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Abstract: In the present study, the screening of Mirabegron (MBR) co-amorphous was performed
to produce water-soluble and thermodynamically stable MBR co-amorphous with the purpose of
overcoming the water solubility problem of MBR. MBR is Biopharmaceutics Classification System
(BCS) class II drug used for the treatment of an overreactive bladder. The co-amorphous screening was
carried out by means of the vacuum evaporation crystallization technique in methanol solvent using
three water-soluble carboxylic acids, characterized by a pKa difference greater than 3 with MBR such
as fumaric acid (FA), L-pyroglutamic acid (PG), and citric acid (CA). Powder X-ray diffraction (PXRD)
results suggested that all solid materials produced at MBR-FA (1 equivalent (eq.)/1 equivalent
(eq.)), MBR-PG (1 eq./1 eq.), and MBR-CA (1 eq./1 eq.) conditions were amorphous state solid
materials. Furthermore, by means of solution-state nuclear magnetic resonance (NMR) (1H, 13C, and
2D) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, we could
assess that MBR and carboxylic acid molecules were linked via ionic interactions to produce MBR
co-amorphous. Besides, solid-state cross polarization (CP)/magic angle spinning (MAS) 13C-NMR
analysis was conducted for additional assessment of MBR co-amorphous. Afterwards, dissolution
tests of MBR co-amorphouses, MBR crystalline solid, and MBR amorphous were carried out for
12 h to evaluate and to compare their solubilities, dissolution rates, and phase transformation
phenomenon. Here, the results suggested that MBR co-amorphouses displayed more than 57-fold
higher aqueous solubility compared to MBR crystalline solid, and PXRD monitoring result suggested
that MBR co-amorphouses were able to maintain their amorphous state for more than 12 h. The
same results revealed that MBR amorphous exhibited increased solubility of approximatively 6.7-fold
higher compared to MBR crystalline solid. However, the PXRD monitoring result suggested that
MBR amorphous undergo rapid phase transformation to crystalline form in just 35 min and that
within an hour all MBR amorphous are completely converted to crystalline solid. Accordingly, the
increase in MBR co-amorphous’ solubility was attributed to the presence of ionic interactions in MBR
co-amorphous molecules. Moreover, from the differential scanning calorimetry (DSC) monitoring
results, we predicted that the high glass transition temperature (Tg) of MBR co-amorphous compared
to MBR amorphous was the main factor influencing the phase stability of MBR co-amorphous.
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1. Introduction

Solid-state drug substances can be classified either as crystalline solid or as amorphous solid.
Amorphous solid refers to solid materials characterized by short-range order (intermolecular
interactions) but devoid of long-range order (molecular packing) particularity of crystalline solids.
Amorphous solids possess higher thermodynamic energy than crystalline solids owing to the exhibition
of great solubility and high dissolution rate [1,2]. Accordingly, various studies have suggested the
preparation of crystalline drugs into amorphous materials with the purpose of improving the water
solubility of the drugs. Nevertheless, due to their weak thermodynamic stability, amorphous solids
rapidly convert to less soluble crystalline solids [1–3].

As one solution to increase the stability of amorphous solids to increase water solubility, polymers
have been employed during amorphous drugs formulation to prevent their conversion to crystalline
solids and, consequently, to maintain their amorphous state. This can be also called polymer-based
amorphous solid-dispersions (ASD). The combination of ASD with polymer is assumed to elevate the
glass transition temperature (Tg) of the amorphous drug, which thereby prevents the drug‘s phase
transformation and subsequently promotes the drug’s amorphous state stability [4–7]. However,
barriers to improving the solubility of ASD drugs exist due to the characteristics of ASD enclosing
which stabilizes the amorphous drug [8,9]. Besides, limitations including the decrease of amorphous
solids’ Tg values and consequently the promotion of their phase transformation to crystalline form
have been associated with hygroscopic properties of the polymers [10]. Thus, investigation of new
alternatives to polymers, capable of promoting the thermodynamic stabilities of amorphous state
drugs, is strongly needed.

Co-amorphous designates two or more low weight molecules interacting to form homogenous
amorphous single-phase system. Co-amorphous solids are assumed to improve the drug’s dissolution
rate due to their ability to stabilize the drug’s amorphous state. These co-amorphous solids possess
high Tg values, which are presumed to promote their thermodynamic stability and to prevent
their recrystallization process to crystalline solids during the drug formulation [11–14]. Also,
co-amorphous solids have unique properties such as high aqueous solubility and dissolution rate,
and improved thermodynamic stability because they are characterized by short-range order [14].
Co-amorphous solids can be formed via ionic interactions [15,16], hydrogen bonding [17–19], and π–π
interactions [20,21] between two or more low molecular components.

