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Abstract: Background: The use of therapeutic antibodies for the treatment of neurological diseases
is of increasing interest. Nose-to-brain drug delivery is one strategy to bypass the blood brain
barrier. The neonatal Fc receptor (FcRn) plays an important role in transepithelial transcytosis of
immunoglobulin G (IgG). Recently, the presence of the FcRn was observed in nasal respiratory
mucosa. The aim of the present study was to determine the presence of functional FcRn in olfactory
mucosa and to evaluate its role in drug delivery. Methods: Immunoreactivity and messenger RNA
(mRNA) expression of FcRn was determined in ex vivo porcine olfactory mucosa. Uptake of IgG was
performed in a side-by-side cell and analysed by immunofluorescence. Results: FcRn was found in
epithelial and basal cells of the olfactory epithelium as well as in glands, cavernous bodies and blood
vessels. Allogenic porcine IgGs were found time-dependently in the lamina propria and along axonal
bundles, while only small amounts of xenogenic human IgGs were detected. Interestingly, lymphoid
follicles were spared from allogenic IgGs. Conclusion: Fc-mediated transport of IgG across the nasal
epithelial barrier may have significant potential for intranasal delivery, but the relevance of immune
interaction in lymphoid follicles must be clarified to avoid immunogenicity.

Keywords: olfactory epithelium; respiratory epithelium; nasal mucosa; NALT; lymphoid follicles;
neuronal bundles; antibody; permeation; nose to brain; drug delivery

1. Introduction

Biopharmaceuticals are of increasing importance in the therapy of various diseases. Since the
development of the hybridoma technology by Köhler and Milstein, some of the most important
biopharmaceutical molecules are antibodies, in particular immunoglobulin G (IgGs) [1,2].

Despite their great therapeutic potential, the tissue penetration of large molecules like IgGs
is a critical aspect for the development of therapies and administration routes, in particular for
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neurological disorders. The blood-brain barrier (BBB) is a highly selective barrier and severely limits
the use of antibodies for the therapy of diseases of the central nervous system (CNS). The BBB consists
of cerebral vascular endothelial cells that are firmly connected by tight junctions and surrounded by
astroglia expressing soluble factors responsible for the formation of tight junctions [3–5].

One strategy to bypass the BBB is to deliver drugs to the CNS by intranasal drug delivery.
In humans intranasally administered insulin was already shown to have a positive effect on memory
and metabolic effects via the hypothalamic-pituitary-axis [6–11]. Advantages of the intranasal route
are the minimally-invasive administration, reduced systemic side effects due to direct CNS targeting,
and improved patient compliance compared to intrathecal delivery [6,7]. As the feasibility of nose
to brain (N2B) drug delivery was already shown for sumatriptan, oxytocin, insulin, and some other
drugs, it is of particular interest to investigate whether the N2B route is also suitable for proteins with
a higher molecular weight such as antibodies [7,12–14].

IgG antibodies contain two different kinds of polypeptide chains: the heavy chain and light chain.
Each IgG is composed of two heavy chains that are linked via disulfide bond as well as two light chains
that are respectively connected by disulfide bonds. The light chain consists of one variable domain
(VL) and one constant domain (CL). The heavy chain is structured into four domains: three constant
domains (CH1, CH2, CH3) and one variable domain (VH) [15,16].

In endothelial cells and monocytes but also in epithelial cells, a specialized IgG transporter,
the neonatal Fc receptor (FcRn) binds specifically to the CH3 and parts of the CH2 regions of IgGs
(Figure 1C). The FcRn is composed of a heterodimer of major immunohistocompatability (MHC) class
I-like heavy chain and a microglobulin β light chain. It binds the Fcγ domain preferentially at pH < 6.5
but hardly at physiological pH [17–19]. FcRn immunoreactivity was previously demonstrated by Heidl
et al. in the human nasal respiratory mucosa of the inferior turbinate, in particular in epithelial, basal,
endothelial and gland cells. However, the presence of FcRn in the regio olfactoria of higher mammals,
a region that is highly implicated in N2B drug delivery, has yet not been described [19–21].

As demonstrated for lung and gut, FcRn can facilitate IgG transport from the apical to the
basolateral side in polarized cells and vice versa [22,23]. As indicated in Figure 1B,C, IgGs are taken up
by pinocytosis, but also specific uptake via FcRn is discussed [24–26]. In the acidic environment of the
early endosome, the Fcγ domain binds to the FcRn. During exocytosis, after recycling or transcytosis,
the pH shift at the extracellular environment to physiological pH (pH 7.4) causes a release of the IgG
molecule [27].

Ober et al. showed cross-species transport of human IgG by the porcine FcRn, making porcine
tissue a promising model organism to test ex vivo epithelial transport of IgGs [28]. In addition to
the molecular similarities, the cellular composition of the respiratory mucosa was also shown to
be comparable between humans and pigs [29,30]. Thus, it is reasonable to assume that there are
strong similarities between human and porcine olfactory mucosa. The olfactory mucosa in general is
composed of a pseudostratified epithelium containing polarized epithelial cells, olfactory neurons,
basal cells (progenitor cells), and supporting cells. Beneath the basal cell layer, there is a thick
layer of connective tissue with neuronal bundles, Bowman’s glands, cavernous bodies and smaller
blood capillaries (Figure 1A) [31–33]. This layer is called the lamina propria. In addition, Debertin
and colleagues investigated the nasal immune system in newborn children. They found B and T
lymphocytes arranged in so-called lymphoid follicles similar to the Peyer’s patches in the gut [34].
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Figure 1. Transcytosis and recycling of IgGs in the nasal mucosa mediated by the neonatal Fc receptor 
(FcRn) and structural overview of the mucosa composition. (A) The olfactory mucosa in mammals is 
composed of a pseudostratified epithelium that contains olfactory sensory neurons (OSN), supporting 
cells (SUS) and basal cells. The olfactory epithelium is lined by a thick connective tissue, called the 
lamina propria, containing Bowman’s gland (BG), blood vessels (BV), and neuronal bundles (NB). (B) 
Structure of immunoglobulin G (IgG) and binding to FcRn. (C) Immunoglobulin G (IgG) is 
incorporated into polarized cells of the epithelium via pinocytosis. The FcRn binds to the Fc-domain 
of the antibody in the slightly acidic environment of the early endosome and mediates transcytosis to 
the basolateral side or recycling of the IgG to the apical side. Transcytosis is shown here from apical 
(nasal cavity) to basolateral, but the reverse direction was also reported. 

The neuronal bundles are accumulated axons of the olfactory receptor neurons projecting to the 
olfactory bulb, a brain region specialized for olfaction [35]. Balin et al. demonstrated that horseradish 
peroxidase (HRP), administered to the olfactory mucosa, was detectable in the olfactory bulb of 
rodents and monkeys within 45 to 90 min [36]. Therefore, it could be assumed that axons of the 
olfactory neurons present a pathway into the brain for therapeutic protein drugs such as antibodies 
[37]. 

