
viruses

Review

Chikungunya Virus: Pathophysiology, Mechanism,
and Modeling

Vaishnavi K. Ganesan 1, Bin Duan 1,2,3,* ID and St Patrick Reid 4,*
1 Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center,

Omaha, NE 68198, USA; vaishnavi.ganesan@unmc.edu
2 Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center,

Omaha, NE 68198, USA
3 Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
4 Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center,

Omaha, NE 68198, USA
* Correspondence: bin.duan@unmc.edu (B.D.); patrick.reid@unmc.edu (S.P.R.); Tel.: +1-(402)-559-9637 (B.D.);

+1-(402)-559-3644 (S.P.R.)

Received: 16 September 2017; Accepted: 23 November 2017; Published: 1 December 2017

Abstract: Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, is recurring in epidemic
waves. In the past decade and a half, the disease has resurged in several countries around the globe,
with outbreaks becoming increasingly severe. Though CHIKV was first isolated in 1952, there remain
significant gaps in knowledge of CHIKV biology, pathogenesis, transmission, and mechanism.
Diagnosis is largely simplified and based on symptoms, while treatment is supportive rather than
curative. Here we present an overview of the disease, the challenges that lie ahead for future research,
and what directions current studies are headed towards, with emphasis on improvement of current
animal models and potential use of 3D models.
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1. Introduction

1.1. Chikungunya Fever and CHIKV

Chikungunya, a mosquito-borne disease endemic to tropical regions, has emerged as an epidemic
threat over the past 15 years. It infects over one million people per year and causes debilitating joint
pain [1]. The name “chikungunya” derives from a Makonde phrase meaning “that which bends
up” or “to become contorted”, referring to the bent posture of affected patients. Chikungunya fever
(CHIKF) is caused by Chikungunya virus (CHIKV), a pathogen of the genus alphavirus and the
family Togaviridae [2]. Within this genus, there are 30 species of arthropod-carried alphaviruses
(also referred to as arboviruses, stemming from arthropod-borne viruses), all sharing seven specific
antigenic complexes [3]. CHIVK is closely related to several other alphaviruses, including Ross River
virus, Barmah Forest virus, o’nyong-nyong virus, the Sindbis group of viruses, and the Mayaro virus,
all of which are known to cause arthritis [4]. CHIKV has three genotypes: Asian, West African,
and East Central South African, all named after their geographical distributions. The virus itself is a
positive-sense, single-stranded RNA virus approximately 11.8 kb long [5]. It has an icosahedral capsid
which is covered by a lipid layer, a diameter of approximately 65 nm, and is sensitive to temperatures
greater than 58 ◦C [6]. It contains two open reading frames (ORFs), one on the 5′ end and the other on
the 3′ end [7], with the ORF at the 5′ end producing four non-structural proteins (nsP 1–4) and the ORF
on the 3′ end producing the structural proteins, which are composed of a capsid protein, two envelope
glycoproteins (E1 and E2), and 2 small cleavage products (E3 and 6K) [8].
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1.2. History/Origins

CHIKV was not recognized in the early 19th century, but what we now know as CHIKF was. It was
not until the early 1950s that CHIKV was first characterized in East Africa [9]. It was more specifically
outlined in southern Tanzania in 1952, where it was first isolated in a human [10]. Following its
discovery, the disease was largely confined to pockets of land in Asia and Africa. The disease was
marked by long gaps of inactivity interspersed with sudden outbreaks [11], though this characterization
has been disputed [12].

It was not until the late 1990s and early 2000s that CHIKV began to re-emerge on a global scale.
Many of these recent epidemics differed from those previously reported in both their increased scale
and more rapid movement, with many originating from migrant populations moving from areas with
endemic CHIKV. Malaysia had an outbreak in 1998 that was present primarily in adults and speculated
to be re-introduced through the movement of workers [13], while Indonesia had a major outbreak
in 2001–2003 after a 20-year hiatus of epidemic CHIKV [14]. The 2005 Indian epidemic, one of the
most severe of the recent outbreaks, provided a possible template for envisioning future outbreaks and
their consequences. The outbreak occurred after a 32-year gap of epidemic CHIKV in the region and
eventually affected 1.3 million people [15]. The national burden from the outbreak was estimated to
be nearly 26,000 disability-adjusted life years (DALYs) lost, equating to approximately 45.26 DALYs
per million people [16]. 2005 also saw a severe CHIKV outbreak on Réunion, an island found in the
Indian Ocean east of Madagascar. This outbreak affected one-third of the island’s population [17] and
was notable in that its neural, hepatic, and myocardial symptoms led to an unusually high mortality
rate as compared to previous CHIKV outbreaks [18]. Table 1 summarizes recent large-scale outbreaks
of CHIKV in the 2000s.

