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Abstract: Maturation is an intrinsic phase of the viral life cycle and is often intertwined 

with egress. In this review we focus on orbivirus maturation by using Bluetongue virus 

(BTV) as a representative. BTV, a member of the genus Orbivirus within the family 

Reoviridae, has over the last three decades been subjected to intense molecular study and is 

thus one of the best understood viruses. BTV is a non-enveloped virus comprised of two 

concentric protein shells that encapsidate 10 double-stranded RNA genome segments. 

Upon cell entry, the outer capsid is shed, releasing the core which does not disassemble 

into the cytoplasm. The polymerase complex within the core then synthesizes transcripts 

from each genome segment and extrudes these into the cytoplasm where they act as 

templates for protein synthesis. Newly synthesized ssRNA then associates with the 

replicase complex prior to encapsidation by inner and outer protein layers of core within 

virus-triggered inclusion bodies. Maturation of core occurs outside these inclusion bodies 

(IBs) via the addition of the outer capsid proteins, which appears to be coupled to a  

non-lytic, exocytic pathway during early infection. Similar to the enveloped viruses, BTV 

hijacks the exocytosis and endosomal sorting complex required for trafficking (ESCRT) 

pathway via a non-structural glycoprotein. This exquisitely detailed understanding is 

assembled from a broad array of assays, spanning numerous and diverse in vitro and  

in vivo studies. Presented here are the detailed insights of BTV maturation and egress. 
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1. Introduction 

Members of the family Reoviridae, which include BTV and other orbiviruses, are characterized by 

their unique genome of 10–12 segments of linear, double-stranded RNA (dsRNA). These separate 

segments facilitate the generation of 10–13 viral proteins. Virions are comprised of non-enveloped, 

icosahedral capsids. The structural organization of the virions entails the enclosure of RNA gene 

segments within two concentric protein shells, which gives rise to a distinct outer capsid layer that 

surrounds an inner capsid or core that contains the genome. Following cell entry, the outer capsid 

dissociates, this facilitates the release of the core within which the viral genome remains sequestered 

into the cytoplasm. The retention of the genome within this core abrogates the triggering of an innate 

immune response. Given this sequestration of the viral genome, the cores contain the necessary 

transcription machinery, which facilitates the synthesis and subsequent extrusion of multiple capped 

positive-sense RNAs, derived from each genomic segment, into the cytoplasm. Current models hold 

that the polymerase complex contained within this core contacts the dsRNA genome, which, acting as 

a template, facilitates the synthesis of nascent transcripts that are directed out of the core particle via 

pores. Such mechanizations require the co-ordination of enzymatic activities that include polymerase, 

helicase and RNA capping activity. Whilst intense efforts on investigating viral architecture and 

structure have yielded a trove of information, the underlying dynamics of subsequent core maturation 

and egress remain to be fully elucidated and defined; the use of BTV provides an opportunity to do so. 

BTV replication in mammals commences with the introduction of infectious virions (Figure 1) into 

the host blood stream during a blood-meal, infused as part of the saliva of Culicoides midges, during 

the feeding process [1]. The subsequently established primary infection occurs in mononuclear 

phagocytes and endothelial cells before being disseminated via the host blood stream [2]. In 

mammalian tissue culture cells, cell entry is mediated via adhesion to cell-surface glycoproteins [3,4] 

and utilizes clathrin-mediated endocytosis and pH-dependent penetration [5]. This process involves the 

dissociation of the outer-capsid, composed of VP2 and VP5, which then leads to the release of core in 

the cytosol [6]. This transcriptional activation utilizes the ten enclosed dsRNA genome segments 

(Figure 1), leading to the synthesis of ten single-stranded RNAs (ssRNA) that are capped and 

methylated [7]. Following extrusion of these transcripts from the core, they are subsequently translated 

into viral proteins in the cytoplasm of the infected cell. Specifically, these proteins are the seven 

structural proteins (VP1 through to VP7) and four non-structural proteins (NS1 through to NS4) [8,9]. 

NS1 has been found to be involved in virus replication and morphogenesis [10] by preferentially 

promoting BTV ssRNA translation to elevate viral titre [11]. NS2 is the principle component of viral 

inclusion bodies (VIBs) that are localized in the cytoplasm [12,13]. NS2 recruits both core proteins  

and newly synthesized ssRNA transcripts that are required for replication, genomic packaging and  

core assembly [14,15] but not the outer capsid proteins VP2 and VP5 or any other non-structural  

proteins [14,16]. Following assembly, cores dissociate from VIBs and subsequently mature via 

association with the outer capsid proteins, VP2 and VP5, prior to virion egress, a process mediated by 

NS3, propagating infectious virions [17–19] (Figure 2). NS4 has been proposed to negate the antiviral 

response of the host, at least in the case of serotype BTV-8 [9]. A significant advancement in our 

understanding of the BTV life-cycle has been the development of the first helper virus free in vitro  

T7-based reverse genetics (RG) system for BTV [20,21].  
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Figure 1. BTV (Reoviridae) particle constituents. (A) SDS-PAGE showing the 7 structural 

proteins isolated from purified virions, in addition, 4 non-structural proteins are 

synthesized in infected cells. (B) Transmission electron micrograph (TEM) of BTV 

virions. (C) PAGE showing 10 discrete double-stranded RNA molecules derived from 

purified virions. 