In a previous study, the permeation of the human therapeutic IgG Avastin® (bevacizumab) 
through two subtypes of porcine mucosa from the septum and the snout cavity was shown, and a 
link between FcRn and the IgG’s pathway through the epithelium was suspected [38]. 

The aim of the present ex vivo study was to evaluate the presence of FcRn in porcine olfactory 
mucosa. Nasal porcine mucosa explants were excised from the dorsal part of the concha nasalis dorsalis 
(superior turbinate in humans) covered with olfactory mucosa and from the concha nasalis ventralis 
(inferior turbinate in humans) that is covered with respiratory mucosa. Furthermore, the function of 
FcRn was evaluated by determining the qualitative transport of allogenic porcine IgGs in comparison 
to a xenogenic human IgG (a biosimilar of bevacizumab). These experiments should also clarify 
whether xenogenic human IgGs are transported via the porcine FcRn. Using immunofluorescence, 
qualitative uptake and the fate of IgGs in the lamina propria was investigated, in particular in neuronal 
bundles and in lymphoid follicles. 

2. Material and Methods 

2.1. Antibodies  

According to Table 1 the following antibodies were used for uptake and distribution studies as 
well as for immunofluorescence and Western blotting. 
  

Figure 1. Transcytosis and recycling of IgGs in the nasal mucosa mediated by the neonatal Fc receptor
(FcRn) and structural overview of the mucosa composition. (A) The olfactory mucosa in mammals is
composed of a pseudostratified epithelium that contains olfactory sensory neurons (OSN), supporting
cells (SUS) and basal cells. The olfactory epithelium is lined by a thick connective tissue, called the
lamina propria, containing Bowman’s gland (BG), blood vessels (BV), and neuronal bundles (NB).
(B) Structure of immunoglobulin G (IgG) and binding to FcRn. (C) Immunoglobulin G (IgG) is
incorporated into polarized cells of the epithelium via pinocytosis. The FcRn binds to the Fc-domain of
the antibody in the slightly acidic environment of the early endosome and mediates transcytosis to the
basolateral side or recycling of the IgG to the apical side. Transcytosis is shown here from apical (nasal
cavity) to basolateral, but the reverse direction was also reported.

The neuronal bundles are accumulated axons of the olfactory receptor neurons projecting to the
olfactory bulb, a brain region specialized for olfaction [35]. Balin et al. demonstrated that horseradish
peroxidase (HRP), administered to the olfactory mucosa, was detectable in the olfactory bulb of rodents
and monkeys within 45 to 90 min [36]. Therefore, it could be assumed that axons of the olfactory
neurons present a pathway into the brain for therapeutic protein drugs such as antibodies [37].

In a previous study, the permeation of the human therapeutic IgG Avastin® (bevacizumab)
through two subtypes of porcine mucosa from the septum and the snout cavity was shown, and a link
between FcRn and the IgG’s pathway through the epithelium was suspected [38].

The aim of the present ex vivo study was to evaluate the presence of FcRn in porcine olfactory
mucosa. Nasal porcine mucosa explants were excised from the dorsal part of the concha nasalis dorsalis
(superior turbinate in humans) covered with olfactory mucosa and from the concha nasalis ventralis
(inferior turbinate in humans) that is covered with respiratory mucosa. Furthermore, the function of
FcRn was evaluated by determining the qualitative transport of allogenic porcine IgGs in comparison
to a xenogenic human IgG (a biosimilar of bevacizumab). These experiments should also clarify
whether xenogenic human IgGs are transported via the porcine FcRn. Using immunofluorescence,
qualitative uptake and the fate of IgGs in the lamina propria was investigated, in particular in neuronal
bundles and in lymphoid follicles.

2. Material and Methods

2.1. Antibodies

According to Table 1 the following antibodies were used for uptake and distribution studies as
well as for immunofluorescence and Western blotting.
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Table 1. List of antibodies used in this study.

Antibody Antigen Immunogen Host Source, Cat. #

IgG from porcine
serum - - pig Sigma-Aldrich, Germany,

Cat.#I4381

bevacizumab
biosimilar VEGF VEGF-165 isoform humanized

antibody In-house

Anti-porcine FcRn cytoplasmic tail of
the porcine FcRn

Peptide:
CPWISFHGDDVGALLP

TPDLDTRMLNLRI
rabbit Pirbright Institute, UK [17]

Anti-Neurofilament
200

neurofilament
heavy polypeptide

IgG fraction of
antiserum rabbit Sigma-Aldrich, Germany,

Cat. # N4142

Anti-CD3 (SP7)
intracytoplasmic

portion of the CD3
antigen

synthetic peptide:
KAKAKPVTRGAGA rabbit NovusBio, Germany, Cat.#

NB600-1441

Anti-MS4A1/CD20
(MEM-97) CD20 (Bp35)

Raji human Burkitt’s
lymphoma cell line

(NM_021950.3)
mouse NovusBio, Germany, Cat.#

NBP1-44634

Anti-CD14
Monoclonal (TüK4) CD14 not specified mouse Thermo Fisher Scientific,

Germany, Cat.# MA5-16956

Anti-β Actin
(AC-15) β Actin not specified mouse Sigma Aldrich, Germany,

Cat.# A5441

Anti-murine
IgG-Alexa
Fluor®488

whole molecule
mouse IgG not specified goat

Jackson Immuno Research
Europe Ltd., UK;
Cat.#115-545-003

Anti-rabbit
IgG-Rhodamine

Red™-X

whole molecule
rabbit IgG not specified donkey

Jackson Immuno Research
Europe Ltd., UK,
Cat.#711-295-152

Anti-swine
IgG-Rhodamine

Red™-X

whole molecule
porcine IgG not specified goat

Jackson Immuno Research
Europe Ltd., UK,
Cat.#114-295-003

Anti-human
IgG-FITC

(Fluorescein
isothiocyanat)

whole molecule
human IgG not specified goat Sigma-Aldrich, Germany,

Cat.# F3512

Anti-rabbit
IgG-HRP

whole molecule
rabbit IgG not specified goat

Jackson Immuno Research
Europe Ltd., UK,
Cat.#111-035-003

Anti-murine
IgG-HRP

whole molecule
mouse IgG not specified goat Sigma Aldrich, Germany,

Cat.# AP5278

2.2. Tissue Preparation

The mucosa explants were collected from the nasal cavity of slaughterhouse pigs aged 4 to
6 months old from a local butcher. The tissue specimens were excised from the dorsal part of
the concha nasalis dorsalis (olfactory epithelium) and the middle part of the concha nasalis ventralis
(respiratory epithelium) according to [39]. In detail, approximately 2 cm2 of the mucosa were
dissected with a scalpel and removed gently from the cartilage using a blunt spatula to avoid
damage to the mucosa explants. The post mortem delay of the porcine tissue was below 2 h.
For morphological comparison human regio olfactoria was excised from anatomical donations fixed in
4% paraformaldehyde/96% ethanol for anatomical teaching courses. The human specimens were used
including cartilages as the tissue was too fragile to remove the mucosa without damage. The different
qualities observed in the sections from human and porcine tissue are due to these different tissue
processing procedures.
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2.3. Reverse Transcription and Polymerase Chain Reaction (PCR)