Table 1. Recent selected large-scale CHIKV epidemics in the 2000s.

Location Year/Duration Affected

Lamu Island, Kenya 2004 13,500
La Réunion 2005–2006 255,000

India 2005 1,380,000
Mauritius 2006 13,500

Gabon 2007 20,000
Thailand 2008–2009 49,000

Republic of Congo 2011 8000
Martinique-Guadeloupe 2014 308,000

French Polynesia 2014–2015 66,000

As global travel has increased, there has been an increase of CHIKF cases described in Western
nations. In September 2007, a small outbreak of CHIKV stemming from an imported case was noted in
Italy and was especially concerning as it was spread via local infected mosquitoes [19]. There were
no locally acquired cases in the USA from 1995 to 2009, but there were reports of imported cases
during that time [20]. Similarly, imported cases coming from the Caribbean were noted in Spain in
2013 [21]. Of note, various autochthonous outbreaks have occurred in Europe, highlighting the ability
of the virus to cause disease in these more temperate climates [22,23]. CHIKV was not noted in the
Americas before 2013, but has since rapidly spread throughout the region. In the years following
the emergence of CHIKV in the Americas, it has caused between 795,000 and 1.1 million cases,
and spread to 43 countries and territories. During a 2014 outbreak on the islands of Martinique and
Guadeloupe, an estimated 308,000 people were affected [24], and from October 2014 to March 2015,
66,000 people in French Polynesia were infected, equating to an infection rate of 25% [24]. In addition,
CHIKV establishment in the Americas was followed by a sharp increase in travel-related CHIKF
with upwards of 1600 passengers coming to the US with CHIKF in the year following its emergence,
compared to a previous average of 28.
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1.3. Symptoms

Though it can appear similar to dengue fever and Zika, CHIKF is indicated by several
characteristic symptoms. CHIKV is remarkable in that it creates symptoms in a higher proportion
of infected individuals as compared to other alphaviruses, with 10–70% of persons living in an
affected area becoming infected, and 50–97% of the infected developing a clinical presentation [1].
Symptoms typically appear after an incubation time of 4–7 days [25]. The disease has a more
severe effect on neonates and the elderly [26], and in neonates it is associated with encephalitis [27].
The mortality rate is five times higher in individuals 65 and above compared to those less than 45 years
of age [28]. The disease course is divided into an acute stage, lasting approximately one week, and a
chronic stage, also known as the persistent stage, which can last from months to years. Acute fever
and polyarthralgia are highly indicative of an infection [25], with arthralgia appearing in 30–90%
of cases [5,6]. This joint pain is often bilateral, symmetric, and debilitating. There are occasional
ophthalmic [29], neurological [30], and cardiac [31] symptoms.

Chronic CHIKV infection is less studied but represents a significant health complication for
those afflicted and a public health problem for their communities. In a case report investigating the
Réunion outbreak, it was reported that two years post-infection, 43–75% of patients continued to have
symptoms attributed to their infection [32]. The most prominent symptoms one month post-infection
were rheumatism (75%) and fatigue (30%), with joint pain, fatigue, and neuritis being present after ten
months [33]. Another study suggests that 50% of people infected with CHIKV will go on to experience
chronic pain [34]. Chronic CHIKF demonstrates specificity to bone and joint tissue with symptoms
such as rheumatoid arthritis and ankylosing spondylitis [35].

In part due to the symptoms noted, CHIKV is associated with low mortality but high morbidity.
During the Réunion outbreak, a case-fatality rate of 1/1000 was reported [36]. However, during the
outbreaks occurring in 2004–2008, an increase in death rates was noted, with the deaths following the
previously established pattern of affecting the elderly proportionately more than younger adults [37].
It has been argued that the fatality of CHIKF has been underestimated [38].