Mirabegron (MBR, Figure 1a) is an active pharmaceutical ingredient (API) used for the treatment
of an overactive bladder and belongs to beta-3 adrenergic receptor agonist class. Developed by
Astellas pharma, MBR is marketed under the brand name Betmiga® [22–24]. MBR exists under its
crystalline form and has been classified as BCS class II compound. Because of its poor aqueous
solubility, 0.082 mg/mL, MBR displays a low bioavailability of approximatively 29% [25]. Hence, to
improve MBR solubility and bioavailability, water-soluble polymer, namely polyethylene glycol (PEG)
8000, has been employed during MBR drugs formulation [26]. However, PEG has been reported to
damage the mucous membranes. Thus, with the purpose of restraining the use of PGE 8000, several
studies have focused on improving the aqueous solubility of MBR though the preparation of MBR’s
salt form [27,28], solvate [28,29], and ASD [25]. However, solubility and dissolution data related to
MRB solids are assumed insignificant.

In the present study, the screening of MBR co-amorphous was carried out using vacuum
evaporation crystallization techniques to enhance the MBR aqueous solubility with the purpose
of overcoming the drawbacks of MBR and restraining the use of PEG 8000 during the drug formulation.
Here, three water-soluble carboxylic acids (fumaric acid (FA, Figure 1b), L-pyroglutamic acid (PG,
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Figure 1c), and citric acid (CA, Figure 1d) whose pKa difference with MBR is greater than 3 were
employed for co-amorphous formation.
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Figure 1. Chemical structures and carbon numbering for: (a) Mirabegron; (b) fumaric acid (FA);
(c) L-Pyroglutamic acid (PG); (d) citric acid (CA).

This study aimed to report the intermolecular interactions occurring within MBR co-amorphouses
(MBR-FA, MBR-PG, and MBR-CA) and to predict the interactions via solution-state nuclear magnetic
resonance (NMR) (1H, 13C, and 2D) spectroscopy and attenuated total reflection Fourier transform
infrared (ATR-FTIR) measurements. We also aimed to report comparative data regarding the
solubilities, dissolution rates and phase transformation phenomena of MBR co-amorphouses, MBR
crystalline, and MBR amorphous.

2. Materials and Methods

2.1. Materials

Mirabegron crystalline solid (purity 99.5%) was provided by Sungwun Pharmacopia Co., Ltd.,
(Seoul, Korea), APIs manufacturing company. Carboxylic acids including fumaric acid, L-pyroglutamic
acid, and citric acid were purchased from Sigma-Aldrich (Darmstadt, Germany). Methanol was
purchased form DaeJung Chem. Co., Ltd. (Siheung, Korea).

2.2. Mirabegron (MBR) Co-Amorphous Screening Using Vacuum Evaporation Crystallization

MBR has been reported to exhibit a poor solubility in organic solvents. Thus, a solubility test for
MBR crystalline solid (50 mg) was conducted in distinct solvents such as methanol, ethanol, isopropyl
alcohol, n-hexane, dichloromethane, and acetone (2 mL) to select a promising solvent. Methanol
was selected as a result of this study because of its good ability to dissolve MBR crystalline solid.
Afterwards, 20 g of MBR crystalline solid were measured and placed in each of the three 500 mL flasks.
Then 1 equivalent (eq.) of carboxylic acids (FA: 5.9 g, PG: 6.5 g, CA: 9.7 g) (Figure 1b–d) were placed in
each flask separately and dissolved with 300 mL methanol each. Vacuum evaporation crystallization
technique was conducted on rotary evaporator (N-1300EVS Series, Eyela, Tokyo, Japan) (water base
temperature, 50 ◦C and rotational speed, 200 rpm) to induce spontaneous formation of solid materials.
Formed solid materials were dried at 25 ◦C for 8 h to produce MBR co-amorphouses.

2.3. Powder X-ray Diffraction (PXRD)

Powder X-ray diffraction (PXRD) analyses of MBR co-amorphouses were performed on Powder
X-ray diffractometer (Bruker, D8 Advance, Billerica, MA, USA) using Cu Ka radiations. The voltage
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was 45 kV and the current was 40 mA. The divergence and scattering slits were set as 1◦, while the
receiving slit was 0.2 mm. Experiments were performed at a scan rate of 3◦/min (0.4 s/0.02◦) and 2θ
scan ranged from 5◦ to 35◦.

2.4. Solution-State Nuclear Magnetic Resonance (Solution-State NMR) Spectroscopy

1D (1H, 13C) and 2D (COSY, HMQC, and HMBC) analyses for MBR co-amorphouses (MBR-FA,
MBR-PG, and MBR-CA), MBR crystalline solid, and carboxylic acids were performed on an 800 MHz
high-resolution NMR Sspectrometer (Avance, Bruker, Billerica, MA, USA). DMSO-d6 was the solvent.

