentiviruses [132]. A study on SRLV compartmentalization in the 

mammary gland of goats and sheep showed the presence of different viral sequences in the V4 region 

of the env gene compared to blood-derived cells and colostrum. It was proposed that the mammary 

gland was colonized with a “founder virus” which possibly represented the most common variant 

circulating (dominant) in the blood at the time of infection. Alternatively, it was proposed that the 

initial mechanism could be totally different to compartmentalization and would reflect a selection 

pressure caused by a particular cellular tropism or related to the immune system action exerted against 

the virus in this compartment [116]. 

In another study, SRLV genotype A sequences from sheep suffering from neurological disease 

(visna) showed a clear tissue compartmentalization in the central nervous system (CNS) and other 

organs such as lung and mammary gland, related to horizontal and vertical transmission of SRLV 

infection, respectively. Bayesian approach inferences have suggested that proviruses from alveolar 

macrophages and peripheral blood mononuclear cells (PBMC) represent the most probable common 

ancestors (infecting viruses) in the animal. Likely, PBMC become infected after the intake of virus or 

infected cells/particles through respiratory and/or mammary secretions, including colostrum/milk. 
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Neuroinvasion in the visna outbreak involved microevolution after initial infection with SRLV [117]. 

Of note, the findings on SRLV diversification, adaptation and/or compartmentalization in the brain 

may be independent of those observed in lymphoid tissues or other organs, where the virus is exposed 

to more abundant immune pressures affecting viral replication [134]. 

4.3 Cellular Tropism 

The members of the lentivirus genus differ in cellular tropism and disease development, being 

distributed into two groups. One group includes HIV, FIV and simian immunodeficiency virus (SIV), 

all of which replicate in macrophages and lymphocytes causing acquired immunodeficiency syndrome 

and specific-organ disease affecting lungs, CNS and gastro-intestinal tract. The other group includes 

equine infectious anemia virus (EIAV) and SRLV, both of which replicate primarily in macrophages 

(lymphocytes are not infected) and cause a disease affecting specific organs, mainly lung, mammary 

gland, CNS and/or joints [127,135]. 

In the VMV epidemic in Iceland, the most common clinical signs corresponded to the maedi 

(respiratory form) and the visna (nervous form) was only reported in herds with high prevalence of 

maedi for several years. This was originally attributed to the cell tropism of the virus rather than the 

genetic variation of sheep, because there was only one sheep breed in Iceland [136,137]. Subsequently, 

it was shown that the cellular tropism of VMV strains from sheep with visna appeared to be different 

from those isolated from sheep with maedi. The virus isolated from brain cells replicated more rapidly 

in sheep choroid plexus compared to isolates from lung and this difference was related to differences 

in env and LTR regions [138].  

In vivo SRLV have a marked tropism for cells of the monocyte/macrophage lineage and  

dendritic cells [139,140], the virus infects monocytes, so these cells are permissive for viral entry and 

genome integration (provirus), but the infection remains latent until the cell differentiates into 

macrophage [139,141,142]. This maturation enhances the expression of the transcription factors c-Fos 

and c-Jun, which bind to the AP-1 and AP-4 promoter binding sites of LTR triggering transcription, 

and consequently viral replication and productive infection [143]. Thus, SRLV replicate in mature 

macrophages or related tissues rather than in circulating monocytes, the latter acting as a “Trojan 

horse” [144]  

SRLV are highly variable genetically and antigenically and also show phenotypic differences  

in vitro. Specifically, isolates may differ from each other in the ability to selectively and productively 

infect particular cell types and also in the capacity to induce a cytopathic effect. Accordingly, SRLV 

may be classified phenotypically as rapid/high or slow/low. The rapid/high strains replicate rapidly, 

inducing the formation of syncytia, cell lysis, and reaching high titers. In contrast, the slow/low viruses 

grow slowly and at a low titer. Frequently, sheep isolates belong to the first type; whereas isolates from 

goats show a slow/low phenotype. However, SRLV strains that show an intermediate phenotype 

between the most extreme phenotypes of VMV-like and CAEV-like viruses have been isolated from 

both sheep and goats [145,146]. 

