
Viruses 2014, 6, 3400-3414; doi:10.3390/v6093400 

 

viruses 

ISSN 1999-4915 

www.mdpi.com/journal/viruses 

Article 

HIV-1 Env-Specific Memory and Germinal Center B Cells in 

C57BL/6 Mice 

Martina Soldemo, Gabriel K. Pedersen and Gunilla B. Karlsson Hedestam * 

Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, 

Sweden; E-Mails: Martina.Soldemo@ki.se (M.S.); Gabriel.Pedersen@ki.se (G.K.P.) 

* Author to whom correspondence should be addressed; E-Mail: Gunilla.Karlsson.Hedestam@ki.se; 

Tel.: +46-8-52486955.  

Received: 30 April 2014; in revised form: 11 August 2014 / Accepted: 31 August 2014 /  

Published: 5 September 2014 

 

Abstract: Continued efforts to define the immunogenic properties of the HIV-1 envelope 

glycoproteins (Env) are needed to elicit effective antibody (Ab) responses by vaccination. 

HIV-1 is a highly neutralization-resistant virus due to conformational and glycan shielding 

of conserved Ab determinants on the virus spike. Elicitation of broadly neutralizing Abs 

that bind poorly accessible epitope regions on Env is therefore extremely challenging and 

will likely require selective targeting of specific sub-determinants. To evaluate such 

approaches there is a pressing need for in vivo studies in both large and small animals, 

including mice. Currently, most mouse immunization studies are performed in the BALB/c 

strain; however, the C57BL/6 strain offers improved possibilities for mechanistic studies 

due to the availability of numerous knock-out strains on this genetic background. Here, we 

compared Env immunogenicity in BALB/c and C57BL/6 mice and found that the magnitude 

of the antigen-specific response was somewhat lower in C57BL/6 than in BALB/c mice by 

ELISA but not significantly different by B cell ELISpot measurements. We then established 

protocols for the isolation of single Env-specific memory B cells and germinal center (GC) 

B cells from immunized C57BL/6 mice to facilitate future studies of the elicited response 

at the monoclonal Ab level. We propose that these protocols can be used to gain an 

improved understanding of the early recruitment of Env-specific B cells to the GC as well 

as the archiving of such responses in the memory B cell pool following immunization. 

Keywords: B cells; antibody; immunization; germinal center; HIV-1; envelope glycoprotein; 

BALB/c and C57BL/6 mice 
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1. Introduction 

Mouse models have been, and remain, central for our understanding of basic immunology of 

vaccine-induced immune responses. The ease by which mice can be genetically manipulated combined 

with the availability of comprehensive genetic data bases, short breeding cycles and relatively low 

costs make mice a superior animal model for questions of basic and mechanistic nature. Our current 

understanding of lymphocyte development and host responses to antigen stimulation comes largely 

from studies in mice. Despite this, mice are relatively under-used in HIV-1 vaccine research, in part 

because they are naturally resistant to HIV-1 infection preventing their use in experiments requiring 

virus challenge. This limitation has been addressed by generating mouse models that support HIV-1 

replication [1] or HIV-1 entry [2]. For example, successful HIV-1 replication was achieved in 

humanized mice generated by engraftment of CD34
+
 hematopoetic cells into Rag2

−/−
c

−/−
 mice (human 

immune system, HIS) mice [3]. Thus far, this model cannot be used for vaccine evaluation due to 

insufficient development of immune functions after engraftment of human cells, but improvements to 

the model are underway suggesting that some of the current challenges hampering its use for vaccine 

studies may eventually be overcome [4,5].  

Challenge studies are, however, not generally required in the first phases of vaccine testing. For 

HIV-1 envelope glycoprotein (Env)-based vaccine candidates aimed to elicit broadly neutralizing 

antibodies (bNAbs), neutralization breadth of elicited serum responses is best evaluated in 

standardized in vitro assays using panels of genetically diverse single-cycle infectious viruses [6]. The 

choice of animal model used for such studies is usually determined based on practical criteria such as 

animal availability, volume of sera that can be obtained following vaccine inoculation and cost. In this 

regard, rabbits and guinea pigs are well-established models for serological studies and are often 

preferred over mice since larger volumes of sera can be collected. However, rabbits and guinea pigs 

are not amenable to detailed immunological investigations due to the limited number of reagents 

available for cellular analysis and incomplete genetic information limiting their use for detailed 

immunological analysis. Instead, non-human primates (NHPs), notably rhesus macaques, have 

emerged as an interesting alternative model for analyses of vaccine-induced responses since large 

volumes of sera can be collected, reagents for cellular analyses are available and they are genetically 

highly homologous to humans, meeting several important practical criteria for a useful animal model. 