To isolate total RNA from the specimens, TRIzol (Thermo Fisher Scientific, Dreieich, Germany) was
used according to the manufacturer’s instructions. Tissue sections of 200 mg were used per library and
the RNA was stored at −80 ◦C. For reverse transcription to complementary DNA (cDNA), 1 µg of total
RNA was mixed with 2U RNAse inhibitor (InvitrogenTM, USA) and added up to 10 µL with ultra-pure
distilled RNAse-free water (Invitrogen™, USA). The RNA secondary structure was denatured by
heating to 65 ◦C for 15 min. Per reaction, 100 pM oligo-dT15 primer, 20 mM deoxynucleotides (dNTPs),
and 400 U murine leukemia virus (MLV) reverse transcriptase were diluted in M-MLV buffer containing
ultra-pure distilled RNase-free water and were added to the denatured RNA. The mix was incubated
at 37 ◦C for 1 h and then inactivated for 10 min at 65 ◦C. The cDNA templates were stored at −20 ◦C
until use.

2 µg cDNA, 1 µM of the appropriate primer pairs (see Table 2; Thermo Fisher Scientific,
Dreieich, Germany), 25 mM MgCl2 (Thermo Fisher Scientific, Dreieich, Germany), 2.5 mM dNTP Mix
(Thermo Fisher Scientific, Dreieich, Germany), and 0.5 U/µL Taq polymerase (Invitrogen™, USA)
were diluted in Taq-PCR buffer (Thermo Fisher Scientific, Dreieich, Germany) containing RNAse-free
water (Invitrogen™, USA) to amplify the DNA target sequences by PCR.

Table 2. Sequences of forward and reverse primer for reverse transcriptase-PCR (RT-PCR) of the targets
FcRn und β-actin.

Targets Forward Primer (5′-3′) Reverse Primer (5′-3′)

FcRn CTAACAGTCAAGAGCGGCGA AGATTCCACCATGCCAGCAA
β-actin GACACCAGGGCGTGATGG GCAGCTCGTAGCTCTTCTCC

The PCR was performed with initial denaturation for 30 s at 95 ◦C, 40 cycles with denaturation at
95 ◦C for 30 s, annealing at 60 ◦C for 30 s, elongation at 72 ◦C for 60 s, and a final elongation at 72 ◦C
for 10 min. The amplicons were analysed by agarose gel electrophoresis.

2.4. Western Blot

The tissue explants were homogenized, chilled RIPA (radioimmunoprecipitation) cell lysis buffer
(10 mM Tris-Cl, pH8.0; 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate,
0.1% SDS (sodium dodecyl sulfate), 140 mM NaCl, and protease inhibitor mix (Thermo Fisher Scientific,
Dreieich, Germany)) were added, and the samples were agitated for complete cell lysis.

Equal volumes of homogenized tissue were loaded, separated in a 12.5% SDS PAGE, and blotted
onto a nitrocellulose membrane (Carl Roth, Karlsruhe, Germany). The membrane was blocked
(5% skimmed milk powder in PBS/0.1% Tween20, pH 7.4). Primary antibodies (details see Table 1) were
diluted by 1:5000 and incubated overnight at 4 ◦C. The secondary antibodies were used at 1:100,000
(Anti-rabbit IgG-HRP) and 1:4000 (Anti-murine IgG-HRP), and the membrane developed with the
chemoluminescence substrate Immobilon® (Merck Millipore, Darmstadt, Germany) according to the
manufacturer’s instructions. Image acquisition and quantitation of band intensity were performed using
Fusion FX Imaging systems (VILBER Lourmat, Collégien, France) and Image J (java.version: 1.8.0_171).

2.5. Uptake and Distribution Studies

To simulate the upside-down conditions at the olfactory region, a 2 cm2 mucosa specimen was
placed in a modified side-by-side cell consisting of two microreaction tubes (1.5 mL) to avoid leakages
(Figure 2B). 1 mL of simulated nasal solution (SNS, 1.5 mM NaH2PO4, 0.83 mM NaHPO4, 1.67 mM
Mg2Cl2, 4.56 mM KCl, 119.78 mM NaCl, 10 mM D-glucose, 15 mM NaHCO3, 1.2 mM CaCl2, osmolarity:
300 ± 10 mol/kg; pH 7.4; buffer was oxygenated for 10 min before use [40]) was filled in the upper
tube prior to sealing with the mucosa. The assay set-up was developed to display conditions as similar
as possible to in vivo conditions. Therefore, the mucosa explants were not washed before placing them
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in the side-by-side cell, and the mucus layer was not removed to keep the system as close as possible
to the native situation in intranasal drug application (mucus, upside-down, temperature: 35 ◦C).

A volume of 10 µL containing 8 mg/mL (54 µM) porcine serum IgGs in 0.1 M phosphate-buffered
saline (PBS, Sigma Aldrich, Taufkirchen, Germany) or the same concentration of the humanized
antibody bevacizumab biosimilar (in-house production) were pipetted carefully onto the epithelial
layer. The mucosa was incubated at 35 ◦C and >90% humidity for either 30 min, 2 h, 4 h, or 8 h.
The negative/vehicle control (buffer without antibody) was incubated for 8 h in parallel. At least
four independent experiments were performed, and representative data are shown. Samples without
an intact epithelial layer (see below) were excluded, and the experiment was repeated to obtain the
necessary number of intact samples.
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(B) Experimental set-up: The mucosa specimen was fixed with a fastening clamp upside down in 
between two microreaction tubes. In the lower tube, a small opening was cut into the tube wall to obtain 
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their epithelial layer by HE staining, and damaged samples as shown here were excluded from the 
analysis. LP: lamina propria; BC: basal cells; EP: epithelial layer. Scale bar: 100 µm. 