Because SRLV show in vitro high viral production in permissive cells such as macrophages, these 

cells are used routinely for isolating the virus, even though they are terminally differentiated [147]. 

Fibro-epithelial synovial membrane cells and choroid plexus cells derived from goats or sheep are also 
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routinely used for in vitro production of SRLV [96,148]. Other cell types permissive to SRLV 

infection are from lung explants [149], skin fibroblasts [140], spleen and corneal cells [150,151], 

testicle cells [152], goat endothelium [153,154], mammary gland epithelial cells (TIGMEC cell  

line) [155,156], granulose cells [157], oviduct cells [158], microglial cells [159,160], tubular epithelial 

cells [161], hepatocytes [162], cardiac myocytes [162] and the third eyelid cells [163]. However, the 

restricted viral antigen expression and the low number of infected cells found in some of these cells 

should be taken into account before interpreting the biological relevance of these cells in SRLV 

persistence [164]. Experiments employing pseudotyped vectors (vaccinia virus or murine leukemia 

virus-based) with SRLV ENV indicate that ENV-based interaction with cells renders them permissive 

to virus entry. This is the case of cell lines Hela, BHK-21 and others from different origins (human or 

other species) [106,107], suggesting that these cells have a receptor for ENV and that the virus enters 

the host cell by fusion of the membrane receptor to viral ENV SU protein gp135 [165]. However, this 

permissiveness at the entry step [166] may not be associated with a capability of productive infection 

or to a possible natural susceptibility. Although in previous SRLV studies restriction had been 

attributed to the lack of functional receptors [167], post-entry restriction factors such as those 

interacting with Gag [110] rather than Env proteins may have been responsible for the lack of 

productive infection. 

Different attempts have been made to identify and characterize SRLV receptor(s). Candidate SRLV 

receptor molecules include: a membrane-associated proteoglycan substituted with one 30 kDa chain (s) 

chondroitin sulfate glycosaminoglycan [168]; molecules of the major histocompatibility complex class 

II (MHC class II), as preincubation with MHC class II antigens inhibits VMV infection (even though 

antibodies specific to antigens of MHC class II do not inhibit infection) [169]; CD4 and CXCR4 

molecules, which have been proposed as optional auxiliary components for VMV receptor (or receptor 

complex) that facilitates membrane fusion events mediated by VMV [166,170]; and a complex 

comprising three membrane proteins of 15, 30 and 45 kDa, identified as VMV binding proteins [171]. 

However, none of these molecules has been established as the main/essential receptor. Analysis of 

somatic hybrid cell lines (CHO cell panel containing different mouse chromosomes) permissive to 

VMV entry has shown that the gene for cellular receptor is in the murine chromosome 2 or 4 (although 

involvement of chromosomes 6 and X is not excluded). On the other hand, it also showed using hybrid 

cell lines [172] that the VMV receptor gene maps to sheep chromosome 3p (OAR-3p) and a region of 

human chromosome 2 (HAS-2p25 > q13) has retained synteny with sheep chromosome 3p. These 

regions do not include any gene of known receptor or  

co-receptor of lentiviruses, which would indicate that SRLV receptor uses a different molecule to 

infect human cells. Apparently, SRLV may use different cell receptors likely depending the cell it 

encounters [105]. Recently, the mannose receptor (MR, codified in mice by chromosome 2) has been 

described in sheep and identified as a potential SRLV receptor. Accordingly, three cell phenotypes 

have been proposed in small ruminants regarding the expression and usage of MR as SRLV receptor: 

cells using this molecule as the main receptor (synovial membrane cells), cells having this and at least 

another main SRLV receptor(s) (macrophages) and cells lacking MR and using other SRLV 

receptor(s) instead (skin fibroblasts) [173]. Interestingly, the presence of this receptor has been 

associated with the evolution of disease, as its expression increases in target organs exhibiting the most 

severe lesions in SRLV clinical infections [174].  
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5. In Vitro Diagnosis 