 

As a first step in the development of the RG system, BTV virions were purified prior to 

chymotrypsin treatment, which liberated the core from the outer capsid proteins (VP2 and VP5). These 

cores were subsequently utilized for the in vitro synthesis of ssRNAs. These ssRNA transcripts were 

then separated from the active cores prior to the former being transfected into mammalian cells. This 

transfection facilitated both viral protein synthesis and led to the recovery of infectious virus [20]. This 

system has subsequently proved malleable to the introduction of mutations into cDNA clones, using 

in vitro synthesized T7 transcripts, of either mutant or wild-type, for the elucidation of BTV 

biology [21]. Cumulatively, these systems allow for the elucidation and dissection of BTV assembly 

and maturation at a molecular level. 

2. Highly Orchestrated Events — Capsid Disassembly and Assembly 

The orchestration of capsid disassembly may be interpreted as a result of the overall structure of the 

BTV virion, with distinctive roles allocated and fulfilled by viral proteins contingent upon their 

placement within the virion architecture.  
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Figure 2. Overview of the BTV replication cycle. Virion entry is facilitated by the 

attachment of the outer-capsid protein VP2 to sialic acid prior to clathrin mediated 

endocytosis. Virion internalization leads to trafficking to endosomes where acidic pH 

facilitates VP5 mediated membrane permeabilization. This results in virion un-coating that 

releases the core into the cytoplasm. The cores become transcriptionally active, 

synthesizing and extruding viral mRNA for translation, leading to cellular morphogenesis 

via the non-structural proteins. NS1 promotes BTV ssRNA translation and subsequently 

forms tubules in the cytosol. NS2 assembles the viral inclusion bodies (VIBs) that 

concentrate viral proteins and newly synthesized ssRNAs for core assembly. Following 

core assembly and egress from VIBs, cores are trafficked on endocytotic vesicles by NS3 

interaction with annexin/calpactin. Virion maturation is commenced by the core 

associating with VP5 and VP2 to form complete particles. Virions initially egress  

non-lytically during the early stages of infection via NS3 interacting with Tsg101, which 

leads to budding, prior to release by cell lysis. Adapted from [22]. 

 

3. Capsid Disassembly 

The two protein layers of the outer capsid possess an intrinsic instability, capable of dissociating 

from the core via proteolysis and mildly acidic conditions [23]. Such conditions are present following 

attachment and internalization of the BTV virion (Figure 2) via the clathrin-mediated endocytotic 

pathway and the subsequent acidification of the vesicle as it transitions to the endosome [5]. At this 

stage, the outer layer of VP2 may still sterically inhibit VP5 and thus regulate its activity [24]. The 

transition to an acidic environment may facilitate the shedding of the VP2 protein layer, having served 

its function of host-cell attachment and internalization, thus facilitating the exposure of the underlying 

VP5 protein layer. VP5 subsequently then undergoes a low-pH mediated conformational change that 
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leads to endosomal membrane destabilization via pore formation in the confining membranes [4]. This 

fusogenic capacity was demonstrated in tissue culture, where recombinant protein fused to a 

transmembrane domain could mediate syncytia formation in Spodoptera frugiperda (Sf9) cells 

following low-pH shock [25]. Following membrane destabilization, it is during this stage that the 

dissociation of VP5 from VP7 occurs, signifying the loss of the two outer protein layers and the 

completion of the uncoating process, releasing the core into the cytoplasm (Figure 2). These released 

cores do not undergo any further disassembly, remaining intact, with the genomic RNAs contained 

within [5]. Consequently, the loss of the two outer protein layers and the release of the core into the 

cytoplasm facilitate the initiation of genome replication [26]. 

4. Viral Genome Transcription and Replication 

Following release into the cytoplasm, the core, consisting of the two major proteins VP7 and VP3, 

the enzymatically active minor proteins VP1, VP4 and VP6, along with the 10 segments of the dsRNA 

genome, becomes transcriptionally active, with the 10 genomic segments never being released from 

the core [22]. Replication of the dsRNA genome occurs via a semi-conservative mechanism analogous to 

that of dsDNA replication [27]. All 10 genome segments become transcribed with the negative-sense 

ssRNAs of the dsRNA segments functioning as templates for the synthesis of the positive-sense 

ssRNA transcripts, but these are not synthesized at the same rate [28,29]. These positive-sense ssRNA 

transcripts are extruded into the cytoplasm as capped and methylated, but not polyadenylated,  

full-length mRNA copies [7,30]. Once released, these transcripts function as templates for both 

translation and for negative strand viral RNA synthesis to generate the genomic dsRNAs [31,32]. The 

10 mRNA species facilitate the expression of 11 viral proteins, with two segments encoding two 

proteins each. Segment 9 encodes VP6 and NS4, which are present in different reading frames [9] and 

segment 10 that encodes two isoforms of NS3 (NS3 and NS3A) mediated through alternative 

translation start sites [33].  