2.5. Solid-State Nuclear Magnetic Resonance (Solid-State CP/MAS 13C-NMR) Spectroscopy

The solid-state CP/MAS 13C-NMR measurements for MBR co-amorphouses (MBR-FA, MBR-PG,
and MBR-CA), MBR crystalline solid, and carboxylic acids were recorded on 500 MHz solid-state NMR
(Avance II, Bruker, Billerica, MA, USA) equipped with cross polarization (CP)/magic angle spinning
(MAS) sequence pulse. Experimental condition was as follows: spinning, 5 KHz; pulse delay, 10 s;
contact time, 2 min; analysis time, 24 h.

2.6. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)

ATR-FTIR spectroscopic analyses for MBR co-amorphouses (MBR-FA, MBR-PG, and MBR-CA),
MBR crystalline solid, and carboxylic acids were carried out on an ATR-FTIR (PerkinElmer
Spectrum 100 FT-IR) spectrometer equipped with a PerkinElmer Universal ATR Sampling Accessory
(Massachusetts, Boston, MA, USA). The spectral range was set from 4000 to 650 cm−1 whereas the
number of scans was 150.

2.7. Differential Scanning Calorimetry (DSC)

The thermal analyses of MBR co-amorphouses (MBR-FA, MBR-PG, and MBR-CA) and MBR
amorphous were achieved on differential scanning calorimetry (DSC) equipment Q20 (TA Instruments,
Philadelphia, PA, USA) instrument. The temperature ranged from 30 ◦C to 200 ◦C and the heating rate
was set at 10 ◦C/min. The DSC measurements were conducted in nitrogen atmosphere using closed
sample pans (Tzero pan and Lid, TA Instruments, Philadelphia, PA, USA). The DSC measurements
were conducted in duplicate.

2.8. Dissolution Test of MBR Co-Amorphous

MBR co-amorphouses (MBR-FA, MBR-PG, MBR-CA), MBR crystalline and MBR amorphous
powder materials were sieved (50 mesh) prior to the dissolution analysis for producing sample
materials with uniform particle size. MBR amorphous samples of various concentrations including
10 µg/mL, 20 µg/mL, 30 µg/mL, 40 µg/mL, 50 µg/mL, 60 µg/mL and 70 µg/mL were prepared
and calibrated via high-performance liquid chromatography (HPLC). The result shows an acceptable
linearity of calibration with an R2 = 0.992. Afterwards, the dissolution rate investigations were
conducted using an Agilent 708-DS Dissolution Apparatus (Santa Clara, CA, USA) at 37 ◦C. Sample
materials for MBR co-amorphouses, MBR crystalline and MBR amosrphous were added separately
(until precipitates were observed) in dissolution vessels containing 900 mL of water and then the
mixtures were stirred at 100 rpm for 12 h. Later, 2 mL of each sample were withdrawn from each flask
at 0 min, 10 min, 20 min, 25 min, 30 min, 35 min, 40 min, 50 min, 1 h, 2 h, 4 h, 6h, 8 h, 10 h and 12 h
time intervals. Withdrawn supernatants were subsequently replaced with water of identical volume to
maintain the dissolution condition. The collected supernatants were then diluted with MeOH and
analyzed by HPLC (Agilent 1260, Santa Clara, CA, USA) to determine the concentrations. The HPLC
analyses were performed using C18 column (4.6 × 150 mm, 5 µm, Kromasil®, Bohus, Sweden) and the
mobile phase was A = 10 mM K2HPO3 water: methanol = 90:10 (v/v)/B = Acetonitrile:Methanol =
60:40 (v/v). The gradient elution condition of the mobile phase was: 0–8 min, 20–40% B; 8–15 min,
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40–70% B; 15–20 min, 70% B; 20–25 min, 70–80% B; 25–30 min, 80% B. The flow rate was set as
1 mL/min, the UV detection wavelength as 250 nm, the injection volume as 5 µL and the run time
as 30 min. The stationary phase temperature was kept at 30 ◦C. Furthermore, solid materials for
MBR amorphous and MBR co-amorphouses of approximatively 30 mg were collected from the vessels
bottom from 30 min of dissolution test for MBR amorphous and from 2 h of dissolution test for MBR
co-amorphouses. The samples were thoroughly vacuum filtered (without further drying process) and
were then analyzed by PXRD for monitoring their phase transformations.

3. Results and Discussion

3.1. Mirabegron Co-Amorphous Screening and Intermolecular Interactions

The screening of MBR co-amorphous was conducted using three carboxylic acids (FA, PG, and
CA). These carboxylic acids were selected in regard with their water solubilities and on the basis of
their pKa difference with MBR (pKa difference exceeding 3 (Table 1)).