Figure 2. Experimental set-up of the uptake and distribution studies. Anatomical sketch of the sagittal
section of a pig head according to [39], (A) 1: concha nasalis ventralis; 2: concha nasalis dorsalis; 3: concha
nasalis media; 4: ethmoidal turbinates; Black box: regio olfactoria, from which tissue specimens were
taken. (B) Experimental set-up: The mucosa specimen was fixed with a fastening clamp upside down
in between two microreaction tubes. In the lower tube, a small opening was cut into the tube wall
to obtain access to the mucosal surface for antibody or vehicle (PBS) application. (C) HE staining of
an intact epithelial layer. (D) HE staining of a damaged epithelial layer. Detachment and damage of
the epithelial layer leads to loss of its barrier function and, hence, has an important influence on the
experimental read-out (see also Supplementary Materials). Therefore, all samples were analysed for the
integrity of their epithelial layer by HE staining, and damaged samples as shown here were excluded
from the analysis. LP: lamina propria; BC: basal cells; EP: epithelial layer. Scale bar: 100 µm.

After the respective incubation time, the mucosa explants were directly fixed in 4%
paraformaldehyde for 2 h, cryoconserved in 30% sucrose overnight, and stored at 4 ◦C until sectioning.
The tissue was cut in 14 µm slices in a cryostat at −25 ◦C (HM525 NX, Thermo Fisher Scientific,
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Dreieich, Germany) and mounted on Superfrost®Plus Micro slides (VWR International GmbH,
Darmstadt, Germany).

2.6. Immunohistochemistry and Histological Staining

Slides were washed three times for 5 min with PBS (Roti
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medium (Sigma-Aldrich, Taufkirchen, Germany). The human tissue sections were only HE-stained
similar to the porcine sections.

2.7. Analysis

The samples were analysed either by phase-contrast microscopy (NikonEclipse 80 I; Nikon
Instruments Europe B.V., Duesseldorf, Germany) and epi-fluorescence microscopy (Olympus BX63,
Olympus Europa SE & Co. KG, Hamburg, Germany) or by confocal microscopy (Zeiss LSM 7MP,
Carl Zeiss AG, Jena, Germany). To blank the signal of endogenous porcine IgGs from the exogenously
administered allogenic porcine serum IgGs (Sigma-Aldrich, Taufkirchen, Germany), the Image J
(java.version: 1.8.0_171) macro “Image Calculator” was used. With this tool, the fluorescence intensity
of the negative/vehicle control stained with anti-swine-RhodamineRed secondary antibody was
subtracted from the respective sample tif data files. For comparability, the FITC signal of hIgG was
converted to a red colour in Image J.

3. Results

The bioavailability in the CNS of intravenously administrated antibodies is limited and N2B
drug delivery is discussed as an attractive alternative, in particular for higher molecular weight
biopharmaceuticals. In this context, the antibody transporter FcRn is implicated in transport and
distribution of IgGs from mucosal surfaces. Thus, the aim of the present study was to evaluate
the presence and the function of FcRn in porcine olfactory mucosa explants and finally the fate of
transported IgGs in the nasal lamina propria. The presence of FcRn could facilitate IgG intracellular
uptake from endosomes and tissue distribution, but FcRn is also associated in mucosal immune defence
and, thus, FcRn interaction with biopharmaceuticals could result in undesired immunogenicity.

The use of appropriate human nasal tissue is ethically challenging and mostly limited to specimens
from nasal surgery, which are predominantly from polyps or lower parts of the nasal turbinates that are
covered with respiratory mucosa only. Therefore, fresh porcine nasal tissue from the roof of the nasal
cavity containing predominantly olfactory mucosa was used here. Comparison of the morphology of
the regio olfactoria from humans and pigs showed a high similarity (Figure 3A), and these findings are
supported by published data [41–43]. The use of porcine tissue as a model to determine the penetration
and distribution of antibodies, both allogenic and xenogenic, i.e., porcine (pIgG) and human IgGs
(hIgG) was investigated in this study.
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3.1. Presence and Localisation of FcRn in the Porcine Regio Olfactoria

The key histological features of the olfactory mucosa include an epithelium with basal cells,
olfactory sensory neurons, and sustentacular cells, as well as axonal bundles and glands with epithelial
openings (Bowman’s glands) in the lamina propria [44]. All these characteristics were found in the
porcine regio olfactoria, especially in the dorsal part of the concha nasalis media (not shown), the dorsal
part of the concha nasalis dorsalis, and the ethmoidal turbinates (Figure 3A–C).
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Figure 3. FcRn in porcine olfactory mucosa. (A–C) Porcine olfactory mucosa shows a similar architecture
as observed in humans [44]. Comparable to human tissue (A); neuronal bundles, Bowman’s glands
and a pseudostratified epithelium are found in the porcine concha nasalis dorsalis (B); and in the porcine
ethmoidal turbinates (C); Scale bar: 200 µm. FcRn expression and immunoreactivity were evaluated in
the regio olfactoria by reverse transcriptase-PCR (RT-PCR) (D) and Western Blot (E). Protein (E) and mRNA
(D) of FcRn were observed in all investigated olfactory regions: Ethmoidal turbinates (regio olfactoria),
concha nasalis ventralis (respiratory region), concha nasalis media (regio olfactoria, not shown), and concha
nasalis dorsalis. PCR fragment sizes: FcRn:635 bp; Beta Actin: 612 bp (loading control). Molecular Weight:
FcRn:40 kDa; higher molecular weight band FcRn: different glycosylation patterns according to [17];
Beta Actin: 42 kDa (loading control). FcRn immunoreactivity was observed throughout the porcine
olfactory mucosa: (F) FcRn is detected in epithelial cells, cells of the basal membrane and in blood
vessels. In epithelial cells, FcRn is observed in vesicles, but apparently also at the apical side; Scale bar:
50 µm. (G): FcRn expression in cavernous bodies and glands in the lamina propria; Scale bar: 50 µm.
(H): vesicular transport of FcRn in the epithelial layer and FcRn expression in lymphoid follicles; Scale
bar: 200 µm; DAPI stained nuclei. BC: basal cells; CB: cavernous body; G: glands; LF: lymphoid follicle;
LP: lamina propria; NB: neuronal bundles; OSN: olfactory sensory neurons; SUS: sustentacular cells.
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In humans, Heidl et al. demonstrated immunoreactivity against FcRn in epithelial cells, basal
cells, gland cells, and endothelial cells of the nasal mucosa [19]. In line with these findings, FcRn
expression was confirmed by RT-PCR and Western Blot in different parts of the porcine regio olfactoria
(concha nasalis dorsalis, concha nasalis media, ethmoidal turbinates) as well as in the porcine respiratory
epithelium (concha nasalis ventralis; Figure 3D,E).

Immunoreactivity against FcRn was observed in the porcine regio olfactoria, in particular in
the epithelial cells, mainly at the apical sides, but also inside their cell bodies. Furthermore,
immunoreactivity was revealed at both, the apical and basolateral sides of cavernous bodies and
at the apical side of gland cells as wells, as at the apical side of endothelial cells forming blood vessels
(Figure 3F–H).