5. The Replication Complex (VP1, VP4 and VP6) 

The replicase complex contained within the core is comprised of VP1, VP4 and VP6; concertedly, 

they are responsible for the synthesis of ssRNA transcripts from the dsRNA genome that are capped 

and methylated in a series of enzymatic steps. Initially, the respective enzymatic activities were 

assigned based upon their predicted amino acid sequence [34] and subsequently confirmed by 

experimental studies using in vitro assay systems. 

VP1 is a RNA dependent RNA polymerase (RdRp) with a molecular weight of 149.5 kDa [35]. 

In vitro polymerase assays utilizing recombinant protein exhibited replicase activity that was capable 

of initiating BTV minus-strand synthesis de novo, in the absence of other viral proteins, which yielded 

dsRNA that was found to be RNase III sensitive, but RNase I resistant [36]. VP1 displays 

non-specificity in its replicase activity, being capable of dsRNA synthesis utilizing non-viral RNA 

templates that had been fused with BTV sequences at the 5’ and 3’ termini, alongside Rotavirus and 

BTV templates [37]. However, only a minority of the potential template molecules are replicated, 

suggesting that alone VP1 has low replicase activity. The data indicates that the specificity of 

polymerase activity may also be a consequence of its association with the inner capsid of the core, 
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acting in conjunction with the other minor proteins to associate with viral RNA to produce a conducive 

spatial arrangement that provides template specificity. 

As previously mentioned, core derived ssRNA transcripts have been observed to be capped, in a 

process that occurs prior to their extrusion into the cytoplasm, and whilst VP1 facilitates the synthesis 

of ssRNA from the enclosed dsRNA templates, it is VP4 that has been found to be responsible for this 

capping modification. VP4 is a 76 kDa capping enzyme that was found capable of synthesizing cap 1 

structures on ssRNA templates in vitro [30]. Whilst the addition of a cap to the 5’ termini of BTV 

transcripts allows utilization of the host-cell translational machinery, it also enhances dsRNA synthesis 

via VP1 when compared with ssRNA templates that lacked this feature [37]. Canonically, the 

prerequisite for the formation of cap structures involves three enzymatic activities of an RNA 

triphosphatase (RTase), guanylyltransferase (GTase) and guanine-N7-methyltransferase (N7MTase). 

The RTase mediates the hydrolysis of the γ-phosphate of the 5’ –triphosphate of the RNA template. 

Subsequently, the GTase catalyzes the formation of a 5’-5’ phosphodiester linkage between the 

terminal diphosphate and guanylymonophosphate. Finally the N7MTase catalyzes the addition of a 

methyl group to the N7 position of the terminal guanosine.  

Consistent with these criteria, VP4 was shown to possess RTase [30], GTase [38] and 

methyltransferase activity [39]. Furthermore, in the case of Reovirus and BTV RNA transcripts, an 

additional nucleoside-2’-O-methyltransferase (2’OMTase) activity is required to facilitate the 

methylation of the 2’-hydroxyl group of the 5’ terminal nucleotide to form the cap 1 structure. Thus 

BTV VP4 encompasses all these essential catalytic activities for the generation of the complete 5’ 

terminal cap structure, and it also possesses an inorganic pyrophosphatase activity. This latter activity 

may facilitate VP1 polymerase processivity via the removal of inorganic pyrophosphate which may act 

as an inhibitor to VP1 [38].  

While VP1 and VP4 activities yield positive-sense capped-ssRNAs, which serve as templates both 

for translation and genome replication, the dsRNA nature constraints the accessibility of the genome, 

which requires the unwinding of the duplex. This enables the template strands to be accessible to VP1 

polymerase and facilitates its processivity as well as allowing for the dissociation of nascent ssRNA 

from the template strand prior to extrusion from the core. Helicases perform such functions with the 

intrinsic capacities for RNA binding, ATP coordination/hydrolysis and helicase function [40,41]. The 

last of the three minor proteins contained within the core is VP6 (36 kDa). VP6 may functions as a 

viral helicase. A purified recombinant VP6 has been shown capable of binding RNA duplexes with 

either short 5’ or 3’ overhangs or blunt-ends and unwinding these duplexes in the presence of 

magnesium ions and ATP [42]. VP6 contains putative functional motives, including RNA-binding and 

unwinding domains and ATPase activity, and when these were altered the functional activity was 

compromised [43]. The relevance of VP6 to BTV replication was further shown in vivo, where it was 

found to be required as part of the primary replication complex for virus recovery by the reverse 

genetics (RG) system [44].  