Different laboratories have applied direct diagnostic methods such as viral isolation, a very 

laborious method whose performance can be hampered by the lack of permissive cell lines and limited 

viral production in cultured cells [96]. Isolation of virus attempted from leukocytes of infected animals 

often fail, indicating that a negative result is not always reliable [175]. Although this method is not 

suitable for large-scale studies, it can be performed by co-cultivation (commonly of blood monocyte 

derived macrophages with fibro-epithelial cells), whereby the detection of cytopathic effect or reverse 

transcriptase activity indicate the presence of virus [65]. Similarly, immunohistochemical methods, 

allowing the detection of viral protein antigens by specific antibodies in histological samples, smears 

or cytospin preparations, are useful in research and confirmatory studies, but are not commonly 

applied in differential routine diagnosis on live animals, because of the cost, low availability of 

reagents and samples and limited sensitivity of some of these techniques [175]. Also, in situ 

hybridization methods have been employed for histologic studies, but this laborious procedure is only 

used for research purposes [176,177]. Although PCR-based diagnosis is the most common of the 

molecular techniques applied in SRLV diagnosis in vitro (see below), indirect methods such as 

serological diagnosis to detect antibodies to SRLV are overall the most commonly applied approach to 

detect infection. However, there are problems inherent to serological diagnosis. These include the high 

genetic/antigenic variability existing in laboratory and field strains, the presence of maternal antibodies,  

the relatively long lag period between infection and antibody production (serological gap) and the 

intermittent seroconversion (by fluctuating titers throughout the animal’s life). Antibody production 

has been detected by techniques such as agar gel immunodiffusion (AGID), the enzyme-linked 

immunosorbent assay (ELISA), radioimmunoprecipitation (RIPA) and Western blot (WB) [178–180]. 

Both RIPA and WB are mainly used for confirmation [181]. AGID is highly specific but relatively 

insensitive [178] and often linked to subjective interpretation, inapplicability for the determination of 

antibodies in milk and lack of automation, motivating its replacement by ELISA methods of relatively 

low cost and easy implementation and interpretation [2,179,181].  

5.1. ELISA Tests 

In spite of the antigenic variability, cross-reacting antibodies between VMV-like and CAEV-like 

antigens have been described [182] and have enabled for years the control of SRLV-induced disease. 

Sheep and goats remain infected for life, but many seropositive animals may never show clinical signs 

of SRLV infection. Antibodies do not protect against the disease and are mainly indicators of infection. 

The virus escapes from the immune attack even in the presence of neutralizing antibodies, as proviral 

DNA integrates into host cell genome and viral mutations take place during viral replication [183]. On 

the other hand, a seronegative animal cannot be strictly considered free of infection, either because 

antibody titers are below detection level before seroconversion, or because fluctuation in antibody 

levels occurs throughout the animal’s life. Newborns infected at birth have maternal antibodies 

(through colostrum/milk intake) for at least two or three months. Thereafter, they are usually 

seronegative until they seroconvert between six and twelve months of age. Performing diagnostic tests 

immediately before pregnancy does not necessarily ensure that mothers will not seroconvert after 
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parturition. Thus, infected seronegative animals constitute a potential source of infection through 

vertical and horizontal transmission [179,181]. 