Over the past years, we have established methodology and systems for high-resolution analysis of 

vaccine-induced B cell responses in NHPs to extend this model beyond its use as a challenge  

model [7–11]. Using these protocols, we investigated vaccine-induced memory B cell and plasma cell 

frequencies in blood and bone marrow, as well as genetic properties of Abs such as gene segment use, 

clonality and level of somatic hypermutation (SHM) of Env-specific Abs. The NHP model has direct 

translational value for our understanding of vaccine-induced responses in humans. However, for 

ethical, practical and cost reasons the number of studies that can be performed in NHPs is limited and 

small animal models remain critical for most basic research questions.  

Thus far, relatively few studies have exploited available mouse models for detailed investigation of 

B cell responses to HIV-1 Env, from the initial activation of naïve B cells to the establishment of  

Env-specific memory B cells or plasma cells. In contrast, there is an extensive literature from studies 

in mice using non-pathogen-derived antigens, such as hen egg lysozyme (HEL) and the hapten-carrier 



Viruses 2014, 6 3402 

 

antigen NP-CGG, several which were performed in mice transgenic for antigen-specific B cell 

receptors [12–16]. These studies have laid the foundation for our current understanding of humoral 

immunity. The application of similar experimental approaches to studies of real-world vaccine 

antigens such as viral glycoproteins is therefore of significant interest. The recent development of 

transgenic mice expressing human HIV-1 bNAbs isolated from chronically infected individuals 

provides new and exciting opportunities for basic investigations of the development of Env-specific B 

cell responses following immunization [17,18]. 

Studies in chronically HIV-1 infected individuals highlight that extensive affinity maturation 

through SHM is required for the development of bNAbs [19]. The extent to which different vaccine 

modalities promote SHM of Abs recognizing distinct sub-determinants on Env, including bNAb 

epitopes, is not well understood and is a question suitable for studies in mice. We previously showed 

that inoculation of BALB/c mice with recombinant, soluble HIV-1 Env trimers (gp140-F) administered 

in adjuvant, stimulated robust Ab and memory B cell responses [20,21]. Here, we set out to compare 

Env immunogenicity in BALB/c and C57BL/6 mice and to establish a protocol for the detection of 

Env-specific memory and GC B cells in C57BL/6 mice. We propose that the protocols described here 

can be used for future studies of HIV-1 Env-elicited vaccine responses to investigate elicited Ab 

sub-specificities and B cell selection at the single cell level in a variety of mouse strains on the 

C57BL/6 background.  

2. Materials and Methods 

Recombinant HIV-1 Env glycoproteins. Recombinant soluble Env gp140 trimers (gp140-F) based 

on the YU2 isolate of HIV-1 were used for immunizations [22]. Biotinlylated gp140-F trimers were 

used as probes in the B cell ELISpot assay, as previously described [20], and for detection of 

Env-specific cells by flow cytometry. Briefly, HEK 293F cells in FreeStyle 293 Expression medium 

(Invitrogen, Carlsbad, CA, USA) at a cell density of 1.2 × 10
6
 cells/mL, were transient DNA 

transfected with 293Fectin (Invitrogen) and OPTI-MEMI medium (Invitrogen). The transfection was 

harvested at day 5 after transfection by centrifugation at 3500 × g to remove cells and cell debris. 