Table 1. pKa values of carboxylic acids employed for the screening of Mirabegron (MBR) co-amorphous
(MBR pKa 8).

Carboxylic Acid pKa (Ref [30])

Fumaric acid (FA) (Figure 1b) (1) 3.03, (2) 4.38
L-Pyroglutamic acid (PG) (Figure 1c) 3.32

Citric acid (CA) (Figure 1d) (1) 3.13, (2) 4.76, (3) 6.40

One equivalent (eq.) of each carboxylic acid and MBR were separately dissolved in methanol
which was selected from the solubility test and then mixed and crystallized by employing the vacuum
evaporation crystallization technique. Afterwards, PXRD measurements were conducted to evaluate
whether solid materials obtained were amorphous state solids. As a result, it was assessed that all
MBR-FA, MBR-PG, and MBR-CA solids materials obtained in this study were amorphous state solids
(Figure 2).
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Figure 2. Powder X-ray diffraction (PXRD) patterns for MBR co-amorphouses (MBR-FA, MBR-PG, and
MBR-CA), MBR amorphous and MBR crystalline.
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Solution-state NMR and FTIR spectroscopy are common analytical techniques employed to assess
intermolecular interactions within solid materials with short-range order such as co-amorphous [15–19].
Figure 3 illustrates the solution-state 1H-NMR spectrum analysis result of MBR-FA co-amorphous solid.
The analysis was performed for investigating the intermolecular interaction of MBR-FA co-amorphous.
From the results, it can be observed that proton shifts of H atom related to C12, C13, C14, and C15
(Figure 1a) downfield movement in MBR-FA spectrum compared to MBR spectrum. Moreover, peaks
related to the FA molecule were observed to shift upfield in MBR-FA spectrum than in FA spectrum.
These results are attributed to the decrease of C12, C13, C14, and C15 electron distribution resulting
from the protonation of MBR’s N3 group (Figure 1a) and the increase of FA’s H electron distribution
resulting from the deprotonation of the carboxylic acid group of FA during the formation process of
MBR-FA co-amorphous (Figure 3). Besides, the solution-state 13C-NMR spectra displays similarity
with the solution-state 1H-NMR spectra in Figure 3 in terms of characteristic peaks’ chemical shift in
Figure S1. Accordingly, it was confirmed that MBR and FA molecules are linked via ionic interactions
to form MBR-FA co-amorphous.
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Figure 3. Solution-state nuclear magnetic resonance (1H-NMR) spectra for MBR-FA co-amorphous,
MBR crystalline solid, and FA (numbers on peaks relate to numbers in Figure 1a structure and peak
location) (DMSO-d6).

Yamamura et al. [15] suggested that during co-amorphous formation, carboxylic acid undergoes
deprotonation and converts to carboxylate ion. In this case, the C=O absorption peak of carboxylic
acid is observed to shift from 1650 cm−1 to 1580 cm−1. In the ATR FTIR spectra illustrated in the
Figure 4, it can be observed that the C=O absorption peak of single FA appeared at 1658 cm−1 whereas
the peak assumed as C=O absorption peak of FA in MBR-FA molecule appeared at 1542 cm−1. The
present FTIR spectra display tight similarity with the FT-IR spectra suggested by Yamamura et al. [15].
From the spectral analysis of FTIR results in Figure 4, we could confirm that FA carboxylic acid was
deprotonated to form carboxylate ion during co-amorphous formation. Therefore, it was predicted
that MBR and FA molecules interact via ionic interaction to produce MBR-FA co-amorphous.
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MBR-PG and MBR-CA co-amorphouses solution-state NMR spectra display similar chemical
shifts with Figure 3 and Figure S1 spectra for C12, C13, C14, and C15’s H peaks (Figure 1a) and
carboxylic acids’ H peaks. Thus, it was assumed that both MBR-PG and MBR-CA co-amorphouses
were formed through the ionic interactions between MBR and carboxylic acids, which result from the
protonation of MBR’s N3 group (Figure 1a) and the deprotonation of carboxylic acid group. Moreover,
as can be seen in MBR-PG and MBR-CA co-amorphouses FTIR spectra, it can be noticed that the C=O
absorption peak of PG in the single PG molecule appeared at 1636 cm−1 while the peak assumed as
C=O absorption peak of PG in MBR-PG co-amorphous appeared at 1539 cm−1. In the same FTIR
data, it can be observed that the C=O absorption peak of CA in the single CA molecule appeared
at 1645 cm−1 whereas the peak assumed as C=O absorption peak of CA in MBR-CA co-amorphous
molecule appeared at 1544 cm−1. These FTIR data revealed similar patterns with FTIR spectra
suggested by Yamamura et al. [15]. Like FTIR data result in Figure 4, it was predicted that both PG
and CA carboxylic acids undergo deprotonation and thereby convert to carboxylate anions during the
formation of co-amorphouses (Figures S2–S7). These results suggested that all MBR co-amorphouses
obtained in this study were produced via ionic interaction between MBR and carboxylic acids to form
short-range order materials namely amorphous state solids. The solution-state 1H- and 13C-NMR
spectra of MBR co-amorphouses were interpreted and assessed via the solution-state 2D NMR (1H-1H
COSY, 1H-13C HSQC, and 1H-13C HMBC) analysis results (Figures S8–S19). Moreover, the integrated
solution-state 1H-NMR spectra of co-amorphouses demonstrated that MBR and carboxylic acids
interact in 1:1 ratio to produce MBR-FA, MBR-PG, and MBR-CA co-amorphouses (Figures S20–S22).