Cumulatively, the three minor proteins VP1, VP4 and VP6 contained within the core cooperate and 

orchestrate the generation of capped and methylated ssRNA from dsRNA genomic templates, which 

are sequestered and shielded from the host-cell environment. 3D reconstruction of cores has shown 

that the intra-core organization is such that the dsRNA is associated with the minor proteins, which are 

associated with VP3.  
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6. Capsid Assembly and Maturation  

BTV infection entails the formation of large punctuate perinuclear globules that have been termed 

as viral inclusion bodies (VIBs) [45], and which are viewed as sites of viral assembly [14]. VIBs are 

predominantly comprised of NS2 (41 kDa), which may act as a scaffold or concentrator where newly 

synthesized viral proteins interact with sequestered viral RNA species prior to capsid assembly and 

dsRNA synthesis. NS2 has been found both sufficient and necessary for VIB formation in both 

mammalian cell and SF9 cell expression systems, capable of forming VIB that possess a similar 

morphology when singly expressed as is observed during BTV infection [13,14]. Furthermore, it was 

found to be important for primary replication in vivo, as virus recovery was abolished in the absence of 

NS2 [46]. NS2 is the only known BTV protein that is phosphorylated in vivo and it is this state that 

may mediate VIB morphogenesis. Two serines, 249 and 259, are substrates for casein kinase 2  

(CK2) [15]. This phosphorylation state regulates the propensity of NS2 to form larger aggregates, but 

it does not influence its capacity to bind ssRNA [15]. Whilst phosphomimetic substitutions of these 

serines with aspartic acid showed wild-type morphology, single or double alanine substitutions at these 

sites resulted in a dispersed granular morphology [15]. Thus, phosphorylation may function to regulate 

the interactions, and stability, of the NS2 matrix. In culture, during co-expression, NS2 is found 

capable of co-localizing with VP1, VP3, VP4, VP6 and VP7, although the presence of VP3 is required 

to facilitate VP7 recruitment [14]. In addition to its capacity for recruiting the core proteins, it can also 

bind newly synthesized BTV ssRNA with a higher affinity than non-BTV ssRNA [15,47,48]. These 

capacities and facilitations implicate VIBs as sites of core assembly and genome encapsidation.  

7. Capsid Assembly 

As previously described, in vivo, VIBs concentrate viral proteins and RNA in an infected host-cell, 

mediating, as a scaffold for, core assembly. Utilizing a recombinant protein baculovirus based 

expression system, it was found that when VP3 (103 kDa) was expressed on its own, or in conjunction 

with VP7 (39.5 kDa), it assembled into single icosahedral shells (which were of a low stability) or 

double-shelled icosahedral particles (with high stability) (Figure 3). 3D reconstructions of sub-cores 

and cores reveals that these are assembled in two concentric protein shells (Figure 4). This assembly 

occurred independently of the presence of the genomic RNA and minor proteins [49,50]. Given this 

demonstrated propensity, this system enabled, via mutagenesis, the refinement of the assembly 

process. The outcome of core assembly is the construction of a T = 2 sub-core composed of 60 dimers 

of VP3 upon which are arrayed in a T = 13 arrangement 260 trimers of VP7 that complete the core 

[51–53]. Whilst this constitutes the end-product, understanding the assembly process itself has been 

aided by extensive studies on recombinant core-like particles (CLPs) that have been found to possess 

an intrinsic propensity for autonomous self-assembly [49,54,55].  
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Figure 3. Spectrum of capsid assemblies. Transmission electron micrographs (TEM) of 

(A) authentic virions, (B) virus cores, (C) sub-core-like particles composed of VP3, 

(D) core-like particles (CLP) formed by VP3 and VP7 co-expression, (E) CLPs with either 

VP5 or VP2 added onto CLP, (F) virus-like particles formed by co-expression of VP3, 

VP7, VP5 and VP2. Bar, 100nm. Adapted from [49,54,55] and [56]. 

 

Figure 4. 3D reconstructions of sub-core and core assemblies. 3D structural studies 

revealed BTV core is organized in two concentric protein layers with the  

sub-core composed of VP3 (A) forming a scaffold for VP7 to give rise to cores (B).  

(C) Cross-sectional representation of core assemblies shows intra-core organization of 

minor proteins VP1 (RdRp polymerase), VP4 (capping enzyme) and VP6 (helicase) in 

association with dsRNA in relation to VP3 and VP7 [57]. 

 



Viruses 2014, 6 3258 

 

 

Specifically, VP3 dimers have been observed from decamers. VP3 has been denoted to possess 

three domains: apical, carapace and dimerization domains [52]. VP3 mutants deficient in this 

dimerization domain lacked the capacity for sub-core assembly, yet retained the capacity for decamer 

and dimer assembly [58]. This suggested an assembly hierarchy of dimers assembling to form 

decamers, while decamer-decamer interaction yielded sub-cores. VP7 forms trimers in the absence of 

VP3, yet these trimers fail to assemble into icosahedral shells. For this to occur, a scaffolding layer of 

VP3 is required to facilitate the deposition of VP7 trimers [59]. VP7 trimers exhibit a polymorphism in 

the association of VP7 subunits that give rise to five quasi-equivalent trimer species to facilitate  

the T = 13 arrangement of the icosahedral shell, whereby the formation of the VP7 lattice on the VP3 

scaffold surface requires an exact fitting of the 260 VP7 trimers in specific order [59,60]. This is based 

on work with mutants that highlighted the need for correct intramolecular (within the VP7 subunit) and 

intermolecular (between the VP7 subunits) interactions as well as the interaction with the underlying 

VP3 scaffold to facilitate this assembly. 