When laboratory tests are performed, the primary lab finding is lymphopenia, delineated as
having <1000 lymphocytes/mL3 [6]. Along with the lymphopenia, there is occasional leukopenia,
elevated liver enzymes, anemia, elevated creatinine, elevated creatinine kinase, and hypocalcemia [6].
The acute stage of CHIKV is noted to have a high viremic load, with an average of 107 pfu/mL [6].

2. Pathophysiology

2.1. Transmission

CHIKV is transmitted in two different cycles: urban and sylvatic. The urban cycle refers to
transmission from human to mosquito to human, while sylvatic transmission is animal to mosquito to
human [17]. The sylvatic cycle is the primary form of maintenance in Africa [39]. CHIKV elsewhere in
more densely populated areas is primarily maintained in an urban cycle, in which humans act as the
major hosts and mosquitos of the genus Aedes act as vectors [17]. Specifically, the virus is primarily
transmitted by Aedes aegypti and Aedes albopictus. The principal vector in CHIKV transmission has
historically been Ae. aegypti, but Ae. albopictus acted as the major vector in several recent outbreaks in
Réunion, Europe, and Gabon [17], although Ae. Aegypti continues to be an important viral vector as
seen during the Caribbean outbreak in 2013 [40]. The adaptation to Ae. albopictus has been theorized
to be due in part to a lack of sufficient Ae. aegypti vectors [41], with a mutation in the E1 envelope
protein allowing Ae. albopictus to serve as a competent vector. The A226V mutation in the E1 envelope
protein increased fitness of CHIKV in Ae. albopictus and improved transmissibility to vertebrate
species [17]. Mother-to-child vertical transmission has been postulated for the post-2005 incidences [26],
being especially deleterious when the mother is infected up to four days postpartum [42], though this
hypothesis has been disputed [43].
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2.2. Route of Infection

CHIKV has an established route of infection in humans, with certain cell types being particularly
susceptible to infection. Those cells prone to infection and viral production include human epithelial
and endothelial cells, primary fibroblasts, and monocyte-derived macrophages, while lymphoid and
monocytoid cells, primary lymphocytes and monocytes, and monocyte-derived dendritic cells did
not demonstrate CHIKV replication [44]. Although this claim can be disputed, since CHIKV-positive
monocytes have been detected in vivo from CHIKV-infected patients [45]. After the first round of
replication there is a host immune response, but the virus goes to the lymph nodes and then to other
tissues via the circulatory system [46]. Replication at other tissues leads to the viremic phase of the
disease, which is additionally when mosquitoes can transmit the disease via blood.

2.3. Innate Immune Response

The immune response to CHIKV infection has been partially elucidated, but significant portions
remain unknown. Upon infection, CHIKV indirectly stimulates production of type I interferon (IFN)
via activation of non-hematopoietic cells, including primarily fibroblasts, an action which is essential
for clearing CHIKV from the body [47]. While interferon regulatory factors (IRFs) 3 and 7 acted in
a redundant manner in adults, neonates lacking in either factor were significantly more prone to
infection [47]. CHIKV also appears to induce a signaling cascade by activating interferon promoter
stimulator 1 (IPS-1), leading to the buildup of IRF3-dependent mRNAs while also blocking these
mRNAs from encoding proteins; the mechanism for this impediment is as-yet unknown [48].

CD8+ lymphocytes are found in skin rashes of acute patients, while CD4+ T-cells comprise the
majority in synovial effusions of chronic patients [49]. This evidence was supported by experiments
done by Wauguier et al., which found that there was an activation of CD8+ T-cells early in the
infection, followed by CHIKV-induced apoptosis of CD4+ T-cells, with later parts of the acute stage
demonstrating a higher CD4+ T-cell count [50]. BST-2 (bone marrow stromal antigen 2) may protect
lymph tissues and regulate CHIKV-induced host inflammatory responses [51].

There is evidence that inflammation stemming from CHIKV infection has consequences for
osteoblast and osteoclast proliferation and function, which may contribute to the effects of chronic
CHIKV. Several of the cytokines associated with infection, such as TNF-α, IL-6, and IL-1, also promote
osteoclast activity and have been associated with osteoclastogenesis [52].