Amorphous materials are characterized by the presence of broad and fused peaks without splitting
their solid-state CP/MAS 13C-NMR spectra when compared to crystalline materials [31,32]. Figure 5
illustrates the comparison of solid-state CP/MAS 13C-NMR spectra of MBR co-amorphouses (MBR-FA,
MBR-PG, and MBR-CA) and MBR crystalline. In Figure 5, all the MBR co-amorphouses are clearly
distinctive when taking the difference in their spectral peaks into an account. When compared to the
spectrum of MBR crystalline, the co-amorphous solids possess broad and fused peaks in their spectra.
From the interpretation of solid-state CP/MAS 13C-NMR spectra in Figure 5, MBR-FA, MBR-PG, and
MBR-CA co-amorphouses were assessed to be amorphous state materials. However, the presence of
broader and fused co-amorphous peaks hinder the further and detailed spectral interpretation of MBR
co-amorphouses (Figure 5). A comparative evaluation of solid-state CP/MAS 13C-NMR spectra of
MBR co-amorphouses with single MBR and carboxylic acids was conducted to deduce and confirm a
clear difference among peaks of MBR-FA, MBR-PG, and MBR-CA co-amorphouses (Figures S23–S25).
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Figure 5. Solid-state CP/MAS 13C-NMR spectra of MBR co-amorphouses (MBR-FA, MBR-PG, and
MBR-CA), MBR amorphous and MBR crystalline solid.

3.2. Dissolution Test for MBR Co-Amorphous and Investigation of Their Phase Transformation to
Crystalline Solid

Powdered MBR-FA, MBR-PG and MBR-CA co-amorphouses, MBR crystalline and MBR
amorphous (50 mesh) were analyzed for evaluating their solubilities as well as their dissolution rates.
For dissolution rate investigations, all sample materials were individually transferred in a dissolution
tester containing 900 mL water at 37 ◦C. Sample materials were added until precipitates were observed
and then the mixtures were stirred at 100 rpm for 12 h. Afterwards, 2 mL of supernatants as well
as approximatively 30 mg of solid materials of each sample were withdrawn from each dissolution
vessel at different sample time intervals. Water of identical volume with withdrawn supernatants was
subsequently added to each dissolution vessel to maintain the dissolution condition. The withdrawn
supernatants were analyzed via HPLC to determine the concentrations (Figures S26–S28) whereas the
solid materials were monitored via PXRD to investigate the occurrence of the phase transformation
during the dissolution process. In Figures 6 and 7 are depicted the dissolution profiles and PXRD
phase transformation monitoring results for MBR co-amorphouses, MBR crystalline solid, and MBR
amorphous. The dissolution profiles of MBR co-amorphouses, MBR crystalline solid, and MBR
amorphous illustrated in Figure 6a revealed that the equilibrium concentrations were 5.15 mg/mL
for MBR-FA co-amorphous, 11.12 mg/mL for MBR-PG co-amorphous and 8.15 mg/mL for MBR-CA
co-amorphous, respectively. The equilibrium concentrations of MBR-FA, MBR-PG, and MBR-CA
co-amorphouses were found to be respectively 57-fold, 123-fold, and 90-fold greater than MBR
crystalline solid (0.09 mg/mL). Besides, in Figure 6b, the equilibrium concentration of MBR amorphous
was 0.61 mg/mL which was found to be 6.7-fold higher than that of MBR crystalline solid. Therefore,
from the results, the increased solubility and dissolution rate of MBR amorphous was assessed.
However, through dissolutions and PXRD phase transformation monitoring results of MBR crystalline
solid and MBR amorphous, illustrated in Figure 6b, it could be noticed that MBR amorphous start
converting to crystalline after 35 min, and within 1 h all MBR amorphous convert to crystalline
form. Based on these results, MBR amorphous was considered as an inadequate API substance for
drug development due to its extremely weak thermodynamic stability which leads to its rapid phase
transformation into crystalline solids.