To date, no single technique or test can be proposed as “gold standard” to determine the infection 

status of the animal [175]. Competitive ELISA methods (cELISA CAEV of VMRD Inc. Pullman, 

WA) [184,185] using monoclonal antibodies to viral envelope protein (ENV-SU, gp135) epitopes have 

been developed [186] and indirect ELISAs have been frequently applied [187,188], although few of 

them have been compared internationally for both sheep and goats [189–191]. Currently available 

indirect standard ELISAs are used in different formats and designs. Examples are those using either 

whole virus antigens such as the AG-CHEKIT (CAEV/MVV kit, IDEXX Switzerland AG, Liebefeld, 

Bern, Switzerland) [192] or recombinant proteins plus a peptide, specifically, the GAG p25 

recombinant protein and a TM peptide derived from genotype A, as used in assays Elitest-MVV 

(HYPHEN Biomed, Neuville-sur-Oise, France) [193] and Pourquier (ELISA Maedi-Visna/CAEV 

serum verification Institut Pourquier, Montpellier, France). But in some cases, monostrain assays may 

not cover the whole SRLV antigenic spectrum and fail to detect genotype E [188], B2 [194] and A4 

infections [195]. Besides the viral p25 protein included in the test, p14 and p17 proteins also present 

immunodominant epitopes and could be used for differential VMV/CAEV diagnosis [196,197]. Gag 

proteins (p25) have been used in early diagnosis and detection of cross-reacting antibodies for more 

than 20 years [179]. However, new genotypes have emerged [30,45], broadening diagnostic 

possibilities, leading to the development of new standard indirect ELISA tests, such as the one based 

on a mixture of gag and env peptides of three different SRLV genotypes (A, B and E) (IN3 diagnostic. 

Eradikit® SRLV indirect ELISA for Small Ruminant Lentivirus). 

The ENV TM protein has an added value in diagnosis of long-term infections such as those present 

in diseased animals [198] and therefore is included in most subunit assays. SU peptides have also been 

widely used in serological diagnosis and, due to high variability of SU proteins, these peptides are 

being useful to serotype and perform strain-specific diagnosis [198]. Synthetic peptide ELISAs [199] 

have been evaluated by our group, outlining their utility in field sample diagnosis of animals from 

neurological [73] and arthritic [65] outbreaks. 

Antibody detection technology is certainly a valuable tool for determining the infection status of a 

herd/flock, although in some areas with limited resources this technology may be somewhat expensive 

if performed at the individual level. Therefore, strategies for detecting antibodies and infection in the 

flock, involving the use of bulk milk [200–202] or pooled serum [203] and semen samples [191,204] 

are particularly useful in these areas. 

5.2. Polymerase Chain Reaction (PCR) 

Molecular techniques of use in SRLV diagnosis include the heteroduplex mobility assay  

(HMA) [80], which may help to a genotypic characterization of circulating strains within the flock, a 

loop-mediated isothermal amplification technique [64] and polymerase chain reaction (PCR) 

procedures, the most commonly used to directly assess the presence of viral nucleic acid. Conventional 

PCR for diagnostic purposes has been more extensively studied than the real-time PCR (rtPCR). The 

introduction of rtPCR represents a breakthrough in molecular diagnosis [205,206]. The PCR and the 

early detection of amplicons have been combined in this technique [206,207]. The rtPCR has been 
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useful for detection and quantification of viral nucleic acids in different cells or tissues, although its 

use in SRLV routinary diagnosis is not widespread [207–209]. Primers designed in almost all SRLV 

genetic regions [205] have yielded reliable and fast results. The rtPCR diagnostic approach presents a 

decreased risk of cross-contamination and has a high sensitivity using SYBR Green I or TaqMan-

based methods [207]. Furthermore, the use of oligonucleotide probes helps to increase rtPCR 

specificity [205]. However, this technique may work only on a restricted number of strains and its use 

in field diagnosis may present difficulties due to variation in the primer binding site.  

The first conventional PCR protocols designed to detect SRLV were published in the early  

1990s [210,211]. PCR was considered initially a successful tool in SRLV diagnosis, due to its ability  

to directly detect viral nucleic acids, either in the infected cell as a provirus (DNA) or in exudates that 

contain free virus particles (RNA; reverse transcription-PCR) [212]. In addition to conventional PCR, 

variants of this technique have appeared involving two (or more) amplification rounds  

(nested-PCR and seminested-PCR) in order to increase the sensitivity [213–217]. Different studies 

have shown the utility of conventional PCR to detect SRLV infections in different animal samples, 

namely PBMC [214,218–220], peripheral blood leukocytes (PBL) [213,221], milk or mammary  

secretions [212,214,218–220,222], semen [223,224], synovial fluid [218] and other tissues [214,222,225]. 