Supernatant where filtered through a 0.22 µM filter unit and supplemented with 100 U/mL penicillin 

and 100 µM streptomycin and complete EDTA-free protease inhibitor cocktail (Roche, Mannheim, 

Germany). Proteins were then purified in a two-step chromatography purification process. First, 

proteins were captured in a lentil-lectin affinity chromatography (GE Healthcare, Uppsala, Sweden) 

via the glycans and after extensive washing in PBS/0.5M NaCl, the proteins were eluted in elution 

buffer (1 M methyl-α-D-mannopyranoside, 10 mM imidazole, PBS and 0.5 M NaCl). Second, eluted 

proteins were then captured in a nickel-chelating chromatography (GE Healthcare) via the His-tag. The 

column was extensively washed in washing buffer (40 mM imidazole, 200 mM sodium phosphate 

buffer and 0.5 M NaCl) before elution in elution buffer (300 mM imidazole, 200 mM sodium 

phosphate buffer and 0.5 M NaCl). Protein elutes were concentrated with an Amicon Ultra 30 kDa cut-off 

concentrator (Millipore, Darmstadt, Germany). Probes for ELISpot and FACS were site-specific 

biotinylated at the Avitag sequence by using Biotin-protein ligase biotinylation kit (GeneCopoeia, 

Rockville, MD, USA) according to manufacturer’s instruction. Env gp140-F trimers are from here 

referred to as Env. 
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Animals, vaccine inoculations and preparation of single cells. Adult male BALB/c and C57BL/6 

mice, obtained originally from Jackson Laboratory, and bred at the animal facility, MTC, Karolinska 

Institutet, were immunized at age of 6–9 weeks with 10 µg Env together with 10 µg of AbISCO-100 

adjuvant (Isconova, Uppsala, Sweden) or Imject
®

Alum (Thermo Scientific/Pierce, Rockford, IL, 

USA). Mice were inoculated one, two or three times either by sub-cutaneous (s.c.) or intraperitoneal 

(i.p.) injections. All animal experiments were approved by the Committee for Animal Ethics 

(Stockholm, Sweden) and performed according to given guidelines. The mice were sacrificed by 

cervical dislocation and cells from inguinal lymph nodes (ingLN) and spleens were prepared in single 

cell suspension by passing the tissues through a 70 µM nylon cell strainer. Red blood cells were lysed 

with hypotonic ammonium chloride solution and the remaining cells were resuspended in complete 

RPMI 1640 medium containing 5% FCS, 50 µM 2-ME, 2 mM L-glutamine, 100 U/mL penicillin and 

100 µM streptomycin. 

ELISA for serological antibody responses. To detect total Env-specific or isotype Env-specific 

antibody responses 96-well ELISA plates (Nunc, Roskilde, Denmark) were pre-coated with 100 ng/well 

(1 µg/mL) of Galanthus nivalis lectin (Sigma-Aldrich, Saint Louis, MO, USA) diluted in PBS and 

incubated overnight (ON) at 4 °C. Plates were washed in washing buffer (PBS containing 0.05% 

Tween-20) to remove excess lectin before addition of 100 ng/well (1 µg/mL) of Env protein diluted in 

PBS. Plates were incubated for 2 hours (h) at room temperature (RT) before plates were washed in 

washing buffer and blocked in blocking buffer (PBS containing 2% nonfat dry milk) at RT for 1 h. 

Blocking buffer was removed and serum from immunized mice was added in serial dilutions in 

blocking buffer and incubated at RT for 2 h. After washing the plates in washing buffer, secondary 

antibodies were added; goat anti-mouse IgG-horse radish peroxidase (HRP) (Southern Biotech, 

Birmingham, AL, USA) diluted 1:1000, goat anti-mouse IgG1-HRP (Southern Biotech) diluted 1:5000, 

goat anti-mouse IgG2a-HRP (Southern Biotech) diluted 1:5000, goat anti-mouse IgG2b-HRP (Southern 

Biotech) diluted 1:5000, goat anti-mouse IgG2c-HRP (Southern Biotech) diluted 1:5000 or goat  

anti-mouse IgG3-HRP (Southern Biotech) diluted 1:1500. All secondary HRP-conjugated antibodies 

were diluted in washing buffer and 100 µL was added to each well and incubated at RT for 1 h. Plates 

were washed in washing buffer before they were developed. To develop the plates, 100 µL of TMB 

Stabilized Chromogen substrate (Invitrogen) was added and incubated for 10 min in RT. The reaction 

was stopped by addition of 100 µL 1 M H2SO4 to the wells and the optical density (OD) was measured 

at 450 nm using an Asys Expert 96 ELISA reader (Biochrom, Cambridge, UK).  