Pharmaceutics 2018, 10, 149 9 of 14

Pharmaceutics 2018, 10, x FOR PEER REVIEW  8 of 13 

 

3.2. Dissolution Test for MBR Co-Amorphous and Investigation of Their Phase Transformation to 
Crystalline Solid 

Powdered MBR-FA, MBR-PG and MBR-CA co-amorphouses, MBR crystalline and MBR 
amorphous (50 mesh) were analyzed for evaluating their solubilities as well as their dissolution rates. 
For dissolution rate investigations, all sample materials were individually transferred in a dissolution 
tester containing 900 mL water at 37 °C. Sample materials were added until precipitates were 
observed and then the mixtures were stirred at 100 rpm for 12 h. Afterwards, 2 mL of supernatants 
as well as approximatively 30 mg of solid materials of each sample were withdrawn from each 
dissolution vessel at different sample time intervals. Water of identical volume with withdrawn 
supernatants was subsequently added to each dissolution vessel to maintain the dissolution 
condition. The withdrawn supernatants were analyzed via HPLC to determine the concentrations 
(Figures S26–S28) whereas the solid materials were monitored via PXRD to investigate the occurrence 
of the phase transformation during the dissolution process. In Figures 6 and 7 are depicted the 
dissolution profiles and PXRD phase transformation monitoring results for MBR co-amorphouses, 
MBR crystalline solid, and MBR amorphous. The dissolution profiles of MBR co-amorphouses, MBR 
crystalline solid, and MBR amorphous illustrated in Figure 6a revealed that the equilibrium 
concentrations were 5.15 mg/mL for MBR-FA co-amorphous, 11.12 mg/mL for MBR-PG co-amorphous 
and 8.15 mg/mL for MBR-CA co-amorphous, respectively. The equilibrium concentrations of MBR-FA, 
MBR-PG, and MBR-CA co-amorphouses were found to be respectively 57-fold, 123-fold, and 90-fold 
greater than MBR crystalline solid (0.09 mg/mL). Besides, in Figure 6b, the equilibrium concentration 
of MBR amorphous was 0.61 mg/mL which was found to be 6.7-fold higher than that of MBR crystalline 
solid. Therefore, from the results, the increased solubility and dissolution rate of MBR amorphous was 
assessed. However, through dissolutions and PXRD phase transformation monitoring results of MBR 
crystalline solid and MBR amorphous, illustrated in Figure 6b, it could be noticed that MBR amorphous 
start converting to crystalline after 35 min, and within 1 h all MBR amorphous convert to crystalline 
form. Based on these results, MBR amorphous was considered as an inadequate API substance for drug 
development due to its extremely weak thermodynamic stability which leads to its rapid phase 
transformation into crystalline solids. 

  
(a) (b) 

Figure 6. Dissolution profiles for MBR co-amorphouses, MBR crystalline solid, and MBR amorphous; 
(a) dissolution profiles of MBR co-amorphouses (MBR-FA, MBR-PG, and MBR-CA), MBR crystalline 
solid, and MBR amorphous at 37 °C; (b) dissolution profiles of MBR crystalline and MBR amorphous 
at 37 °C and monitoring of MBR amorphous phase transformation using PXRD. 

Nevertheless, unlike MBR amorphous (Figure 6b), no change in the equilibrium concentration 
could be observed for MBR co-amorphouses (Figure 6a). In addition, from the PXRD monitoring test, 

C
on

ce
nt

ra
tio

n 
of

 M
ira

be
gr

on
[m

g/
m

l] 

Time [h]
0 2 4 6 8 10 12

0

2

4

6

8

10

12

 MBR crystalline
 MBR amorphous
 MBR-FA
 MBR-PG
 MBR-CA

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 MBR crystalline
 MBR amorphous

C
on

ce
nt

ra
tio

n 
of

 M
ira

be
gr

on
[m

g/
m

l] 

Time [h]

5 10 15 20 25 30 35

 
In

te
ns

ity
 [a

.u
]

Angle [2θ]

35 min

30 min

40 min

50 min

60 min

Figure 6. Dissolution profiles for MBR co-amorphouses, MBR crystalline solid, and MBR amorphous;
(a) dissolution profiles of MBR co-amorphouses (MBR-FA, MBR-PG, and MBR-CA), MBR crystalline
solid, and MBR amorphous at 37 ◦C; (b) dissolution profiles of MBR crystalline and MBR amorphous
at 37 ◦C and monitoring of MBR amorphous phase transformation using PXRD.