The brain is noted for having its own innate immune response. As noted previously,
though neurologic symptoms are uncommon, they can be severe, particularly in neonates. The brain
has several methods for combating CHIKV infection. Mouse models demonstrated that astrocytes
and oligodendrocytes were particularly susceptible to infection, while microglial cells were more
resistant [53]. In astrocytes, CHIKV induced apoptosis via the external caspase-9 pathway. In response
to CHIKV, microglial cells produce cytokines and pro-apoptotic molecules including IL-12, IFN-α,
and TNF-α [54].

3. Diagnosis/Treatment

3.1. Diagnosis

Diagnosis can be delayed due to the possible confusion of symptoms with those of dengue fever
or Zika. Fever and polyarthralgia give 84% sensitivity, 71% positive predictive value (PPV), and 83%
negative predictive value (NPV) [6]. Enzyme-linked immunosorbent assays (ELISA) can be used to
confirm the presence of anti-CHIKV antibodies, with IgM antibody levels highest three to five weeks
post-infection and persisting for up to two months. PCR can also be used to genotype the virus.

3.2. Treatment

Current treatment focuses on lessening the severity of symptoms rather than curing the disease.
Treatment primarily involves the use of antipyretics and NSAIDs [5]. However, there have been
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no studies to systematically evaluate the efficacy of these treatments [6], and the symptoms may
dissipate without intervention. The use of corticosteroids for acute stage treatment has met mixed
success and is hesitantly used due to the possibility of worsening symptoms post-treatment [55].
Maintaining proper fluid levels is of particular importance. There is also emerging evidence that drugs
that impede cholesterol transport, such as the class II cationic amphiphilic compounds U18666A and
imipramine, may be effective against CHIKV membrane fusion, and has potential for working against
other arboviruses [56].

For severe chronic arthralgia, disease-modifying anti-rheumatic drugs (DMARDs),
including methotrexate, hydroxychloroquine, or sulphasalazine, have been proposed [57]. Similar to
the acute treatments, the systematic efficacy of DMARDs for chronic treatment is unknown [58],
though there have been reports describing positive outcomes with cessation of symptoms within
4–6 months [59].

4. CHIKV Infection and Models

Accurate modeling of the pathogenesis of CHIKV infection is critical for continued progress
against the disease. Most in vitro and in vivo models of CHIKV have investigated the mechanisms
of viral entry and replication, and the efficacy of various antiviral treatments. As CHIKV has been
modeled with several different methods, there are several categorizations of CHIKV modeling. There is
in vitro cell culture modeling, and mouse and non-human primate in vivo modeling. Within these
various models, acute stage and chronic stage infection models also have been developed. Each model
demonstrates unique facets of CHIKV pathogenesis while having unique shortcomings.

4.1. In Vitro Culture System

The most basic form of CHIKV modeling is in vitro cultures. Strictly speaking, this is not a
model, but a culture system. In vitro culture systems form the basis of CHIKV analysis, but as such
have significant drawbacks regarding clinical applications. They are the cheapest, fastest, and most
accessible form of CHIKV analysis, making an ideal and commonly-used first step when testing
antiviral therapies. A wide variety of cells are used for in vitro CHIKV cultures in order to assess
the full scope of the disease, including primary human skeletal muscle myoblasts [60], human blood
monocytes [45], and African Green monkey kidney (Vero-E6) cells [61]. Of particular interest is
the use of primary human fibroblast-like synoviocytes [62] and human osteoblasts [63], given the
known tropism of chronic CHIKV for bone and synovial tissues. However, while in vitro modeling
has demonstrated some progress in accurately modeling the course of the disease, it still may not
precisely predict in vivo behavior. For example, molecules known to have non-specific antiviral action
(e.g., chloroquine and arbidol) showed some efficacy in vitro, but have not demonstrated clinical
efficacy [5]. Similarly, in vitro testing demonstrated that some extracts from tropical plants, such as
trigocherrings and trigowiin, have a good selectivity index against CHIKV, but in vivo models have yet
to delineate their toxicity, tumorigenicity, and cellular mechanism [64]. Mefenamic acid, a component
of non-steroidal anti-inflammatory drugs (NSAIDs), along with Ribavirin, demonstrated a significant
decrease in the hypertrophic effects of CHIKV in mice livers and spleens, both in vitro and in vivo.
It did so by impairing viral replication and entry [65].