B cell ELISpot assay. Total IgG and Env-specific antibody secreting cells (ASCs) were enumerated 

in a B cell ELISpot assay, as previously described [20]. Briefly, 96-well Multiscreen-IP filter plates 

(Millipore) were pre-treated with 70% ethanol and washed three times in PBS followed by coating 

with 1 µg/well (10 µg/mL) of a polyclonal goat anti-mouse IgG antibody (Mabtech, Nacka Strand, 

Sweden). The plates were incubated ON at 4 °C. Excess coating antibody was removed and plates 

were washed five times in PBS and blocked in complete RPMI 1640 medium for 2 h at 37 °C before 

cells were added. Medium was removed from the plates and splenocytes in single cell suspension were 

added in duplicates to the wells in 3-fold dilutions starting at 10
6
 cells/well. The plates were wrapped 

in plastic and incubated for 12 h at 37 °C. To detect spots, cells were first removed and plates washed 

six times in washing buffer (PBS containing 0.05% Tween-20). For total IgG-secreting cells, a 

biotinylated polyclonal goat anti-mouse IgG (Mabtech) diluted in blocking buffer (PBS containing 
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0.05% Tween-20 and 1% FCS) was added at a concentration of 100 ng/well (1 µg/mL) to each well. 

For detection of Env-specific ASCs, 200 ng/well (2 µg/mL) of biotinylated protein diluted in blocking 

buffer was added to the wells. Biotinylated proteins and antibodies were incubated in the plates for 2 h 

at RT. The plates were then washed six times in PBS and 100 µL streptavidin-ALP (Mabtech) diluted 

1:1000 in PBS was added to the wells and incubated in RT for 45 min. To develop the spots, plates 

were washed six times in water and 100 µL of BCIP/NBT plus substrate (Mabtech) was added to wells 

and incubated for 10 min in RT. The reaction was stopped by emptying the plates and washing them 

extensively in water followed by air-drying. The spots were counted in an ImmunoSpot analyzer (CTL 

Immunospot, Shaker Heights, OH, USA).  

Virus neutralization assays. Neutralization assays were kindly performed by the laboratory of John 

Mascola at the Vaccine Research Center at the NIH using a single round of infection HIV-1 Env 

pseudovirus assay and TZM-bl target cells [6]. The results are reported as the serum neutralization 

ID50, which is the reciprocal of the serum dilution producing 50% virus neutralization. Diverse HIV-1 

virus isolates, including viruses from clades A, B and C were used in the neutralization assays. The 

sources of the Env-encoding plasmids were described previously [7].  

Flow cytometry analysis. For detection of Env-specific memory B cells, samples were first 

incubated with Fc receptor block antibody (anti-CD16/32; BD Biosciences, San Diego, CA, USA) 

followed by addition of biotinylated Env protein pre-coupled to APC-conjugated streptavidin 

(Invitrogen). The following antibody panel was used for detection of memory B cells: APC-eFluor780 

anti-B220 (RA3-6B2; eBioscience, San Diego, CA, USA), FITC anti-IgD (11-26c; eBioscience), FITC 

anti-IgM (polyclonal; Southern Biotech) PE-Cy7 anti-CD38 (Biolegend, San Diego, CA, USA). For 

detection of Env-specific GC B cells the samples were first incubated with Live/Dead AmCyan (93) 

followed by addition of biotinylated Env protein for all samples except control samples. The following 

antibody panel was used for detection of GC B cells: Pacific Blue anti-B220 (RA3-6B2), FITC anti-GL7 

(GL7) and PerCP-Cy5.5 anti-IgD (11-26c.2a). APC-conjugated streptavidin (Invitrogen) was added to 

visualize biotinylated Env proteins. All antibodies come from BioLegend except Live/dead AmCyan 

(Invitrogen). Stained cells were fixed in fixation buffer (BD Bioscience) and analyzed on a MoFlo™ 

XDP (Beckman Coulter, Brea, CA, USA) or LSRFortessa™ cytometer (BD Biosciences, San Diego, 

CA, USA). Flow cytometry data were analyzed with Flowjo [23]. 

