Supplementary Tables

Table S1. Plasmids used in this study. Characteristics include antibiotics resistance (Amp^r, ampicillin resistant), parent vectors, cloned inserts and brief cloning strategies. DNA oligo name and its nt position in KSHV genome (GenBank Acc. No. U75698.1) employed for individual plasmid construction are provided in Table S2.

Plasmid	Characteristics	Oligos Used to Amplify the Insert
For ORF59 expression		
pJM15	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM30, oJM31, oVM88 and oVM89
	insert corresponding to ORF59 with an internal deletion of	
	ORF59 MRE element	
pJM22	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM44 and oVM88
	insert corresponding to ORF59 with a 5' deletion of 180 nt	
pJM23	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM45 and oVM88
	insert corresponding to ORF59 with a 5'deletion of 105 nt	
pJM30	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM54 and oVM88
	insert corresponding to ORF59 with a 5' deletion of 312 nt	
pJM31	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM55 and oVM88 (
	insert corresponding to ORF59 with a 5' deletion of 430 nt	
pJM32	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM56 and oVM88
	insert corresponding to ORF59 with a 5' deletion of 560 nt	
pJM33	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM57 and oVM88
	insert corresponding to ORF59 with a 5' deletion of 670 nt	
pJM34	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM58 and oVM88
	insert corresponding to ORF59 with a 5' deletion of 768 nt	
pJM35	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM59 and oVM88
	insert corresponding to ORF59 with a 5' deletion of 858 nt	
pJM36	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oVM89 and oJM60
	insert corresponding to ORF59 with a 3' deletion of 123 nt	
pJM37	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oVM89 and oJM61
	insert corresponding to ORF59 with a 3' deletion of 270 nt	
pJM38	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oVM89 and oJM62
	insert corresponding to ORF59 with a 3' deletion of 435 nt	
pJM39	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oVM89 and oJM63
	insert corresponding to ORF59 with a 3' deletion of 555 nt	
pJM40	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oVM89 and oJM64
	insert corresponding to ORF59 with a 3' deletion of 681 nt	
pJM41	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oVM89 and oJM65
	insert corresponding to ORF59 with a 3' deletion of 804 nt	
pJM42	Apr; pFLAG-CMV-5.1 (Sigma) with a EcoRI-BamHI	oJM54 and oJM61
	insert corresponding to ORF59 with a 5' deletion of 312 nt	
	and a 3' deletion of 270 nt.	

Oligo Name	Position	Features *	Sequence
oVM88	KSHV ORF59 nt 95552-72	BamHI, F	5'-ACTCAGGATCC/AATCAGGGGGTTAAATGTGGT-3'
oVM89	KSHV ORF59 nt 96719-39	EcoRI, B	5'-TACTAGAATTCACC/ATGCCTGTGGATTTTCACTAT-3'
oJM30	KSHV ORF59 nt 96540-	F	5'-GTAAGGGCATTCTTTATTC/GCACTACTCCGGTTTTAGT-3'
	58/96634-52		
oJM31	KSHV ORF59 nt 96652-	В	5'-ACTAAAACCGGAGTAGTGC/GAATAAAGAATGCCCTTAC-3'
	34/96558-40		
oJM36	KSHV ORF59 nt 96633-09	В	Biotin-AAGUGCACGGAUCGGCUUGCACGCC
oJM37	KSHV ORF59 nt 96608-584	В	Biotin-AACCCUCAGUGUGCUGUCCAGCGUG
oJM38	KSHV ORF59 nt 96583-59	В	Biotin-GGGACAGCUGGCGUUCUGGGGUUAA
oJM39	KSHV ORF59 nt 96596-72	В	Biotin-GCUGUCCAGCGUGGGGACAGCUGGC
oJM44	KSHV ORF59 nt 96559-39	EcoRI, B	5'-TACTAGAATTCACC/ATG/AGAATAAAGAATGCCCTTACG-3'
oJM45	KSHV ORF59 nt 96634-17	EcoRI, B	5'-TACTAGAATTCACC/ATG/CAAGTGCACGGATCGGCT-3'
oJM54	KSHV ORF59 nt 96430-12	EcoRI, B	5'-TACTAGAATTCACC/ATG/CTCGACGCTGGCATAGCCT-3'
oJM55	KSHV ORF59 nt 96310-292	EcoRI, B	5'-TACTAGAATTCACC/ATG/GTGGTGGACCAAAAGGGTA-3'
oJM56	KSHV ORF59 nt 96181-62	EcoRI, B	5'-TACTAGAATTCACC/ATG/GAGGACCAAACGGTGACTGT-3'
oJM57	KSHV ORF59 nt 96070-53	EcoRI, B	5'-TACTAGAATTCACC/ATG/GGCTGGGATGGTCTGAAG-3'
oJM58	KSHV ORF59 nt 95974-55	EcoRI, B	5'-TACTAGAATTCACC/ATG/CTGAGACTGTGTAAAGTCCC-3'
oJM59	KSHV ORF59 nt 95884-66	EcoRI, B	5'-TACTAGAATTCACC/ATG/TGCCAATCAGGTGACGTAA-3'
oJM60	KSHV ORF59 nt 95672-89	BamHI, F	5'-ACTCAGGATCC/GGTGACAGAGGCAGCGTC-3'
oJM61	KSHV ORF59 nt 95819-36	BamHI, F	5'-ACTCAGGATCC/CTCGGCAGACACAGATCG-3'
oJM62	KSHV ORF59 nt 95984-	BamHI, F	5'-ACTCAGGATCC/TAAGGACTCCAGGCTAACC-3'
oIM63	KSHV ORF59 nt 96104-22	BamHI F	5'-ACTCAGGATCC/GATCTTGCTCACGCCACCA-3'
oIM64	KSHV ORF59 nt 96230-47	BamHI F	5'-ACTCAGGATCC/GCCACAGAGGAGAAGCCT-3'
oIM65	KSHV ORF59 nt 96353-71	BamHI F	5'-ACTCAGGATCC/GGTGGTCCTGACGAACTGC-3'
oNP41	KSHV vII 6 nt 17498-76	Bailin, I	Biotin-GCUUCUGACGAAGACCUUAGGAU
oNP42	KSHV vII.6 nt 17483-59	B	
o7M7296	nEGEP-C1 nt 880-62	B	
oVM158	KSHV ORE59 nt 95717-37	F	5'-GGGACCAACTGGTGTGAGAGG-3'
o7M7243	T7 Promoter B strand	B	5'-CTATAGTGAGTCGTATTAAT-3'
oVM11	KSHV ORE57 nt 82206-77	B	5'-CTCGTCTTCCAGTGTCGCTG-3'
OPE50 D	KSHV OPE50 Probe	E TagMan	5' /56 EAM/AAACCGATCTGTGTCTGCCGAGG/2IABEG/ 2'
ORF50 1	KSHV ORF59 Frimer 1	F. Taqivian	5' TTACAACTCCAACCTCTCCC 2'
ORF 59-1	KSHV ORF59 Filmer 2		
UKF 39-2	KORV UKF39 Primer 2	D, TaaMan	3-100100A010001A1A0AA10-3
o7M7270	Human CADDU	P	
UZIVIZZ/U	NM 002046	Б	J-IUAUICCI ICCACUATACCAAA-J
oST197	Human U6	R	
oST197	Human U6	В	5'-AAAATATGGAACGCTTCACGA-3'