Nevertheless, unlike MBR amorphous (Figure 6b), no change in the equilibrium concentration
could be observed for MBR co-amorphouses (Figure 6a). In addition, from the PXRD monitoring test,
no conversion of MBR co-amorphouses to crystalline form was observed during the 12 h of dissolution
test (Figure 7).
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Figure 7. PXRD of MBR solids collected after 12 h of dissolution test.

Accordingly, we could assess that MBR co-amorphouses possess a remarkably greater
thermodynamic stability compared to MBR amorphous as no phase transformation of these
co-amorphous materials to crystalline form was observed within the 12 h dissolution process. The
ionization of both MBR and carboxylic acid molecules followed by the formation of amorphous state
materials via ionic interaction between MBR and carboxylic acid ions are considered the main reason
leading to the production of MBR co-amorphouses possessing increased solubilities and dissolution
rates compared to MBR crystalline solid and MBR amorphous. Therefore, MBR co-amorphouses have
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been assessed as potential API which can overcome the drawback of MBR crystalline solid, especially
its aqueous solubility.

The high Tg values of amorphous materials influence their physicochemical stabilities, inhibit
the process leading to their conversion into crystalline solids and, consequently, promote the storage
stability of amorphous state drugs during a long period [4–7,14]. Additionally, co-amorphous materials
formed via ionic interaction between different molecules are assumed to possess high Tg values
compared to the amorphous API itself [33]. Figure 8 presents DSC measurements (curves) collected
for the evaluation and comparison of MBR co-amorphouses and MBR amorphous’ Tg values. From
the results, the Tg value of MBR amorphous could be observed at approximatively 37.74 ◦C whereas
the Tg values of MBR co-amorphouses appeared above 58 ◦C. From this result, we were able to
predict that MBR co-amorphouses (Figures 6 and 7) were more thermodynamically stable than MBR
amorphous. The high Tg values observed for MBR co-amorphouses were assumed to slow the phase
transformation process of these solid materials to crystalline form and to promote their amorphic
stability for the 12 h dissolution test (Figure 6). In other words, the presence of ionic interactions within
MBR co-amorphouses promotes an increase in Tg value of each co-amorphous, which leads to an
increase in their stability and consequently to prevention of the phase transformation to crystalline
materials (even after 12 h).Pharmaceutics 2018, 10, x FOR PEER REVIEW  10 of 13 
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When comparing the glass transition temperatures (Tg) of MBR co-amorphouses (MBR-FA,
MBR-PG, and MBR-CA) in Figure 8, we can notice that their stabilities decrease in the following order;
MBR-FA > MBR-CA > MBR-PG. The difference in the strength of the ionic interaction between MBR
and carboxylic acids is assumed to be the main factor influencing the stability of MBR co-amorphouses.
According to Table 1, the pKa values of these carboxylic acids decrease as follows; FA (3.03) > CA
(3.13) > PG (3.32). The acidity of FA is assumed to be 2-fold and 1.26-fold stronger than PG and CA,
respectively [30]. Moreover, CA is assumed to be 1.58-fold more highly acidic than PG. In this regard,
the difference in stability of MBR-co-amorphous, depending on the Tg values (Figure 8), is essentially
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attributed to the difference in acidity of the carboxylic acids. The acidity is assumed to impact the
strength of ionic interaction between MBR and carboxylic acids and, therefore, influence the stability
of the resulting co-amorphous materials. Because of its high acidic level compared to other carboxylic
acids, FA binds to MBR through a strong ionic interaction. This increases the Tg of the material
formed and leads to the formation of highly stable MBR-FA co-amorphous. Besides, CA possesses
intermediate acidity, lower than that of FA but higher than that of PG. Therefore, it is assumed that CA
bonds to MBR molecule via ionic interaction of intermediate strength. This consequently leads to the
formation of MBR-CA co-amorphous of intermediate Tg and intermediate stability. Lastly, MBR-PG
co-amorphous is considered the least stable among others due to the inferior PG’s acidic property and
the weak ionic interaction between PG and MBR in MBR-PG co-amorphous.

However, the results for the dissolution investigation for MBR co-amorphouses illustrated in
Figure 6a demonstrate a completely different tendency to the stability results depicts in Figure 8. In
Figure 6a, the solubilities of MBR co-amorphouses are as follows; MBR-PG > MBR-CA > MBR-FA. Here,
the difference in the dissolution properties of MBR-co-amorphouses is assumed to be the consequence
of the difference in acidic levels (pKa) between MBR and carboxylic acids (Table 1). According to the
result, MBR-FA co-amorphous displays a very low solubility compared to other co-amorphouses. This
is because of the high acidic difference and strong ionic interaction between MBR and FA and because
of the comparatively high stability of the co-amorphous material. Besides, MBR-CA co-amorphous
are assumed to exhibit moderate solubility because of the presence of average ionic force between
MBR and CA in the co-amorphous molecule and because of the material’s moderated stability. Lastly,
MBR-PG co-amorphous exhibits great solubility because of the feeble ionic interaction between MBR
and PG in MBR-PG co-amorphous and the poor stability of the material.