4.2. Rodent Models

Mouse modeling is one of the most commonly used forms of animal modeling for CHIKV.
Mice are relatively cheap, easily maintained, match well with many different mouse-specific reagents,
are available with an abundance of different genetics lines, and are available in genetically-modified
forms [66]. Mice have also been used to study transmission of CHIKV from mosquitoes [67]. As so
many different types of murine model exist, mice models can be subdivided into several categories.
Most broadly, murine models investigate either acute or chronic infection.
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As delineated by Haese et al., acute models come in several subcategories, including neonatal,
immunocompromised, and arthritic models. Neonatal mouse models are useful as they can provide
more accurate models for the susceptibility of neonates to CHIKV infection. Neonatal mouse models
have demonstrated that fibroblasts are the primary target for CHIKV [68], that inefficient type-1 IFN
signaling is a risk factor for severe complications from infection [68], and that interferon-stimulating
gene 15 (ISG-15) plays a critical, but not direct, role in CHIKV mitigation [69].

Research into the progress of chronic CHIKV infection also utilizes murine models,
though this stage remains understudied. Mouse models have been used to show the presence of
monoclonal antibodies (mAbs) specific to the capsid structural protein in chronic CHIKV. T- and
B-lymphocyte-deficient recombination activating gene 1 (RAG1 −/−) knockout mice are often used
for studying chronic CHIKV. This mouse model was used to demonstrate that CHIKV “establishes
persistent infections in joint-associated tissues, that persistence of CHIKV RNA is associated with
ongoing synovitis, and that the sites of CHIKV persistence and tissue burdens of CHIKV are controlled
by adaptive immunity”, and that prophylactic and therapeutic treatments of mAbs have differing
efficacies [70].

However, though they are very useful in many ways, CHIKV mouse models do have significant
limitations. As yet, they have not been able to accurately simulate mother-child vertical transmission,
determine how and why CHIKV more severely impacts the elderly, and determine the long-lasting
consequences of chronic CHIKV [66]. Simulation of chronic CHIKV is particularly difficult, as mouse
models expire quickly and may not demonstrate the full longevity and effects of persistent CHIKV.

Other rodent models aside from murine models are also being developed to study CHIKV.
Baby hamster kidney cells (BHK-21-Clone 13) have been used since the 1970s to culture CHIKV [71].
Golden hamsters (Mesocricetus auratus) have demonstrated promise as future models for CHIKV,
as they are highly susceptible to CHIKV infection and develop inflammations similar to humans,
such as myositis and tenosynovitis [72].

4.3. Non-Human Primate Models

Along with mouse models, non-human primates (NHPs) provide the most commonly used animal
models for CHIKV research. They provide key benefits as compared to murine models: more closely
matching human physiology and demonstrating similar clinical symptoms. Macaques are among the
most commonly used NHPs. They have been used to study over 70 infectious diseases, including HIV,
poliomyelitis, malaria, and CHIKV [73]. Rhesus macaques (Macaca mulatta) have been in use for
CHIKV research since the mid-1950s [74], and bonnet macaques (Macaca radiata) since at least the late
1960s [75], with cynomolgus macaques (Macaca fascicularis) also being utilized in the 21st century [76].

Broadly speaking, studies utilizing NHPs can be divided into two categories: those that study the
mechanism of the disease and those that seek to test therapies. Immunocompetent cynomolgus
macaques have demonstrated that NHPs can be utilized to model the symptoms of chronic
CHIKV infection, including consequences for the musculoskeletal, lymph, and hepatic systems [77].
Cynomolgus macaques were also shown to be competent models for chronic CHIKV as the virus was
harvested a month and a half post-infection from several key organs (muscle, liver, spleen). NHPs have
also been used to glean more information about the effect of CHIKV on vulnerable populations.
Pregnant rhesus macaques have demonstrated an absence of viral RNA in fetuses post-mortem [78].
Elderly macaques demonstrated a continuation of CHIKV in the spleen that was not present in younger
mature macaques [79]. This continuation, along with a weaker immune system, may explain the higher
morbidity found among older populations that is common during CHIKV outbreaks, though further
studies are required.