 Table S2. DNA and RNA oligos used in this study.

* F, forward; B, backward.

Table S3. Half-life calculation of wt ORF59 pVM18 and mt ORF59 oJM22 and oJM15 lacking the 5' MRE in the presence or absence of ORF57. Experiments in three repeats were performed as described in Figure 3D using non-linear regression analysis as shown before [15,19]. Briefly, a non-linear regression analysis on the raw data was performed, choosing an exponential decay model [Fold Percent = α *exp (β *time)] where α (alpha) is the intercept when time = 0, and β (beta) is the decay rate. (A) Non-linear parameter (b) and half-life estimates (a = 100% ± 1%) present the estimated betas (Est. b), their standard errors (SE), and the two-tailed p-values for the test that the estimated betas were equal to zero according to treatment and where alpha (a) was constrained to be equal to 100%. Also shown is the adjusted R-squared (all of which indicate a satisfactory fit) and predicted half-life (hrs) for each of the treatments. (B) Treatment comparison results present the differences between the estimates betas, their standard errors, and the two-tailed adjusted p-values for the comparisons between the estimated betas. All but four of the comparisons were significantly different.

Treatment	Est. b	SE	Р	Adj. R-sq.	time (1/2)
pVM18 + Empty vector	-0.403	0.0375	< 0.0001	0.87	1.72
pVM18+ORF57	-0.169	0.0321	< 0.0001	0.94	4.10
pJM22 + Empty vector	-0.608	0.106	0.0001	0.65	1.14
pJM22+ORF57	-0.330	0.0385	< 0.0001	0.92	2.10
pJM15 + Empty vector	-1.21	0.173	0.0001	0.72	0.57
pJM15+ORF57	-0.242	0.0424	0.0005	0.95	2.86

A. Non-linear parameter (b) and half-life estimates ($a=100\% \pm 1\%$).

B. Treatment comparison results.

Comparison	Estimated Difference *	SE	P**
pVM18 + Empty vector vs. pVM18 + ORF57	0.236	0.0446	< 0.0001
pJM22 + Empty vector vs. pJM22 + ORF57	0.278	0.107	0.067
pVM18 + ORF57 <i>vs.</i> pJM22 + ORF57	0.163	0.0428	0.005
pVM18 + Empty vector vs. pJM22 + ORF57	0.0727	0.0543	0.22
pVM18 + ORF57 vs. pVM18 + Empty vector	0.441	0.0958	0.0008
pVM18 + Empty vector vs. pJM22 + Empty vector	0.205	0.0990	0.14
pJM15 + Empty vector vs. pJM15 + ORF57	0.986	0.233	0.005
pVM18 + ORF57 <i>vs.</i> pJM15 + ORF57	0.0706	0.0423	0.22
pVM18 + Empty vector vs. pJM15 + ORF57	0.169	0.0569	0.033
pVM18 + ORF57 vs. pJM15 + Empty vector	1.04	0.219	0.0008
pVM18 + Empty vector vs. pJM15 + Empty vector	0.806	0.186	0.002

* Absolute estimated difference between beta's; ** Adjusted p-values using Holm's method.