3.2. IgG Uptake and Distribution in Porcine Olfactory Mucosa Explants

The findings of an earlier study suggested the feasibility of porcine tissue for studying
FcRn-mediated transport processes of human antibodies [28]. To investigate this assumption, allogenic
porcine IgGs (pIgG) and xenogenic human monoclonal IgGs (hIgG) were applied to the apical side
of olfactory mucosa in a side-by-side cell setup. The mucosa explants were collected after different
incubation periods, fixed immediately, and processed for the immunofluorescent detection of IgG and
FcRn. The mucosa received nutrients and oxygen via an oxygenated buffer at the basolateral side.
In addition, it was observed by histology during the establishment of the method that even the smallest
damages and injuries resulted in a loss of the epithelial layer. Any disruption of the epithelial layer
during the preparation procedure destroyed its barrier function and resulted in complete penetration
of the lamina propria by the applied IgGs after only 30 min (see Supplementary Figure S1). Therefore,
the presence of an intact epithelial layer was confirmed as a quality control parameter for a successful
experiment. Adjacent or following sections of all processed samples were used for HE staining to
confirm that the epithelium was present and intact during the experiment (epithelial control, Figure 4).

To reduce the background caused by the basal endogenous levels of pIgG, vehicle-treated samples
were processed identically and their detected fluorescence was subtracted from the IgG-treated samples.
Both pIgGs as well as hIgGs penetrated the lamina propria, but with different kinetics and at significantly
different levels. An obvious immunoreactivity against pIgG was observed after 8 h (Figure 4A–C)
while the detected fluorescence indicative for immunoreactivity against hIgG was considerably lower
(Figure 4E–G) after 8 h, but detectable in epithelial and basal cells. These data clearly implicate
species-specific dependency of the transport. Interestingly, hIgG was also observed in cavernous bodies
and blood vessels with a more diffuse pattern. In particular, the selective presence of bevacizumab at
structures formed from endothelial cells may result from binding to its antigen vascular endothelial
growth factor (VEGF). An alignment of human (UniProt ID P15692) and porcine (UniProt ID 49151)
VEGFA revealed a 100% homology in the bevacizumab epitope from amino acid (aa)79 to aa94 [45].
Hence, it can be assumed that the localization of bevacizumab at blood vessels and cavernous bodies
is related to binding of its antigen VEGF, which is secreted from endothelial cells.
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Figure 4. Comparison of uptake and distribution of porcine vs. human IgG through porcine
olfactory mucosa. (A,C) immunoreactivity against porcine IgG (pIgG) after 8 h incubation and (E,G)
immunoreactivity against human IgG (hIgG; bevacizumab biosimilar) after 8 h incubation (intrinsic
porcine IgG signal was subtracted for all data presented). (B,F): nuclei counterstain; (C): Image of pIgG
staining and nuclei overlay after 8 h incubation. (D,H) HE staining of the mucosa explants as quality
control for an intact epithelial barrier. Moreover, round subepithelial structures were observed (*) that
seem to be spared from IgG immunoreactivity. Nuclei are stained with DAPI; Scale bar: 200 µm.

3.3. Fc-Mediated Transport of Allogenic IgGs, but also Potential Fc-Mediated Clearance Pathways

Earlier studies imply pinocytosis as an uptake mechanism of IgGs from the apical epithelial
side, followed from fusion of early pinocytotic endosomes with FcRn-containing acidic endosomes.
FcRn binds to IgGs and directs them to the basolateral side of the epithelium facing the lamina
propria. Some other studies describe apical uptake via FcRn at low pH and transcytosis through
the epithelial cells [24,25]. Regardless of the mechanism involved here, an indication for IgG-FcRn
interactions should be observable by co-localisation studies. Thus, samples of pIgG, hIgG and vehicle
experiments were stained for FcRn and pIgG, hIgG, respectively. The representative data in Figure 5
show co-localisation of FcRn and pIgG after 30 min of incubation, but hardly any co-localisation of
FcRn and hIgG after the same incubation time. A weak co-localisation of hIgG with basal and epithelial
cells was found at later incubation intervals. After 8 h, the above-mentioned diffuse signal was
observed in blood vessels and cavernous bodies of the lamina propia. For pIgGs, clear co-localisation
was found in blood vessels, cavernous bodies, glands, and the epithelial cells, including the basal cells
(Figure 5B,C). Most probably due to fixation at the end of each experiment, the exogenously applied
proteins could not be washed away and were still detectable (Figure 5C,D). Interestingly, only traces
of pIgG were detected at the apical side, implying higher absorption. In contrast, large amounts of
hIgG were apparently not taken up and remained at the apical side (see * in Figure 5D). The potential
FcRn-mediated transport of epithelial and basal cells towards the lamina propria facilitated the apical
uptake of allogenic, and in lesser amounts, xenogenic IgG. However, drainage to blood vessels could
result in distribution to different compartments such as blood, and result in a reduction of the drug
that is transported to the brain. Similarly, uptake of IgG by acinar cells of glands may lead to excretion
of these IgGs with nasal mucus.
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Figure 5. Co-localisation study of immunoreactivity against FcRn and IgG in the porcine regio olfactoria.
(A) pIgG and FcRn localisation in the olfactory mucosa after 30 min of incubation. Co-localisation could
already be detected in basal cells of the epithelial layer. (B) pIgG and FcRn localisation in the olfactory
mucosa after 8 h of incubation. Double staining of FcRn and pIgG revealed co-localisation in glands
(identified according to their morphology with an accumulation of round vessel-like structures), basal
cells and polarized epithelial cells. (C) pIgG and FcRn co-localisation in the epithelial layer after 8 h of
incubation. (D) Co-localisation of FcRn and hIgG (bevacizumab) after 0.5 h of incubation. The hIgG
remains mainly at the apical surface (*). Diffusion through the epithelial layer was not detected after
this incubation time. (E) After 8 h of hIgG incubation, co-localisation of FcRn and hIgG was mainly
found in blood vessels and cavernous bodies, presumably caused by the presence of VEGF -the antigen
of bevacizumab. Thus, in general the hIgG penetration into the tissue was weaker compared to pIgG.
Arrows indicate sites of co-localisation. BC: basal cells; EP: epithelial layer; G: gland; Scale bar: 50 µm.
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3.4. Kinetics of Allogenic IgG Uptake and Distribution into Olfactory Mucosa Lamina Propria

A kinetic study of pIgG uptake in olfactory mucosa showed a time-dependent increase of
IgG-immunoreactivity. While after 30 min only traces of pIgG were detectable within the epithelial cell
layer (Figure 6), 2 h of incubation were sufficient to transport the pIgG to the lamina propria (data not
shown). After 4 h of incubation, a clear strong immunofluorescent signal was detected throughout
the whole lamina propria. This signal was only slightly amplified after 4 additional hours (8 h in total).
As a concentration of 54 µM pIgG was used, it was assumed that all FcRn-dependent transport was
saturated, thereby subsequently limiting the IgG’s transport velocity.