Co-expression of VP3 and VP7 yielded CLPs, reconstruction of these revealed a similar 

architecture and size to authentic cores (see Figure 3B), and whose assembly could facilitate the 

incorporation of the minor proteins VP1 and VP4 [61,62]. Whilst it was possible for CLPs to 

incorporate VP1 and VP4, they proved incapable of encapsidating VP6. This allows for speculation 

that the ssRNA synthesized during infection, for which VP6 has strong binding affinity, may be 

required for its incorporation, or the presence of the VIB scaffold. Interestingly, when virus derived 

cores are incubated with transcription buffer, conformational changes occurred, this resulted in pores 

on the core surface dilating, generating exit sites for the viral mRNA [63].  

These in vivo assembly studies have been further aided by the recent development of an in vitro cell 

free assembly (CFA) system [64] (Figure 5). Using wheat germ extract, BTV structural proteins were 

expressed. With the addition of the ten uncapped, positive-sense ssRNA genome segments to in vitro 

translated VP1 (RdRp), VP4 (capping enzyme) and VP6 (helicase), it was found that BTV 

RNA-protein complexes could form de novo, and with the subsequent addition of VP3 and then VP7 

that this led to the assembly of complete BTV cores, albeit with a low efficiency. In the presence of the 

10 ssRNAs, generation of different viral protein combinations suggested that VP1 interacted first with 

VP4 and VP6, prior to its interaction with VP3, whereby VP4 would stabilize the complex. Data 

showed that BTV ssRNAs were essential to drive the assembly reaction. Furthermore it was found that 

the absence of the smallest segment, S10, resulted in a failure to incorporate the remaining segments, 

although protein-RNA complexes had formed, implying a role in the recruitment of the other genome 

segments. Following sucrose gradient fractionation it proved possible to show that these cores were 

indeed infectious in Culicoides insect vector cell culture and that the ten packaged ssRNA molecules 

had been converted to ten dsRNA genomic segments [64]. Furthermore, prior to the addition of VP7, 

the formed sub-cores of VP3 containing the minor proteins and the ten packaged ssRNA segments 

demonstrated sensitivity to RNase treatment, but this effect could be abrogated via the addition of  

VP7 [64].  
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Figure 5. Cell-free assembly (CFA) system delineates the assembly pathway of the core 

particle. In vitro assembly of core particle involves translation of VP1, VP4 and VP6 and 

incubation with the ten BTV ssRNA transcripts. VP3 is added prior to the addition of VP7. 

The CFA system does not require any of the non-structural proteins. Adapted from [64]. 

 

These cell-free assembly and recombinant particle assembly systems have facilitated the delineation 

of a putative assembly order, commencing with the BTV RNA-protein complexes containing VP1, 

VP4 and VP6, followed by their inclusion into VP3-based sub-cores. This then subsequently recruit 

and serve as a scaffold for VP7 deposition, generating the stable core particles. This order of assembly 

events is facilitated by the viral genomic RNAs containing specific packaging signals that allow for the 

packaging of viral transcripts and the formation of BTV RNA-protein complexes, whilst 

discriminating against host cell RNAs. Studies using one RNA segment (e.g., S9) found that packaging 

signal was present within 276 nucleotides at the 5’ end and within 93 nucleotides at the 3’ end [44]. 

Given the insertions made during these experiments, a strict size limitation on segment 9 may not 

exist, furthermore, capping of transcripts was found not to be an essential packaging signal [44]. Once 

packaged into sub-cores, viral ssRNA along with the minor proteins within VIBs have been shown to 

be transcriptionally active. Evidence for this was provided by the observation that after the arrest of 

host-cell transcription via actinomycin D treatment, newly synthesized bromo-deoxyuridine labelled 

transcripts localized within VIBs [14]. 

This mode of nucleic acid encapsidation differs from the proposed mechanism employed by some 

phages. Phages assemble a Prohead capsid structures prior to encapsidation. Prohead I and Prohead II 

have similar morphologies as viewed in moderate-resolution cryo-electron microscopy (cryo-EM) 

reconstructions [65]. Prohead II is the structure into which the phage DNA is packaged. This differs 

distinctly from observations made in BTV. The current understanding derived from the CFA system is 
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that a conformational motif formed by the interaction of the 5’ and the 3’ends of the RNA segments is 

necessary and sufficient for packaging. It was found that the genome assembly follows a small to large 

RNA segment order and that the UTRs play an important role on the regulation of packaging. Further, 

an RNA-RNA in vitro assay system indicated that there is a specific interaction between RNA 

segments and such interactions most likely facilitate the ssRNA incorporation into the assembling 

capsid [66]. In this model, the ssRNA commences association with the minor proteins, only then do 

these complexes allow for the commencement of encapsidation by VP3 decamers, which then 

amalgamate as they become incorporated into sub-core assemblies. 