Macaque models are being further developed to act as enzootic reservoirs for future therapies.
They have been used to test the possibility of inactivated vaccines since the 1970s [80] and attenuated
vaccines since the 1990s [81]. Macaques have been used to characterize the molecular mechanisms of
anti-CHIKV antibodies, demonstrating that they target the E2 glycoprotein, capsid, and nsP1, nsP2,
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and nsP4 proteins [82]. Treatment of rhesus macaques with two monoclonal antibodies, CHK-152
and CHK-166, demonstrated a decrease in peripheral tissue infection [83]. When tested on rhesus
macaques, a DNA vaccine expressing structural proteins E1–3 produced similar immunogenic effects
as seen in human post-CHIKV infection [84].

Despite the demonstrated possibility of NHPs in modeling CHIKV, their use has certain difficulties.
Consequently, due to the fact that NHPs are more difficult to utilize as compared to standard
murine models, their use is not as widespread. NHPs are more expensive, require special restraints
such as tethers and sedatives, and, along with other animal models, do not fully recreate the
human microenvironment.

5. Challenges

One of the challenges preventing advancements in CHIKV research is the continuing lack of
adequate models for testing, both human and animal. Though current murine and nonhuman primate
models have established their utility, they still lack in certain areas. There remains a need to identify
good models with the appropriate microenvironment to mimic the setting of an infection.

Up to the current day there is no animal model that completely shows the chronic rheumatoid
syndrome for CHIKV, with current mice models demonstrating a destruction of tissue following
infection [85]. As chronic CHIKV is a lifelong condition, models must be able to simulate the longevity
of the disease. Further difficulties remain in inducing the severe joint damage caused by CHIKV
in animal models. This lack of models to comprehensively simulate CHIKV infection may prevent
forward progress to combating the disease. Treatments have not been completely tested due to a lack
of relevant animal models. In particular, though there have been recent advancements, there is a dearth
of animal models for testing the effects on bone and cartilage.

In addition, much of the work that remains in preventing future outbreaks of epidemic
CHIKV centers on vector control of Ae. aegypti and Ae. albopictus. Traditionally, insecticides and
larvicides have been used. However, mosquitoes have demonstrated an increasing resistance to
insecticides [86]. There is evidence that some species of Ae. albopictus are developing resistance
in the US to traditional insecticides such as DDT [87]. Ae. albopictus resistance against a variety
of insecticides, including deltamethrin, beta-cypermethrin, cypermethrin, permethrin, dichlorvos,
temephos, propoxur, and DDT, was reported throughout Guangzhou, China, with mortality rates
ranging from 12 to 95% [88].

Underscoring all of these challenges is the expense of CHIKV research, prevention, and treatment.
Due in part to the chronic nature of the disease, CHIKV is estimated to cost tens of millions of dollars
in affected countries, with one estimate placing a burden of nearly $74 million for a single outbreak in
Colombia in 2014 [89]. Vaccines in particular may have difficulties as they require a large amount of
funding which may not be commercially viable.

6. Future Directions

One area in need of elucidation is the precise cellular mechanisms of the disease. While the coat
glycoproteins required for viral entry are known structurally, less is known about possible target cell
receptors and the precise mechanism for cell entry [86]. In addition, relatively more is known about
innate immune responses to infection [51], which are largely in response to the acute state of the
disease, but less is known about the nature of the associated chronic problems. It has been proposed
that the changes to the immune response during the acute stage of CHIKV infection may facilitate
the development of chronic problems [55], a theory which will require further studies with models to
fully establish.

While animal models have been steadily improving in their ability to map out the behavior of
CHIKV over the last few years, another area that potentially shows future promise is the use of 3D
scaffolds and models. 3D models have recently shown use for studying infectious diseases. Thus far,
their scope has been largely focused on gastrointestinal diseases, but the field is expanding [90].
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Current research has begun developing systems for 3D tissue modeling of the brain, GI tract, kidney,
liver, lung, and skin [91]. 3D models are advantageous for studying infectious disease as they accurately
model human structures and can be composed of multiple cell types found in a particular organ.
Organoids, 3D organ-like structures, have demonstrated use in modeling in vivo human pathology.

As the cell types susceptible to CHIKV have been elucidated, integration of these cells into 3D
scaffolds may prove useful for more fully delineating the effects of CHIKV on each particular cell type.
The development of accurate 3D models will allow for the testing of CHIKV effects on human cell
lines of individual organ systems, and may be used to research particular symptoms found within
those systems. An immunocompetent three-layer model comprised of keratinocytes, fibroblasts, and a
central matrix of immune cells in an agarose–fibronectin gel was constructed so that each cell type
could be analyzed [92]. This type of fibroblast construct could have potential use as a CHIKV infection
model. Similar ideas were demonstrated with another 3D skin model used to demonstrate the effects
of fibroblasts against Candida albicans invasion [93].