The efficiency of PCR depends mainly on the specificity of the primers designed, the choice of the 

amplified target viral region, and the sensitivity of the technique [35,127,226]. The low viral load 

existing in infected animals, the low proportion of permissive cells in some tissues (there is one 

infected monocyte in 10
4
–10

5
 PBMC) [206] and the high genetic heterogeneity may hamper PCR 

diagnosis of SRLV [2,226]. Furthermore, the cell type may affect PCR performance. However, PCR 

has the advantage over serological methods of detecting infection in animals with colostral antibodies. 

In milk samples from sheep and goats (small ruminants) a seminested-PCR method based on the pol 

region (pol-seminested-PCR) has yielded positive results in all the infected small ruminants tested (the 

seropositives determined previously by a serological test and a seronegative animal) [212]. Similar 

PCR sensitivities have also been found in PBMC, milk cells and synovial fluid [218]. Here, however, 

are also studies reporting a decreased sensitivity when using milk samples (23.6%) relative to blood 

samples (33.3%), using a gag-PCR [219] or a LTR-PCR procedure [222]. Target sequences for PCR 

primers design are widespread throughout the SRLV genome including LTR, gag, pol and env  

regions [164,212,222,224] and lead to different sensitivity and specificity values. In PCRs amplifying 

segments of the SRLV gag and pol regions, the gag-PCR was more sensitive than pol-PCR [211]. 

However, the LTR-PCR may be more sensitive than PCRs based on gag and pol regions [213,222,226]. 

In a study that examined four pairs of primers designed in LTR, gag (capsid and matrix) and env 

regions using DNA from cells infected with virus from various geographical areas, PCR primers 

targeting the LTR region, gag (capsid), env and gag (matrix) amplified 100%, 62.5%, 25% and 12.5% of 

the samples, respectively [227]. This is in contrast with another study showing that a PCR based on env 

sequences could be more efficient at detecting infected animals (93.3%) compared to pol-PCR which 

only detected 60% of animals infected. Despite its presumed high variability, the env region can be 

suitable for diagnosis by PCR (Table 2) [224]. 

In SRLV infections, PCR-positive reactions are often found amongst seronegative animals (false 

negatives) (Table 2) [219,228], which later seroconvert, thereby demonstrating a lack of sensitivity of 

the serological methods compared to PCR under particular conditions [195].  
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Table 2. Different PCRs techniques, target DNA samples, regions of the viral genome used for PCR design and sensitivity of the PCR method 

for detection of infection by SRLV. 

PCR type DNA or cDNA source 
Primers location into 

the viral genome 
Sensitivity test References 

cPCR Cell culture gag and pol pol-PCR was more sensitive than gag-PCR [210] 

snPCR PBL pol and LTR LTR-PCR was more sensitive than pol-PCR [212] 

nPCR PBMC gag and pol gag-PCR was more sensitive than pol-PCR [213] 

snPCR PBMC gag gag-PCR was less sensitive than AGID [214] 

snPCR Cell culture and PBMC pol High sensitivity, by using degenerate primers [215] 

nPCR PBMC gag gag-PCR was more sensitive than AGID in seronegative animals [216] 

nPCR PBL and blood gag and LTR gag-PCR was more sensitive than LTR-PCR [220] 

cPCR Semen env and pol env-PCR was more sensitive than gag-PCR [222] 

cPCR PBMC, milk cells and tissues LTR LTR-PCR had a sensitivity of 98% with regard to AGID and ELISA [223] 

cPCR Cell culture LTR, gag and env LTR-PCR was more sensitive than gag-PCR and env-PCR [226] 

cPCR PBMC gag gag-PCR was less sensitive than AGID [228] 

cPCR Cell culture and PBMC gag gag-PCR was more sensitive than the ELISA and WB [229] 

