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Abstract: Protein-based therapeutics are considered to be one of the most important classes of
pharmaceuticals on the market. The growing need to prolong stability of high protein concentrations
in liquid form has proven to be challenging. Therefore, significant effort is being made to design
formulations which can enable the storage of these highly concentrated protein therapies for
up to 2 years. Currently, the excipient selection approach involves empirical high-throughput
screening, but does not reveal details on aggregation mechanisms or the molecular-level effects
of the formulations under storage conditions. Computational modelling approaches have the
potential to elucidate such mechanisms, and rapidly screen in silico prior to experimental testing.
Nuclear Magnetic Resonance (NMR) spectroscopy can also provide complementary insights into
excipient–protein interactions. This review will highlight the underpinning principles of molecular
modelling and NMR spectroscopy. It will also discuss the advancements in the applications of
computational and NMR approaches in investigating excipient–protein interactions.
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1. Introduction

Protein-based therapeutics have become the leading class of pharmaceuticals on the market by sales.
The most prominent are monoclonal antibodies (mAbs), which belong to the immunoglobulin family [1].
Currently, most of the monoclonal antibody therapies approved are formulated at protein concentrations
of >30 mg/mL [2] and are administered parenterally as liquid injections (intravenous or sub-cutaneous
routes) [3]. Due to instability in the gastrointestinal tract, capsular and tablet oral dosage forms have not yet
been found to be a practical way to deliver such protein-based drugs [4,5]. Storage of biopharmaceuticals
in the preferred liquid aqueous form must achieve a long shelf-life of up to 2 years at 4 ◦C to be
approved [6]. However, the continuous threat of aggregate formation, precipitation, chemical degradation
and other modifications has made designing the ideal formulation very challenging [7].

Aggregation is considered to be one of the most pressing challenges, and can occur at all stages
of protein pharmaceutical development, manufacture, formulation and storage. The propensity of
protein-based products to aggregate during various stages of manufacturing has also been reviewed
thoroughly [8,9]. One strategy to address this problem is to understand the mechanisms that dictate
aggregation pathways under relevant solution conditions. The currently known range of aggregation
pathways and mechanisms have been reviewed extensively [10,11], and are not the focus of this review.
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Understanding detailed mechanisms is time-consuming and so the industry is typically under pressure
to take an empirical approach to formulation, typically through combinatorial screening, to obtain
products that are stable to aggregation, along with other degradation pathways. Such approaches
often use convenient biophysical parameter determinations as indicators of aggregation propensity,
such as the thermal transition midpoint (Tm) for global conformational unfolding, or the temperature
(Tagg) at which aggregation is first detected. The capabilities and limitations of these rapid Tm and
Tagg measurements have been explored extensively, and have been found to correlate well with rates
of aggregation at elevated temperatures [12,13]. However, these correlations disappear for aggregation
kinetics under low-temperature storage conditions, because the aggregation mechanisms are no longer
primarily driven by global protein unfolding [14–17].

Protein-based pharmaceuticals often require the addition of formulation excipients to ensure their
stability. The major groups of excipients include: amino acids; buffering agents; sugars; osmolytes and
surfactants. There is significant overlap between certain excipient groups, and many excipients carry
out more than one function in formulations, including control of aggregation, vial surface adsorption,
viscosity, shear-thinning, chemical instabilities, and container instabilities. Although pharmaceutical
excipients are readily available, the mechanisms of action for each vary. A number of theories such as
preferential interaction/hydration, volume exclusion/crowding, cation-π interactions, and electrostatic
interactions, dispersive and aromatic interactions have been hypothesised [18–20].

High-throughput (HTP) methods have been used in the pharmaceutical industry for decades,
primarily for identifying lead compounds in drug discovery, and several in depth reviews have focused
on their applications [21–23]. Outlined below (Table 1) are some of the prominent high-throughput
biophysical methods used to assist the excipient selection process for protein-based formulations.
An extensive study on the use of HTP methods to design a formulation for a highly concentrated IgG
mAb is reported here [24].