In light of its association with neonatal encephalitis, 3D fetal and infant brain organoids are of
particular note. Human pluripotent stem cell-derived neural organoids are excellent models for fetal
brains [94]. These organoids have previously been used to demonstrate the impact of Zika virus
(ZIKV) on fetal brain development, with particular emphasis on microcephaly. Human embryonic
stem cell-derived cerebral organoids were used to identify a connection between ZIKV Toll-like
receptor-3 activation and microcephaly [95]. 3D cerebral organoids have demonstrated the ability to
form critical components of the human forebrain, including cortical neurons with markers for all six
layers of the human cortex, and have been used to model the effects of ZIKV during various stages
of neurogenesis [96]. Using 3D cerebral organoids to study the effects of CHIKV on fetal and infant
neural cells may determine through what receptors and pathways CHIKV impacts neural cells and
why it exhibits an increased burden on children.

The development of bone and cartilage models could prove a fruitful source for investigating
CHIKV, especially the effects of chronic CHIKV, by providing researchers with accurate human
joint proliferation, and ischemic bone marrow necrosis stemming from CHIKV [97]. It has been
demonstrated that using a mixture of silk fibroin and chitosan creates bone scaffolds that are suited for
osteoblast growth [98]. As CHIKV has been used as a model for other alphaviruses, effective use of a
3D model may have larger consequences for studying alphavirus proliferation and invasion.

Nevertheless, due to the modernity of the field, there is currently a dearth of research using
3D models to study neglected tropical diseases, including CHIKV. Many bone and cartilage models
currently under investigation are for implantation rather than infection, though there is overlap in
the needs of both simulations. In addition, problems such as lack of vascularization and other related
issues must be solved before these scaffolds will be able to fully imitate the bone microenvironment.

7. Conclusions

Since the turn of the 21st century, CHIKV has re-emerged as a significant viral threat. The virus
has caused outbreaks throughout the world and has demonstrated an ability to spread locally through
areas to which it is not endemic. As global travel increases and rates of migration surge, the chance of
a larger-scale epidemic will only rise. Though the disease has a low mortality rate, the symptoms and
chronic nature of the disease indicate that it should not be ignored. As the disease has not been of great
significance for several decades, much knowledge of it remains woefully incomplete. Though more is
known now about how the virus enters cells and which cells are susceptible to attack, what occurs once
the cells are infected is less known, especially long-term. The development of new models, both animal
and synthetic, will aid in more fully realizing treatments for this disease (Figure 1).
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Figure 1. CHIKV in vitro and in vivo models. A comparison of the available infection models to study 
CHIKV pathogenesis, including advantages and disadvantages for each system. Of note, the 3D 
culture system has not yet been used as an infection model to study CHIKV infection. 

In the past decade, new models have been developed to further study CHIKV. Murine and non-
human primate models continue to advance and have given a more complete view than ever about 
the pathogenesis, cellular mechanisms, and replication of the virus. However, though there have been 
significant advancements in the field of CHIKV animal modeling, all models have significant 
limitations, and no animal model gives a completely accurate view of the human microenvironment. 
To that end, 3D scaffolds and tissue development, especially of bone and cartilage cells, may show 
the most accurate picture of CHIKV infection. As this field is only just beginning to be developed, 
there is an abundance of room for expansion. 
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Figure 1. CHIKV in vitro and in vivo models. A comparison of the available infection models to study
CHIKV pathogenesis, including advantages and disadvantages for each system. Of note, the 3D culture
system has not yet been used as an infection model to study CHIKV infection.

In the past decade, new models have been developed to further study CHIKV. Murine and
non-human primate models continue to advance and have given a more complete view than ever
about the pathogenesis, cellular mechanisms, and replication of the virus. However, though there have
been significant advancements in the field of CHIKV animal modeling, all models have significant
limitations, and no animal model gives a completely accurate view of the human microenvironment.
To that end, 3D scaffolds and tissue development, especially of bone and cartilage cells, may show the
most accurate picture of CHIKV infection. As this field is only just beginning to be developed, there is
an abundance of room for expansion.
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