Interestingly within the CFA system, the presence of NS2 proved dispensable in vitro, this is in 

stark contrast to its requirement for primary replication in vivo [46]. This suggests that within a more 

hostile cellular environment in vivo, NS2 could concentrate viral components and protect newly 

synthesized ssRNA, a requirement that does not exist in vitro to the same extent. Furthermore, once 

core assembly has been completed within the scaffold of the VIBs, it is possible for these cores to 

dissociate and exit via channels that have been observed in VIBs by TEM [14]. 

8. Capsid Maturation 

While cores are assembled within VIBs, the subsequent maturation stage, which is driven by the 

addition of VP2 and VP5 to the cores, does not occur within VIBs [14]. The outer-capsid proteins VP2 

and VP5 interact with the core via association with VP7, which comprises the outer layer of the core 

(Figure 6) [24,67]. 120 trimers of VP5 associate with the underlying VP7 shell but do not assume  

its T = 13 configuration, while 60 trimers of VP2 constitute the outermost exposed proteins [24]. Each 

VP2 trimer triskelion associates with four VP7 trimers on the core and globular-shaped VP5 trimers 

fill in the gaps created by the VP2 triskelion legs. VP5 trimers are situated above the type II and III 

channels of the core, which function as portals for newly synthesized mRNA transcripts to be extruded 

from the core. This association principle depicts protein-protein contacts of VP2 and VP5 with the 

underlying VP7 layer, rather than with each other. This in turn may be related to virus entry into a host 

cell, where each protein mediates a distinct step during the entry phase [24].  

Once associated with VP2 and VP5, the transcriptionally active phase of cores may come to an end, 

subsequently mediating a transition to a stable dsRNA configuration, particularly when the channels 

utilized for mRNA extrusion are occluded by the VP5 trimers. Given the crucial nature of such a 

transition, it would be expected that this stage was highly regulated to abrogate the chance for  

pre-mature viral transcriptional shut-off. This assembly stage of maturation though, when VP5 and 

VP2 associated with cores, was found to have, as during core assembly itself, an intrinsic propensity 

for autonomous self-assembly. This was evidenced by the observation that virus-like particles (VLPs), 

which could mimic the morphology of authentic virions (but lacking the genomic RNA and 

polymerase complex), managed to assemble during the co-expression of core proteins with VP5 and 

VP2 in a baculovirus expression system [50,54] (see Figure 3E,F). This in turn may highlight a 

dependency of the virus on host-cell factors in regulating maturation via the spatial separation of VP5 

and VP2 from transcriptionally active cores situated within VIBs, and facilitating maturation as the 

cores dissociate from VIBs and enter an egress pathway.  
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As VP2 and VP5 are not recruited into VIBs, experiments have shown that they instead 

independently interact with host-cell factors. VP5 has been shown to interact with SNARE (soluble  

N-ethylmaleimide-sensitive-factor attachment protein receptor) regulatory protein synaptotagmin I 

(Syt1) of the exocytosis pathway [68] and VP2 with vimentin, a component of intermediate filaments 

and cytoskeleton [16] and also with cellular exocytosis and endosomal sorting complex required for 

trafficking (ESCRT) pathway proteins [17]. Ultimately it may be the case that the virus utilizes its 

intrinsic propensity for autonomous self-assembly during the association of the core with VP5 and 

VP2 to recruit host factors that interact with VP5 and VP2 separately in order to facilitate egress. 

Figure 6. Electron-Cryomicroscopy high resolution (7-Å) image of BTV. Outer-capsid 

coat comprised of VP2 (cyan and magenta), the inner-capsid coat VP5 (green) and the  

outer-core coat protein VP7 (black and red) whereby VP3 (not visible) is occluded by the 

VP7 layer Adapted from [24]. 

 

In this regard, BTV maturation, where VP2 and VP5 associate with the core particle, differs from 

Reovirus where proteolytic processing is required. Furthermore, BTV maturation also differs from that 

observed in dsDNA bacteriophages or Herpes virus (HSV) maturation. Phage maturation is termed 

‘expansion’ that accompanies DNA packaging, which results in a change in the dimensions of the 

capsid shell, increasing the internal volume without the addition of additional protein subunits [69,70]. 

In the case of HSV-1, capsid is formed in the infected cell nucleus as a less robust intermediate termed 

the procapsid. Once the DNA is packaged, the procapsid is transformed into the mature, icosahedral 

capsid via the angularization of the procapsid, in a process resembling Prohead expansion as in the 

morphogenesis of dsDNA bacteriophages [71–73]. To date there is no evidence that suggests 

capsid/core changes similar to those observed in the phages or HSV-1 occur in BTV. The core volume 
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appears to be unaltered at low resolution cryo-EM imaging and reconstruction analysis, as the outer 

capsid proteins are added onto the core, or when comparing virus cores with core-like particles (CLP) 

that lack the genomic dsRNA segments (Figure 3, comparing B and D). More critically, the viral 

nucleic acids are not packaged post procapsid generation but rather the capsid (core) assembles around 

the viral nucleic acids, as shown in Figure 5. The culmination of these processes is the infectious  

BTV virion. 