3. Results  

3.1. Serological Assessment of Env-Specific Responses in BALB/c and C57BL/6 Mice 

Mouse models remain critical for investigations of the evolution of B cell responses following 

vaccination. In the HIV-1 vaccine field, mice have not been considered an optimal host for the 

evaluation of Env-specific Abs due to the limited volumes of blood that can be collected for 

serological analysis as well as issues with non-specific background in HIV-1 neutralizing Ab assays. 

There is also concern that the relatively short immunoglobulin (Ig) D segments encoded by the mouse 

heavy chain Ig locus results in Abs possessing shorter HCDR3s compared to in primates and  

rabbits [24,25], which may hinder the development of antibodies targeting recessed epitopes on Env, 

such as the highly conserved CD4 binding site (CD4bs). However, antibody responses capable of 
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neutralizing Tier 1 isolates of HIV-1 can be induced in mice [20,21,26,27], while Abs capable of 

neutralizing Tier 2 viruses were so far not elicited in any animal model. This suggests that the inability 

to elicit bNAbs observed so far is not restricted any given animal model.  

In prior HIV-1 Env immunization studies, BALB/c mice were most commonly used; however, for 

mechanistic studies, genetically engineered mice on the C57BL/6 background are often required. We 

therefore compared Env-elicited B cell responses in C57BL/6 and BALB/c mice as a starting point for 

future studies in the more versatile C57BL/6 strain. We first compared the overall Ab titers to soluble 

HIV-1 Env (gp140-F) trimers induced by prime-boosting BALB/c or C57BL/6 mice (n = 8 per strain) 

using a 14 day interval between the immunizations (Figure 1a). The purified Env was administered s.c. 

in the saponin-based adjuvant AbISCO-100 and Ab titers were measured by ELISA, five days 

following boosting. The total serum IgG responses were similar in BALB/c and C57BL/6 mice and 

were slightly increased in Env-immunized mice compared to in adjuvant control immunized mice but 

there was no measurable difference between the two strains (data not shown). In contrast, the  

Env-specific IgG response was significantly higher in BALB/c mice compared to C57BL/6 mice  

(p < 0.001, Student’s t-test) (Figure 1a). Two control mice from each strain immunized with adjuvant 

alone gave no detectable Env-specific IgG responses. When individual Ab isotypes were measured we 

found that the Env-specific IgG1 response was also somewhat higher in BALB/c compared to 

C57BL/6 mice and the same pattern was observed for IgG2b (Figure 1a). For Env-specific IgG2a and 

IgG2c, there was an inverse relation with high IgG2a produced in BALB/c mice but not in C57BL/6 

mice and Env-specific IgG2c produced in C57BL/6 but not in BALB/c mice (Figure 1a), consistent 

with the respective IgG isotype expression of the two strains [28–30]. The Env-specific IgG3 response 

was very low in both mouse strains. Overall, IgG1 and IgG2b contributed strongest to the total  

Env-specific IgG response with contribution from either IgG2a or IgG2c, depending on the mouse 

strain used. 

For a more quantitative measurement of Env-specific antibody-secreting cells (ASC) we next used a 

previously reported highly sensitive B cell ELISpot format [20]. Spleens from mice (n = 8) immunized 

twice with purified Env in adjuvant, or with adjuvant alone as a negative control (n = 2), were 

harvested five days after the second immunization and total IgG or Env-specific ASC were measured. 

In brief, Ab-secreting cells were quantified by incubation of splenocytes on plates coated with anti-IgG. 

Cells were washed away and the spots were detected with biotinylated anti-IgG or biotinylated Env. 

The time point chosen for analysis (five days after boost) was based on previous kinetic studies where 

we found that there is a peak in the plasma cell formation at this time, most likely resulting from 

proliferation and differentiation of antigen-specific memory B cells into short-lived plasma cells by 

this time point. The total numbers of IgG ASCs were similar between BALB/c and C57BL/6 mice 

(Figure 1b, upper panel) When Env-specific (total gp140-F-specific) ASCs were measured we 

observed a higher absolute number of antigen-specific cells in BALB/c (mean 2.4 × 10
6
 cells) 

compared to C57BL/6 mice (mean 1.6 × 10
6
 cells), consistent with the ELISA results, although the 

difference did not reach statistical significance (p = 0.09). As expected, no antigen-specific ASCs were 

detected in either strain of the control mice (Figure 1b, lower panel). 