Table 1. High throughput biophysical methods used for excipient screening.

Biophysical Method Details Limitations Application References

Raman spectroscopy

Measures shifts in energy
(wavelength) of photons
re-emitted after interaction with
molecular vibrational modes.
Provides an empirical signature
of protein structure, that can be
used to monitor changes in
intramolecular dynamics and
intermolecular interactions.

Low sensitivity. Out of the
millions of incoming photons
interacting with molecules,
there is only one scattered
Raman photon.

[18,25]

Circular dichroism

Measures the difference in
adsorption of circularly
polarised light. Far-UV CD can
determine the absolute and
relative contributions of
secondary structure types in
proteins. Near UV CD can probe
tertiary structure content.
Can probe changes in protein
structure in response
to formulation.

A reference protein with
known secondary structure is
required to fit the
experimental data. The quality
of the fit also depends on the
wavelengths used.

[18,26]

Isothermal titration
calorimetry (ITC)

Measures the heat emitted or
absorbed during the titration of
a protein with a ligand.
The amount of heat indicates the
proportion of excipient that
binds the protein and its
associated enthalpy.

ITC can be used to determine
the excipient mechanism
directly and indirectly.
However, no structural
information of the protein
is given.

[18,27]
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Table 1. Cont.

Biophysical Method Details Limitations Application References

Differential scanning
calorimetry (DSC)

Routinely used in
high-throughput screening of
excipients for formulations.
Determines the impact of
excipients on the thermal
stability of the protein,
measured as the melting
temperature and enthalpy
of unfolding.

Useful for identifying
excipients that preferentially
interact with proteins, or that
stabilise through crowding
effects. Cannot be used to
detect other mechanisms of
action. Unable to characterise
changes specific to the
secondary or tertiary structure
of proteins.

[16,28–30]

Differential scanning
fluorimetry (DSF)

Uses a PCR thermocycler to scan
the fluorescence of extrinsic
dye-binding to proteins as
a function of temperature in
microtitre plates, and determine
their melting temperatures.

The excitation source of the
PCR equipment can potential
limit the type extrinsic
fluorescence dyes used.
Unable to characterise
excipient mechanisms of
action and can only detect
tertiary structure changes.

[16,31–33]

Given that high-throughput screening approaches are empirical, and hence time-consuming,
and often only provide indirect surrogate evaluations of whether a protein is likely to be stable at low
temperature over 2 years, there is a need to create a more fundamental understanding of aggregation
mechanisms and the impact of different modes of formulation under these storage conditions. There is
also the potential to use computational modelling approaches to both elucidate such mechanisms,
and also to refine them to create better modelling methods.

The combination of such approaches with more detailed biophysical analyses, such as NMR thus
has significant potential to advance the understanding and predictability of formulation for biologics.
A schematic shown in Figure 1 highlights the different capabilities and limitations of molecular
modelling techniques and NMR. NMR spectroscopy provides structural and functional insights into
molecules under interrogation through observations including the chemical shift and spectral line
shape analysis that inform both on molecular structure in addition to intermolecular interactions.
Such information has the potential to be utilized to validate and refine molecular modelling approaches
designed to predict protein-protein and protein-excipient interactions, as well as the propensity of
proteins to aggregate.
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design of protein-based formulations.
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We start below with an informative summary of the underpinning principles of computational
modelling and NMR spectroscopy. Based on these principles, this review reports on the complementary
insights that can be obtained from Nuclear Magnetic Resonance (NMR) spectroscopy and computational
modelling methods, to inform the rational design of protein-based formulations. We have a particular
focus on the aggregation mechanisms observed under low-temperature storage conditions. These include
those mechanisms driven by hot-spot interactions between proteins, and by local fluctuations within the
native protein structure ensemble that can reveal aggregation-prone regions (APRs) [17,34–38]. Thus,
it would also be useful to elucidate protein-excipient interactions with the potential to modify the ability
of proteins to self-associate via hydrophobic hotspots or APRs on the surface, or by local fluctuations that
reveal buried APRs.