After 4 h and later, an interesting observation was obvious in most samples: large structures were
spared more and more from pIgG immunoreactivity (*, Figure 4A–C; Figure 6). HE stain revealed these
structures to be lymphoid follicles—nasal mucosa immune structures, which are similarly organized
as intestinal Peyer’s patches [33,43,46].

As indicated above, the integrity of the epithelial layer was evaluated for all samples (Figure 6
last column). The result of an experiment with a damaged epithelium is shown in Supplementary
Figure S1. Here, even at the earliest time investigated (30 min of incubation), a complete coverage of
the lamina propria with the apically applied IgGs was observed.
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Figure 6. Time dependent penetration of pIgG through olfactory mucosa (concha nasalis dorsalis).
(A) Basal levels of endogenous pIgG were detected with a low signal at the apical side, in the basal cell
layer, glands, cavernous bodies, and blood vessels. This signal served as a blank and was subtracted
from the photos showing the penetration of exogenous pIgG. (B) After 30 min, only the areas close to
the apical side show immunoreactivity for pIgG, but some signal was detected in the lamina propria.
(C) After 4 h, the pIgGs obviously distributed into the lamina propria. * indicate round structure filled
with cells and mostly spared from IgG (D) After 8 h, pIgG were detected throughout the whole lamina
propria. Nuclei stained with DAPI; epithelial control: quality control for tissue integrity, stained with
HE. Scale bar: 100 µm.
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3.5. The Fate of Allogenic IgG in the Lamina Propria and Potential Drug Routes to the Brain

In N2B drug delivery, the neuronal fibres of the olfactory sensory neurons, but also the trigeminal
nerve endings are of high interest as a potential transport route to the CNS [25]. The neuronal bundles
travel through the cribriform plate to the olfactory bulb. Beneath the basal cell layer, olfactory ensheating
cells enwrap neuronal bundles and are involved in neurogenesis of olfactory sensory neurons [47].
During tissue preparation, these projections have to be carefully disconnected with a blunt scalpel to
excise the mucosa. Therefore, the whole potential route cannot be evaluated in this ex vivo model.
Nevertheless, to elucidate uptake of pIgG either into olfactory axons or among the axons and the
olfactory ensheating cells, double staining of the axonal marker neurofilament 200 (NF200, [48]) with
pIgG and hIgG was performed. Thirty minutes of incubation were sufficient to detect co-localisation
of pIgGs along axonal fibre tracts. It should be noted that even in axonal bundles rather far from the
epithelial layer, immunoreactivity against pIgG was observed. This observation is in accordance with
the rather fast kinetics of intranasally applied drugs that are reported from clinical and in vivo studies
(for summary see [49]). By contrast, co-localisation of hIgGs and NF200 was found only after 8 h,
and here the concerned neuronal bundles were rather close to the epithelial cell layer (Figure 7A–C).
Our data may indicate that an increased uptake into the lamina propria could be associated with an
increased uptake into neuronal bundles. Thus, even if FcRn is apparently not relevant for direct uptake
into neuronal fibres, an indirect connection could be plausible. However, the IgG signal observed was
rather weak, which could indicate a limitation of this neuronal pathway. It should be noted however,
that the immunofluorescent signal was generally weak for pIgG after 30 min, and for hIgG even after
8 h of incubation.
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found in fibres, which are close to the apical site (D) Investigation of pIgG co-localizing with B cells 
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Figure 7. Exogenous IgG distribution in lymphoid follicles and potential interaction with neuronal
fibres and the local immune system in the regio olfactoria. (A) 30 min of pIgG permeation: investigation
of neuronal transport routes. The axonal marker Neurofilament 200 (NF200) was stained in green. pIgGs
are stained in red. Arrowheads indicate pIgGs in close vicinity or co-localizing with neuronal fibres.
pIgG in or along neuronal fibres were observed throughout the whole lamina propria, even in regions
rather far away from the apical side. (B) Close-up of framed region in A. Co-localisation of NF200 and
pIgG; Arrows indicate sites of co-localisation. (C) 8 h after apical hIgG application: co-localisation of
hIgG and NF200 indicating a transport along the neuronal fibres. Note that hIgG was found in fibres,
which are close to the apical site (D) Investigation of pIgG co-localizing with B cells of the lymphoid
follicle after 8 h of incubation. B lymphocytes (antigen CD20) are stained in green. pIgGs are stained in
red. (E) Lymphoid follicle in the lamina propria of the olfactory mucosa. Left: pIgG after 8 h of incubation
(red), T lymphocytes (green), nuclei (DAPI, blue). LF: lymphoid follicle; Scale bar: 100 µm.
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As described above, structures which apparently were lymphoid follicles were time-dependently
spared from allogenic IgG signal. Brandtzaeg et al. described lymphoid follicles in the mucosa of
the gut, the lung and the nose, consisting amongst others of B and T lymphocytes [50]. To verify
that such structures were lymphoid follicles, a double staining of pIgG with either CD20 (to detect
B cells, Figure 7D) or CD3 (to detect T cells, Figure 7E) was performed. In contrast to the latter
study, CD20 immunoreactivity was mainly located at borders of the lymphoid follicles. For CD14
(monocytes/macrophages) the location was similar as for CD20 (data not shown). As the borders of the
lymphoid follicles were not spared from pIgG signal, a strong co-localisation was observed (Figure 7D).
It should be noted that the goat-anti-swine IgG secondary antibody used throughout this study does
not show cross-reactivity or unspecific binding to the B cell receptor. Therefore, co-localisation of
pIgG and B cells is unlikely to be caused by staining of B cells via CD20 and Fc domains of their B cell
receptors. T cells were found inside the follicles; thus, no co-localisation was evident. Earlier reports
suggested an endocytic uptake of IgG from dendritic cells and macrophages. Infiltrated IgGs from
the mucosa may bind important antigens from the apical nasal cavity. The IgGs are proteolytically
digested, including the antigen, which is subsequently presented on the cell surface to the cellular
immune system. Preliminary data showed that macrophages could be detected in relatively high
amounts in the subepithelial dome underneath the basal cell layer, as well as occasionally inside the
follicles (data not shown). Like other antigen-presenting cells, macrophages could have engulfed and
digested the pIgGs, so that they were not detectable anymore. The above described effects were not
observed for xenogenic hIgG. Based on these results, an interaction of the mucosal immune system
with the externally applied pIgGs could be concluded.

4. Discussion

N2B drug delivery is of increasing interest since it was demonstrated that tracers like wheat-germ
agglutinin-HRP conjugates could be found in the axonal projections of olfactory sensory neurons and
in the olfactory bulb [36]. As clinical studies with intranasally delivered CNS-active peptides and
small proteins are ongoing, the delivery of larger proteins via the nasal pathway as an alternative to
bypass the BBB becomes more and more attractive [13,51–53].