We also assessed the capacity of sera from Env-inoculated C57BL/6 mice to neutralize HIV-1 using 

a well-standardized Env pseudovirus assay and TZM-bl target cells [6]. We measured neutralizing 

activity against several Tier 1 clade B viruses, including HXBc2, MN, SF162 and BaL, with the 
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highest neutralizing titers detected in mouse #2 against HXBc2 and MN (Table 1). No neutralizing Ab 

activity over background was detected for the more resistant 6535 virus and, importantly, no activity 

over a cut-off value of 20 was detected against the negative control virus pseudotyped with SIVmac 

Env. Overall the neutralizing Ab response was quite variable between the animals in the group. This 

highlights the need to develop higher resolution approaches to study neutralizing Ab responses in mice 

to understand the basis for the variability and to draw firm conclusions about the quality of the  

elicited response. 

 

Figure 1. Antibody titers and numbers of antibody-secreting cells in BALB/c and 

C57BL/6 mice five days after two s.c. inoculations with Env in AbISCO-100. (a) Titers of 

Env-specific IgG and subclasses (IgG1, IgG2a, IgG2b, IgG2c and IgG3) at five-fold 

dilutions, starting at 1:20. Mean values and SD are shown in all diagrams. (b) Absolute 

numbers of total IgG and Env (gp140-F)-specific ASCs are shown for BALB/c (blue) and 

C57BL/6 (black) mice. The data shown are from one experiment with eight immunized 

mice/group and two adjuvant control mice/group. * and *** indicate statistically 

significant differences between BALB/c and C57BL/6 Env-specific IgG responses at the 

indicated dilutions, p < 0.05 and 0.001, respectively (Student’s t-test). 

Table 1. HIV-1 neutralizing activity in sera of C57BL/6 mice 14 days after Env boosting. 

Group #ID HXBc2 MN SF162 BaL 6535 Neg Ctrl SIVmac 

 1 97 15 20 49 14 18 

 2 1151 768 47 10 13 10 

Immunized 3 <5 58 38 30 5 <5 

 4 17 24 21 28 19 7 

 5 71 172 56 49 12 8 

 6 27 32 16 30 5 9 

        

Adjuvant 1 <5 <5 <5 8 <5 <5 

control 2 <5 <5 5 13 5 16 
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3.2. Definition of Env-Specific Memory B Cells and GC B Cells in C57BL/6 Mice 

One approach to increase the amount of information that can be obtained from studies of  

vaccine-induced B cell responses is to examine the response at the monoclonal level as a complement 

to analyses of polyclonal serum responses. In mice, the isolation of MAbs has traditionally been 

performed with hybridoma technologies, but recent advances in single cell RT-PCR of recombined Ab 

variable (V), diversity (D) and joining (J) gene segments from expressed mRNA of isolated B cells 

provide opportunities to clone Ab heavy chains (HC) and light chains (LC) for subsequent transfection 

and expression of full IgG molecules in mammalian cells [31]. We have successfully employed this 

approach to clone Env-specific memory B cells from HIV-1 Env-immunized rhesus macaques [8,10] 

and one of the objectives of the current study was to establish a similar protocol for mice. To optimize 

a gating strategy for Env-specific memory B cells we used mice immunized three times with Env and 

stained single mouse splenocytes for B220
+
, IgD/IgM

−
, CD38

+
 and Env

+
 cells as shown (Figure 2a). 

Env staining was achieved by using a biotinylated Env probe followed by streptavidin-APC. The 

percentage of Env
+
 memory B cells of total B220

+
, IgD/IgM

−
, CD38

+
 cells ranged between 0.3 and 

1.4%, while the absolute cell numbers ranged from 2–8 × 10
3
 per spleen (Figure 2b). Very few  

Env-positive cells were detected from naïve or adjuvant only control animals suggesting that the 

background was low. We suggest that this protocol can be used for single cell sorting of Env-positive 

memory B cells for subsequent cloning and expression of the MAbs for verification of their 

specificities and characterization of their neutralizing properties. 