9. Virion Egress 

During BTV infection both lytic and non-lytic virion release has been documented, whereby 

evidence exists that suggests that the host-cell environment may influence the mechanism of virion 

egress. Infection of mammalian cells is characterized by an extensive cytopathic effect (CPE) that 

predominantly, but not exclusively, leads to cell lysis, in contrast, vector insect cells demonstrate 

practically no CPE, concurrent to a persistent non-lytic infection [12,74,75]. Whilst non-enveloped 

virus release from mammalian host-cells is generally associated with cellular lysis, the significance of 

virion budding as a form of egress is seeing greater appreciation. 

The role NS3 plays during virion maturation and release via the recruitment and the bridging of 

host factors and viral proteins is continuing to come into focus. NS3 (25.5 kDa) and its shorter form 

NS3A (24 kDa), which lacks the N-terminal 13 amino acids, are the only membrane-associated 

proteins encoded by BTV [33,76] whereby they localize to smooth-surface intracellular vesicles  

under TEM [77,78] (Figure 7). In vivo, NS3/NS3A exist in both glycosylated and non-glycosylated  

forms [77,79]. NS3 interacts with VP2 [17] and VP5 [68] as well as lipid raft domains [80]. It has been 

possible to show that co-expression of NS3 and NS3A with baculovirus-expressed VLPs in insect cells 

facilitated VLP release, VLPs are normally retained within the cytoplasm, and NS3 protein has also 

been observed at the sites of VLP release [78]. It is currently unclear whether this release is due to the 

cytotoxic effects as NS3 expression in mammalian or insect cells can cause when expressed alone [33], 

due to an ascribed function as a viroporin via the induction of membrane permeabilization [81], an 

attribute of the virion egress cascade. 

The interaction of lipid raft domains in this context for virus maturation and egress may prove 

paramount. Lipid raft domains are enriched and comprised of sphingolipids and cholesterol, forming 

constituent parts of both the plasma membrane as well as multi-vesicular bodies (MVB) of a cell. 

These domains facilitate trafficking proteins, glycosylphosphatidylinositol (GPI) anchored proteins 

and signaling molecules to be concentrated [82,83] and may play a role in the assembly of enveloped 

viruses such as Ebola or HIV [84–86]. With regards to BTV, disruption of lipid rafts via the addition 

of beta-cyclodextrins, which facilitates the removal of cholesterol from cell membranes [87], did not 

alter BTV protein synthesis, but mediated a redistribution of VP5 and NS3 with a concurrent decrease 

in viral titre [68]. Furthermore, VP5 appears to also possess a capacity for associating with lipid rafts 

via a conserved WHXL sequence in Syt1 that a conserved WHAL motif in VP5 could bind. Alanine 

scan mutagenesis in WHXL resulted in a perturbation of the association of lipid rafts with VP5 [68].  
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Figure 7. NS3 interacts with trafficking pathway protein Annexin 2 (Calpactin, p11) and 

ESCRT (endosomal complex required for transport) pathway protein Tsg101 and Nedd-4. 

(A) NS3 is proposed to adopt a membrane spanning topology. (B) Co-localization of 

Annexin2 (p11) and NS3 in the infected cell. (C) Co-localization of Tsg101 and NS3 in the 

infected cell. Transmission electron micrographs (TEM) of wild-type virion egress (D) and 

N-terminal NS3-p11 interacting domain mutant (E) that demonstrate trafficking aberration 

in the NS3 mutant. Adapted from [17,18,75]. 

 

The lipid phosphatidylinositol [4,5] bisphosphate (PI[4,5]P2) present within lipid rafts can interact 

with SNARE domains, such as found in Syt1 [88] and play a role in vesicular trafficking. PI[4,5]P2 

mediates the organization of the association with the cytoskeleton and the formation of exo/endocytic 

cytoplasmic vesicles during vesicular trafficking [89,90]. When cellular PI[4,5]P2 was relocated to 

endosomal-like structures via Arf6/Q67L expression, or depletion via polyphosphoinositide  

5-phosphatase IV (5ptaseIV), thus perturbing intracellular vesicle formation, BTV viral particles fail to 

associate with the outer surface of vesicle-like structures in the cytoplasm. Collectively, this implicates 

lipid raft domains as regions for virion maturation via the concerted concentration of the outer capsid 

proteins, possibly utilizing autonomous self-assembly during the association of the core with VP5 and 

VP2, prior to the facilitation of mature virion egress mediated by the role lipid raft domains play in 

vesicular trafficking. Such a combined particle maturation and export strategy is also utilized by other 

viruses, such as HIV [91,92]. 