Recently, it was shown in human nasal tissue that the IgG specific transporter FcRn is expressed
in the respiratory regions of the nose [19]. Here, we demonstrated that FcRn is also widely expressed
in the porcine nasal mucosa, which makes the pig an interesting model for receptor-mediated uptake
and transport of IgGs. We found FcRn expression in all regions of the porcine nasal mucosa, also in
the regio olfactoria. The regio olfactoria is the region of interest with regard to N2B drug delivery, as the
epithelium is widely spanned with olfactory sensory neurons that are projecting into the brain, but it
is also innervated by the trigeminal branches that connect to the brain stem [33]. We demonstrated
that in epithelial cells of the olfactory epithelium, the FcRn is strongly expressed on the apical
side, whereas in blood vessels and glands a weaker basolateral expression was found. We could
additionally demonstrate intracellular localisation of FcRn in the epithelial layer that hint to a possible
FcRn-mediated transport mechanism. Such FcRn-mediated transcytosis has hitherto mostly been
analysed in other mucosa sites in the body such as lung and gut [18,23,54,55].

The results of the IgG transport and distribution studies, double staining of IgG and FcRn together
with the mentioned literature data, give strong indications for an involvement of FcRn in IgG transport
through the olfactory mucosa. However, a direct FcRn-IgG interaction cannot be concluded from
our co-localisation data. Further experiments using FcRn knock-out or similar models are needed to
confirm the involvement of FcRn in this process. Nevertheless, our results indicate a species-preference
of IgG transport mechanisms, since our data show significant differences in uptake kinetics of allogenic
porcine IgGs vs. xenogenic human IgG. An alignment of human (UniProt ID P01860) and porcine
(UniProt ID L8AXL3) immunoglobulin heavy constant chains and, in particular, the CH3 domain
hosting the binding site of FcRn revealed identities of less than 50%. This is supported by Ober
et al. which showed species-specific preferences by the human FcRn in vitro [28]. Their kinetic
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data suggested a very low affinity of human FcRn to murine IgGs, but a higher affinity to rabbit
IgG. In contrast, Stirling et al. showed in vitro that hIgG yields a higher porcine FcRn-mediated
uptake [17]. These results are further supported by kinetic investigations of the rabbit FcRn that
showed binding to human IgG with higher affinity than rabbit IgG in surface plasmon resonance
experiments [56]. Similarly, it was reported that the serum half-life of human IgGs administered to
mice is significantly lower than the half-life of murine antibodies. Ober et al. (2001) showed that
the recycling mechanism of FcRn was not functional with xenogenic IgGs [28]. Our data support the
hypothesis of species-dependent IgG transport, as we did not observe significant hIgG levels in the
lamina propria after 8 h of permeation. There are studies showing efficient FcRn-mediated transport of
xenogenic IgGs in cell culture models that may not reflect the same conditions as under ex vivo and
in vivo conditions [17,56]. However, we cannot exclude that other transport mechanisms than FcRn
are responsible for our observations. For example, Ishikawa et al. found evidences that Fc gamma
receptor IIb is involved in IgG transcytosis in the placental endothelium [57]. Other Fc receptors are
mainly known for effector function in immune surveillance and response [58–61].

Further on, we cannot rule out the influence of the apical pH on the antibodies directly in the
tissue. As it is described to be a sour environment at the apical surface aggregation of the hIgG is
possible [62,63]. As we used the natural mucus layer located on the tissue explant, we do not know
the pH exactly. Another possibility would be to wash the specimen and to use artificial mucus with
a defined pH as described by Rinaldi et al. [63].

In this study, we were also interested in the involvement of neuronal fibres in N2B transport.
Our results show co-localisation of neuronal fibres and pIgG after only 30 min, even in the deeper lamina
propria. In contrast to allogenic pIgG, co-localisation of xenogenic hIgG with NF200 was only detectable
after 8 h, and only close to the basal cell layer. As we did not find significant levels of hIgG in general
in the lamina propria, this finding might be due to the concentrations used, and could be investigated in
future experiments with higher concentrations for bevacizumab. But according to the most common
hypothesis, intranasal applied drugs are taken up by apical dendrites of olfactory neurons and are
transported inside or along the axons to the brain [21,64]. This mechanism was discussed as unspecific,
and a species-dependency has not been described before. Therefore, the observation that xenogenic
IgG was rarely found in or along neuronal bundles was rather unexpected. However, the olfactory
ensheathing cells surrounding the neuronal fibres can be detected in the basal cell layer and in the
lamina propria [21]. Thus, the olfactory axons are unshielded from the epithelial layer down to the
basal cell layer and an uptake of molecules into the unwrapped fibre tracts starting from the basal
cell layer could explain these observations (Figure 8). Finally, it can be speculated that endocytosis
and allogenic FcRn-mediated transcytosis facilitate the uptake over the epithelial layer, leading to an
increased absorption in neuronal bundles at the stage of the basal cells.

In general, barriers like the BBB and the blood nerve barrier protect neuronal tissues from entry of
antibodies, T cells, and toxic components of the blood [65]. Previous studies revealed that the perineural
route is faster than intracellular axonal transport [25]. FcRn was found to be expressed in peripheral
nerves, and was further described as a transporter at the blood nerve barrier [66,67]. An uptake of IgG
into neuronal bundles would indeed be surprising, as in the BBB, the FcRn is known to act as an efflux
transporter, but we cannot exclude this possibility [68,69]. Another explanation may be that the uptake
of IgGs into neurons occurs at the basolateral side of the epithelial cell layer or in the lamina propria
and not by apical dendrites of the olfactory sensory neurons. Thus, the FcRn-mediated transport
of allogenic IgG at the epithelial barrier could explain our observations as we demonstrated poor
uptake of hIgG into the epithelial layer. In upcoming in vivo experiments, it will be of interest whether
allogenic IgG can be transported into the olfactory bulb as shown for other proteins. Furthermore,
the fate of the hIgG in the lamina propria remains to be elucidated. We observed predominantly that
hIgG was co-localised with endothelial cells of cavernous bodies and blood vessels, but also in glands,
although no general tissue distribution was observed in the lamina propria.
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Figure 8. Hypotheses based on our study results: We presented evidences implying an FcRn-mediated
transport in the porcine regio olfactoria and we have observed three different destinations of the absorbed
IgGs: uptake into or along neuronal fibres (final destination: central nervous system (CNS)), uptake into
blood vessels or in glands (final destination: blood and mucus), or potential degradation in lymphoid
follicles (final destination: presented as antigen with a potential to cause immunogenicity). In this
sketch, the uptake into blood vessels was neglected as compared to the respiratory mucosa, as the
olfactory mucosa harbours only small and rare blood vessels. In upcoming studies, the potential of
Fc-bearing molecules such as IgGs and Fc fusion proteins to target lymphoid follicles will be determined.
In parallel, the levels of Fc-deleted proteins such as scFv or domain antibodies that reach the brain
will be studied. The aim is to resolve if those pathways can be targeted separately or if intranasal N2B
delivery will always be a mixture of CNS, blood, and immune system targeting. CSF: cerebrospinal
fluid; Fc: Fc domain; FcRn: neonatal Fc receptor; NB: neuronal bundle; OSN: olfactory sensory neuron.