 

Figure 2. Env-specific memory B cells in the spleen of C57BL/6 mice after three s.c. 

inoculations with Env in AbISCO-100. The time interval between the first and second 

immunization was two weeks and between second and third immunization nine weeks. The 

data show memory B cells in spleen at day 6 after the last immunization. (a) Gating 

strategy for resolving Env-specific memory B cells. Memory B cells were defined as 
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B220
+
, IgD/IgM

−
 CD38

+
 cells. Representative flow cytometry plots of cells stained with 

the Env probe from two immunized and two naïve control mice are shown. (b) Summary 

of individual mice. Percentage Env-specific memory B cells of total memory B cells, left 

panel, and absolute number of Env-specific memory B cells in the spleen, right panel. The 

results are from one experiment with four immunized mice, one adjuvant control mouse 

and four naïve mice. 

In addition to providing a strategy to study specificities archived in the memory B cell pool after 

prime-boosting, we wished to establish a protocol for the detection and isolation of Env-specific GC B 

cells after a single vaccine inoculation of C57BL/6 mice. To this end, we stained splenocytes after i.p. 

inoculation of Env administered to achieve maximal responses after a single immunization. In the first 

experiment, mice were sacrificed 14 days following Env inoculation and the splenocytes were 

resuspended and gated for the B220
+
, IgD

−
, CD95

+
 and GL7

+
 population to define the GC B cells. 

Similarly to the Env-specific memory B cell staining, we used the biotinylated Env probe followed by 

streptavidin-APC, while controls cells were stained with streptavidin-APC alone (Figure 3a).  

Env-positive GC B cells were observed in all Env-inoculated mice (n = 8), but not in the adjuvant 

control-immunized mouse. There was no staining with the streptavidin only control supporting the 

specificity of the Env probe. The animals varied in terms of the magnitude of the response, with the 

percentages GC B cells of mature B cells ranging from 0.5%–3.5% and absolute numbers of  

Env-specific B cells ranging from 1–30 × 10
3
 cells per spleen (Figure 3b). We did not consider this 

surprising given that the ELISA responses after priming generally are low. Nevertheless, the results are 

encouraging and illustrate that Env-specific GC B cells can be identified by flow cytometry for 

subsequent sorting and Ab cloning to define the ontogeny of the Env-specific B cell response.  
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Figure 3. Detection of Env
+
 GC B cells in spleen 14 days after priming with Env and 

Alum Imject in C57BL/6 mice. (a) Gating strategy for measuring Env
+
 GC B cells in 

spleen. GC B cells were defined as B220
+
, IgD

−
, GL7

+
 and CD95

+
. GC B cells recognized 

by the Env biotinylated probe were considered Env
+ 

GC B cells. As a negative control for 

each mouse, cells were stained with streptavidin-APC without the Env probe. Representative 

flow cytometry plots of cells stained with the Env probe from two immunized and one 

adjuvant control mouse are shown. (b) Summary of total GC B cell, Env
+
 GC B cell 

frequencies and absolute number of Env
+
 GC B cells in spleen of individual mice. The data 

are from one experiment with eight immunized mice and one adjuvant control mouse. 

Mean values are shown. 

4. Discussion 

Antibodies define the correlate of protection for the majority of successful vaccines against 

infectious agents [32]. A critical step in the evaluation of vaccine candidates against HIV-1 is therefore 

the analysis of elicited neutralizing antibody responses. Given the challenges encountered by the 

HIV-1 vaccine field so far, studies aimed at understanding the development of Env-specific humoral 

immune responses in greater details are critically needed. The development of robust protocols to 

study Env-specific B cell responses in mice would provide increased possibilities to investigate the 

limitations of current vaccine approaches and accelerate developments in the field.  