Concurrent to its substantiated facilitation of maturation, the role NS3 fulfils in engaging the host 

cell machinery to mediate egress of BTV has also been explored. The calpactin complex, which is 

comprised of S100A10/p11 which forms a heterotetrameric complex with two heavy chains of 

Annexin A2, is involved in trafficking of proteins and membrane targeting [93]. Yeast two-hybrid 
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analysis found that NS3 could interact with S100A10/p11, specifically, residues 1–14 of the  

N-terminus of NS3 [17], which are absent in NS3A. Immuno-fluorescence microscopy confirmed  

co-localization of Annexin2 (p11) and NS3 in the infected cell (Figure 7). 

A mutant virus incapable of NS3A synthesis proved viable and competent for release from 

mammalian cells, whilst a mutant virus only expressing NS3A with viable genomic dsRNA synthesis, 

protein expression and particle assembly was severely attenuated [75]. Within the context of insect 

vector cell infection, both mutant viruses replicated, yet yielded a significantly lower titre. 

Confirmatory TEM studies determined that while wild-type virus particles were predominantly 

localized to within intra-cytoplasmic vesicles, mutant viruses displayed a cytoplasmically dispersed 

phenotype [75] (Figure 7). This study suggests, within the context of the host-background, the 

importance of the interaction of the N-terminus of NS3 with S100A10/p11 in mammalian cells and 

both NS3 and NS3A in insect vector cells for a productive BTV infection.  

Furthermore, NS3 possesses two late domain motifs: PSAP and PPRY, which are also found in 

budding enveloped viruses such as HIV and Ebola virus [18,94]. Late domains facilitate interactions 

with the ESCRT pathway [95,96]. The PSAP motif of NS3 and NS3A was found capable of 

interacting with human tumour-susceptibility gene 101 (Tsg101) in vitro, as well as its homologue 

found in Drosophila [18]. Immuno-fluorescence microscopy confirmed co-localization of Tsg101 and 

NS3 in infected cells (Figure 7C). Mutations in the PSAP motif led to viral particles being tethered to 

the cytosolic membrane, apparently unable to dissociate [94]. The second late domain motif PPRY has 

been suggested to interact with the NEDD4-like ubiquitin ligases in HIV, although it was deemed less 

compatible than the native PPPY motif in Ebola virus [18]. Given NS3’s capacity to interacts with 

VP2 [17] and VP5 [68], this provides further evidence that NS3 fulfils the dual function of both a 

bridging component that allows for maturation (core association with VP5 and VP2) and also 

engagement with the host cell membrane trafficking machinery to facilitate virion egress [16,75].  

10. Conclusions 

Maturation is an intrinsic phase of the viral life cycle and often overlaps with egress. Our 

understanding of maturation has been informed by numerous studies. In this review we focused on the 

maturation of BTV. With the use of BTV as a surrogate for other orbiviruses, information gleaned 

from its study may be applicable to understanding maturation in other members of this viral genus.  

In enveloped viruses, interference with glycosylation impairs maturation and egress. However, 

BTV lacks envelope glycoproteins, yet there appears to have been a natural evolution of a NS protein 

that mimics the function of some envelope glycoproteins, namely the glycoprotein NS3. BTV engages 

with the ESCRT machinery, both Tsg101 and NEDD4 are important (but not ALIX) as well as 

annexin, via NS3, and that blocking these interactions reduces virus release. EM images have shown 

enveloped viruses budding from the plasma membrane in a number of cells, especially during early 

infection, and this proportion can be changed by mutations in NS3 that prevent ESCRT engagement. 

Coupled with its ability to associate with lipid raft domains and the outer-capsid proteins VP2 and 

VP5, the capacity of NS3 to function as a bridging component, linking lipid rafts to the outer-capsid 

proteins that associate with the core, may be crucial. Thus, maturation in BTV appears to be very 

elegantly linked to its egress, maturing at sites just prior to utilizing these same sites to commence 
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egress via the engagement of the exocytic pathways of the host cell. However, this non-lytic egress 

may be confined to the early stages of infection for cell to cell spread, with lytic release being the main 

mode of egress during the latter stages of infection. It may be hypothesized that this lytic phase is 

entered upon when virion production overwhelms the co-opted exocytic pathways. 

Studies involving the development of techniques for understanding BTV, spanning CLPs or VLPs, 

in vitro and in vivo studies, have cumulatively facilitated the dissection of its life-cycle. In particular, it 

has aided our understanding of the molecular interactions between individual BTV components and 

host-factors, whereby showing how individually they influence assembly and trafficking. For example, 

combinations of these techniques have facilitated the discovery that NS2 is not required for in vitro 

virion assembly, yet indispensable in an in vivo setting. This may be due to its role as a viral 

concentrator within the dynamic environment of the cytoplasm. Current gaps in our understanding of 

how cores egress from VIB remain, yet with the extensive array of model systems available it is but a 

question of time before these too are filled. Thus, the essential roles the non-structural proteins play in 

virion maturation may offer novel targets for pharmacological interventions. 

In summary, these processes have proven to be very informative and have enriched our 

understanding of virus maturation, providing non-parochial insights, specifically, highlighting virus 

ingenuity and the capacity for encoding multi-functional proteins. Techniques described here have 

proven transferable and will continue to facilitate the exploration of diverse viruses for the 

development of possible intervention strategies. 
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