During the IgG distribution experiments, we found circular structures in the lamina propria that
were almost completely spared from permeating IgG. As their morphology resembles Peyer’s patches
in the gut, we started to investigate the local immune system in the regio olfactoria. The architecture
of Peyer’s Patches in the intestine is separated into three main domains: the follicular area,
the interfollicular area, and the follicle-associated epithelium [70]. Around the follicle B cells, T cells,
macrophages, and dendritic cells are located in the subepithelial dome [71]. Debertin et al. found
lymphoid follicles morphologically similar to Peyer’s patches in the nasal cavity of infants [34]. Similar
to our findings, they discovered that lymphoid follicles are mainly located in the upper nasal cavity.
Thus, morphologically the lymphoid follicles show the same features in young children and pigs.
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In summary, little is known about the development and the exact function of the immune system
in the upper part of the nose in mammals. Concerning the distribution of immune cells in the local
lymphoid follicles, we found partially CD3+ cells in the germinal centre of the lymphoid follicle
whereas in the subepithelial dome CD3+, CD20+, and CD14+ (data not shown) cells were located in
high amounts. These findings are in accordance with Peyer’s patches in men and sheep [46,72–75].
Our data are somewhat in conflict with data of Brandtzaeg et al. who found mainly CD20+ cells
inside and CD3+ cells outside the lymphoid follicles in human Peyer’s patches. The exact cellular
composition is up to now a controversial topic. Studies show an age-related change in B- and T-cell
localisation in and around lymphoid follicles [74,75].

In our uptake and distribution experiments we observed very few antibodies inside the lymphoid
follicles whereas the pIgGs were concentrated in the subepithelial dome. In double staining, we saw
co-localisation of CD20+ and pIgGs that hints to a molecular interaction. Akilesh et al. observed FcRn
expression on B cells, which further strengthens our results of an interaction between permeated pIgGs
with CD20+ cells [76]. Our results show no co-localisation of CD3+ cells and pIgGs. Baker et al. showed
that cross-presentation of IgG immune complexes by dendritic cells is mediated by FcRn and controls
cross-priming of CD8+ T cells in mice [77]. It is commonly known that diverse types of dendritic
cells reside in the lymphoid follicle, the subepithelial dome and the surrounding epithelium in the
intestine [71,72]. It is likely that the nasal lymphoid follicles show a similar distribution of dendritic
cells. Double staining with CD20 and CD3 specific antibodies did not completely reveal the cellular
composition in the lymphoid follicles, as most of the follicle was still unstained. Dendritic cells could
be one cell type to fill the gaps.

Referring to N2B drug delivery, again the risk of undesired immunogenicity could be significant,
especially when FcRn mediated processes like IgG transport are involved. Certainly, there are several
links between FcRn and immune response in mucosal sites. For example, the ability of FcRn to direct
antigens to inductive sites of the mucosal immune system was demonstrated to play an important
role in immune surveillance [78]. It was further observed that bidirectional IgG transport retrieved
luminal antigens into the mucosa, where they can be captured by dendritic cells for CD4+ T cell
presentation [79]. An FcRn-targeted mucosal delivery of a herpes simplex virus type-2 glycoprotein
fused to an Fcγ domain resulted in an effective memory immune response in mice [80].

A huge challenge and problem in investigating the clinical potential of intranasal N2B delivery of
biopharmaceuticals is the choice of model organisms. Species-specific effects can be only overcome by
using allogenic/surrogate proteins of the respective model species, and using the clinical candidates
are of limited value. Furthermore, to elucidate potential risks of immune interactions, the differences
in the organisation and morphology of nasal immune systems between species is of great importance.
Rodents lack the typical nasopharynx- and nose-associated lymphoid tissue (NALT) described in
human, sheep or other farm animals, but they possess locally organized lymphoid tissue at the bottom
of their nasal passages [81].

Transmucosal permeation was used in several studies as a model to predict bioavailability as is
well established for intestinal cellular models such as Caco-2 [82]. Also, permeation was presented
in studies focusing on N2B delivery [38,40,83]. However, the data presented here raise the question
about the suitability of using permeation experiments to extrapolate or conclude from these data the
clinical feasibility of N2B drug delivery. Most in vitro models for permeation consist of epithelial
carcinoma cells, but only some express functional FcRn [84]. The use of primary cultures seems to
overcome this lack of FcRn, but here the neuronal bundles and axons as well as lymphoid structures
are still missing [19,85]. As we presented in this work for olfactory mucosa, absorbed IgGs were
drained either by neuronal bundles, by blood or lymphatic vessels, or by lymphoid follicles. Hence,
a permeation through an in vitro model is limited in comparison with in vivo models concerning
multifactorial drug pathways in vivo. Remarkably, the use of ex vivo tissue combined with histological
techniques, appears to be rather close to in vivo models, but lacking of course, blood circulation and
intact axonal projections. Consequently, the ex vivo nasal mucosa model complemented our test and
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screening battery consisting of an in vitro cellular model (RPMI 2650; [83]) and a refined intranasal
administration technique in mice as in vivo model [86].

5. Conclusions

The present study demonstrated that functional FcRn expression in the olfactory mucosa seems
to be both friend and foe for intranasal drug delivery. Our results indicate transport of allogenic IgGs
across the epithelial barrier and along neuronal bundles of the olfactory sensory neurons. Whether
this transport actually results in increased concentration of IgGs in the olfactory bulb and other brain
regions needs to be explored in future in vivo studies.

On the other hand, our data indicate an interaction of the applied pIgGs with the local immune
system, possibly a first step in a cascade causing immunogenicity against the applied drug. In further
studies we will investigate the fate of proteins with and without the Fc domain when applied
intranasally (see Figure 8). Probably, the immunogenicity of vaccines can be improved by fusion
to Fc, while Fc-deleted antibody fragments with a lower molecular weight are better suited to reach the
brain via axonal projections. In conclusion, profound investigations of transport pathways are required
to develop valid pharmacokinetic models for a predictive clinical translation, but the intra-mucosal
activities of drugs should not be neglected.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/10/3/107/s1,
Figure S1: Influence of damaged epithelial layer on the experimental readout.
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