To meet this goal, we first characterized, side-by-side, Ab responses elicited by subunit Env protein 

immunization of BALB/c and C57BL/6 mice. We observed that the magnitude of the Env-specific 

serum IgG antibody response was lower in C57BL/6 mice, which was also reflected as lower  

Env-specific IgG1, IgG2b and IgG3 concentrations in C57BL/6 mice compared to in BALB/c mice. 

As expected, BALB/c mice additionally produced Env-specific IgG2a antibodies, whilst C57BL/6 

produced IgG2c. To further study the response we focused our subsequent efforts on C57BL/6 mice, 

the strain most frequently used in basic studies of B cell biology, with the aim to provide results that 

are generally applicable and of broad interest to the immunology field. We found that sera from 

Env-inoculated C57BL/6 mice displayed neutralizing activity against several Tier 1 viruses, providing 

possibilities to study vaccine-induced neutralizing Abs in mice using similar methods as previously applied 

to non-human primates [11,33].  

We further demonstrate that B cells capable of binding the gp140-F Env probe were detected by 

gating for B220
+
, IgD/IgM

−
, CD38

+
, Env

+
 cells (memory B cells) or B220

+
, IgD

−
, CD95

+
, GL7

+
, Env

+
 

cells (GC B cells). In optimizing these protocols, we performed some kinetics experiments of the 

responses and found that Env-specific memory B cells are readily detected in the spleen 5 days after 

boosting (data not shown) but not at later time points. The GC response induced after priming peaked 

later, as expected from a primary response. Although a full kinetics analysis was not performed for 

Env, we chose to harvest spleens 14 days after priming when cell populations with phenotypic 

characteristics of GC B cells were observed in immunized mice with little background in adjuvant only 

inoculated control mice. Furthermore, while the characterization of neutralizing antibodies usually 

focuses on affinity-matured IgG-switched B cells we opted to gate on the IgD/IgM
−
 population rather 

than the IgG
+
 population in our staining protocol for Env-specific memory B cells. This decision was 
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based on our finding that several of the commercially available (polyclonal) antibodies against mouse 

IgG are cross-reactive with IgD, excluding the possibility to use these anti-IgG reagents. We note that 

by staining for IgD/IgM
−
 cells we cannot rule out the possibility that some of the cells are IgA

+
 or 

IgE
+
. However, by using primers that are specific for the mouse IgG Fc region in downstream PCR 

protocols it is still possible to preferentially isolate recombined V(D)J sequences from IgG-switched 

cells (data not shown). Similarly, we gated on IgD
−
 cells rather than IgG

+
 cells in the protocol for 

detection of GC B cells. 

The frequencies of Env
+
 memory and GC B cells detected here are relatively low compared to 

frequencies reported from some studies of C57BL/6 mice inoculated with potent antigens such  

NP-protein conjugates [34–36]. This may be explained by a greater intrinsic immunogenicity of  

NP-protein conjugates in C57BL/6 mice, by use of other adjuvants and by the fact that a greater dose 

of antigen is used in most studies of NP-specific B cells, up to 50–100 µg protein per inoculation. In 

the current study we only used 10 µg soluble Env glycoprotein per inoculation since the gp140-F 

immunogen is not commercially available but is produced in our laboratory by transient transfection of 

293F cells using a previously described protocol [20]. Thus, by increasing the dose of antigen, and/or 

using a stronger adjuvant, it is likely that increased numbers of Env
+ 

can be detected. Nevertheless, 

even with the conditions used here we show that it is possible to isolate Env
+
 cells for subsequent Ab 

repertoire analysis and MAb cloning. 

In summary, we have established protocols to identify Env-specific memory B cells or GC B cells 

from Env immunized C57BL/6 mice. Examination of GC B cells isolated after primary immunization 

can provide direct information about the specificities of initial B cell clones that have entered GCs 

while isolation of memory B cells provides information about how the response persists and evolves 

over time, information that can guide the design of improved immunization regimens [33]. Recently, 

several approaches to enhance the immunogenicity of recombinant protein-based subunit vaccines 

were proposed [37–42] and it would be of interest to evaluate their impact on HIV-1 Env-elicited B 

cell responses at the single cell level. We show that, while responses to subunit HIV-1 Env are low, 

memory and GC B cells can be detected after immunization for subsequent analysis of the elicited 

response at a greater level of detail. 
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