nPCR PBL gag gag-PCR increases its sensitivity when used along with hybridization [230] 

cPCR: conventional PCR; snPCR: seminested PCR; nPCR: nested PCR; PBMC: peripheral blood mononuclear cells; PBL: peripheral blood leukocytes; AGID: agar gel 

immunodiffusion; ELISA: enzyme-linked immunoassay; WB: western blot. 
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Studies based on gag-PCR diagnosis reveal that this method may detect infection in 88.3% of sheep 

and goats that are seropositive by AGID and in 11% of seronegatives (67% of animals eventually 

seroconverted) [229]. In line with this, a gag-seminested-PCR procedure allows the detection of 70% 

of the AGID positive sheep and 11% of seronegative animals [215]. Comparative studies on the 

sensitivity of the PCR with regard to serological tests (ELISA and AGID) have shown that LTR-PCR 

is less sensitive than the ELISA and AGID. However, PCR showed a specificity of 100% (like AGID), 

whereas ELISA was less specific (59%) [230]. LTR-PCR specificity is maintained (100%) in different 

tissues, but sensitivity values change according to the tissue under study [83.5% (peripheral blood 

leukocytes), 66.7% (milk cells) and 88% (tissues)], being less sensitive than the ELISA and AGID [222].  

Since PCR assays may fail to detect virus when virus load is below the assay threshold, PCR 

sensitivity may increase upon co-cultivation of PBMC from infected animals with permissive 

fibroblasts in vitro [225,231,232] or by using probes in the Southern blot [214,219] or in situ 

hybridization [228,233] techniques. The use of strain-specific and sequence-degenerated primers could 

also improve sensitivity, as shown by Elthair and collaborators [216] using a pol-seminested-PCR on 

AGID-seropositive animals infected with two viral subtypes (genotypes A and B). The percentage of 

pol-PCR positives in this study was 62.2% and 30.5% for types A and B, respectively. In addition, the 

pol-PCR detected 38.2% of positive animals among AGID seronegatives [216]. 

Although different studies indicate that in general the PCR methods tend to be less sensitive than 

serological tests (particularly ELISA tests) (Table 2) [213,220], PCR testing can detect infected 

animals prior to seroconversion [213,219,228,234,235]. According to SRLV pathogenesis, provirus 

should be present prior to the antibody response to the virus during initial infection of adult animals, 

but this is not always detected. In studies comparing PCR with serological test (AGID and ELISA) 

diagnosis, agreement (positive concordance) ranged from 70% to 94.7%, whereas disagreement 

(negative concordance) ranged from 87.5% to 100% [181,218,219,222,224,229]. This suggests that a 

combination of serology and PCR might be optimal for detecting the infectious status of a  

population [217,230,236]. Furthermore, PCR products can be systematically sequenced [27,94], which 

may allow a better design of primers for new PCRs with a wide range of recognition. The development 

of a single PCR to detect all SRLV may still be utopian, although attempts to cover a large spectrum of 

genomes by including different sets of primers in the assay have been made [27].  

6. Concluding Remarks 

The basic mechanisms of mutation and recombination are complex biological processes, but they 

may help to understand the true role of viral diversity in SRLV pathogenesis. Virus and host genetic 

and microenvironmental factors involved in cell, tissue/organ and host tropism of these viruses are 

pivotal issues in current investigations. Genetic and antigenic variations of the virus represent 

challenges in SRLV diagnosis. The success in avoiding SRLV infection spread depends largely on 

early detection and culling of infected animals in the heard/flock. Detection of specific antibodies in 

serum or milk by ELISA, typing the circulating strains by local strain-based ELISAs, HMA or  

PCR-sequencing techniques, and use of PCR for confirmatory purposes are solid technological 

approaches of practical use for reducing the risk of misdiagnosis in different areas. Finally, diagnostic 
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methods suitable to both sheep and goats should be implemented in joint programs for these species 

for successful SRLV control and eradication strategies. 
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