Collectively, the results demonstrated that the obtained MBR co-amorphouses (MBR-FA, MBR-PG,
and MBR-CA) possess the increased solubilities and dissolution rates of above 57-fold to the MBR
crystalline. The same results revealed that MBR co-amorphouses were remarkably stable and could
maintain their amorphous state for more than 12 h. In this regard, MBR co-amorphouses are assumed
as promising API capable to overcome the solubility problem of MBR crystalline solid and to improve
MBR drugs’ adsorption rates in the body even without the employment of PEG 8000 hydrophilic base
during the formulation process.

Nevertheless, data specifying the phase transition time from MBR co-amorphouses to crystalline
form and investigating their salt forms (MBR-FA, MBR-PG, and MBR-CA) were not reported in
the present study. Thus, our future plan is to investigate the phase transformation phenomenon of
MBR-FA, MBR-PG, and MBR-CA co-amorphouses and to screen and characterize their salt forms
and polymorphs.

4. Conclusions

In this work, the screening of MBR co-amorphouses was carried out with the purpose of enhancing
the aqueous solubility of MBR crystalline solid, improving its absorption, and thus limiting the use of
PEG 8000, a harmful hydrophilic base, employed during MBR drug formulation. As a result, MBR
co-amorphouses were produced when FA, PG, and CA carboxylic acids were employed as coformers.
Moreover, by means of PXRD, solution-state NMR, ATR-FTIR, and solid-state CP/MAS 13C-NMR
analyses, it was assessed that MBR and carboxylic acids molecules were linked together via ionic
interactions to form MBR co-amorphouses. In addition, the results for a 12 h dissolution test of
MBR co-amorphouses, MBR crystalline solid, and MBR amorphous demonstrated that the aqueous
solubilities as well as the dissolution rates of MBR co-amorphouses improved more than 57-fold
compared to MBR crystalline solid. The same results revealed that the solubility and dissolution rate
of MBR amorphous increased approximatively 6.7-fold compared to MBR crystalline solid. However,
from the PXRD monitoring result it was noticed that the phase transformation of MBR amorphous
to crystalline solid commences in approximatively 35 min and can be completed within an hour.
Therefore, MBR amorphous was assumed to be a thermodynamically unstable solid. Nevertheless,
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MBR co-amorphouses were assessed to be thermodynamically stable solids as no conversion of these
co-amorphouses to crystalline solids could be observed during the 12 h of dissolution test. The increase
of MBR co-amorphouses’ stabilities have been attributed to the presence of ionic interactions within
MBR co-amorphous molecules, which elevate the molecules’ Tg values, promote their stabilities and,
consequently, prevent their phase transformation to crystalline solids.

MBR co-amorphouses including MBR-FA, MBR-PG, and MBR-CA obtained in this work, display
enhanced aqueous solubilities owing the occurrence of ionic interactions within these molecules.
Unlike MBR amorphous, the presence of ionic interactions within MBR co-amorphouses is presumed
to promote the Tg values of MBR co-amorphouses, improve their thermodynamic stabilities and,
subsequently, slow down their conversion processes to crystalline solids. From this study, it was
assessed that MBR co-amorphouses were potential APIs, capable of overwhelming the limitations
of MBR crystalline solid because of their improved properties including aqueous solubility and
thermodynamic stability. In this regard, we foresee that MBR co-amorphous alone can exhibit higher
absorption rate even without using the PEG 8000 hydrophilic base during drug formulation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/10/3/149/s1,
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13C-NMR spectra for MBR-PG co-amorphous and MBR (DMSO-d6); Figure S4: ATR-FTIR spectra for MBR-PG
co-amorphous, MBR, and PG; Figure S5: Solution-state 1H-NMR spectra for MBR-CA co-amorphous, MBR, and
CA (DMSO-d6); Figure S6: Solution-state 13C-NMR spectra for MBR-CA co-amorphous, MBR, and CA (DMSO-d6);
Figure S7: ATR-FTIR spectra for MBR-CA co-amorphous, MBR, and CA; Figure S8: Solution-state 2D (1H-1H
COSY) NMR spectrum of MBR (DMSO-d6); Figure S9: Solution-state 2D (1H-13C HSQC) NMR spectrum of
MBR (DMSO-d6); Figure S10: Solution-state 2D (1H-13C HMBC) NMR spectrum of MBR (DMSO-d6); Figure S11:
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