2. Overview of Molecular Modelling, Methodologies and Limitations

2.1. Molecular Docking

Molecular docking is a computational chemistry tool that is extensively used in drug discovery
processes [39], with more recent applications found in the drug development process. This method
enables evaluation of intermolecular interactions between two molecules by predicting possible
binding modes. The target molecule is a biopolymer, usually a protein, while the binding to a target
can be predicted for either a small molecule (ligand-protein docking) as shown below in Figure 2
or another protein (protein-protein docking). The docking typically requires the known structure of
the target molecule and seeks for an intermolecular complex with the most favourable binding pose
based on the fit between target and its bound molecule, as well as the stabilization resulting from
intermolecular interactions. Molecular docking generally involves generating a number of viable
protein-ligand conformations by using search algorithms. Initially, a conformation of a complex
(binding pose) is predicted in the form of the orientation of two molecules relative to each other. This is
followed by estimation of the binding energies for each pose [40]. As absolute binding affinities are
difficult to predict, scoring functions have been developed to establish a ranking of the predicted
docked poses. This ranking of the generated conformations is achieved by using three main categories
of scoring function. Force-field scoring functions use molecular mechanics and are established from
calculations of atomic interactions including bond stretching or bending, torsional forces, van der Waals
and electrostatic interactions [41]. Empirical scoring functions predict binding energies for docked
conformations by considering van der Waals, hydrogen bonding, electrostatics and desolvation terms,
whose relative weightings have been optimized through continual validation and refinement [42].
Lastly, knowledge-based scoring functions originate from experimental structural information [43].
The entropic effects contribution, an important component of protein-ligand binding energy, is usually
taken into account through re-scoring or employing other methods [44]. A combined use of scoring
and re-scoring allows selection of the most probable binding mode for a single ligand, or ranking of
a series of ligands according to their predicted affinity for a selected target.

These scoring functions are usually implemented in software packages depending on their
intended use, along with the appropriate conformational sampling methods that can also include
different levels of molecular flexibility when generating binding poses. Rigid body docking allows
for no conformational changes in the molecules of interest, and is thus the fastest. It is suitable for
gaining insights into relative orientations of two docked proteins, or for scanning a protein surface
with rigid small molecule ligands to identify binding hotspots. Notable docking programs that
facilitate rigid protein-protein docking are Hex [45], and GRAMM-X [46]. These software packages
sample protein-protein docked conformations based on a Fast Fourier Transform (FFT) algorithm.
RosettaDock [47] is also used to predict the lowest energy docked protein-protein complexes by
employing Monte Carlo approaches to position molecules in respect to each other, however it takes
into account some flexibility by allowing the side-chains to move [47]. Protein-protein docking could
provide possible insights into aggregation by identifying putative protein-protein interaction interfaces.
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In contrast, flexible docking results in a conformational shift in the molecule of interest. This makes
it favorable when studying ligand-protein complexes, and has the potential to predict and improve
our understanding of specific interactions at the protein-ligand interface. The wealth of ligand-protein
docking software packages available have increased over the decades. Some prominent flexible
docking programs include AutoDock 4 [48], GOLD [49,50], and GEMDOCK [51]. The major limitation
for molecular docking is the incorporation of protein flexibility. It is a well-known fact that upon
ligand binding, a protein undergoes conformational changes. The flexible docking software packages
mentioned above overlook ligand-induced binding effects and thus treat the protein as rigid [52].
However, there are software packages dedicated to flexible ligand-flexible protein docking that enable
side-chain flexibility, including AutoDock Vina [53] and FlexX [54]. The protein-ligand docking may
provide information not only on mode of binding within a specified active site, but it can provide
information on possible interaction sites on the whole protein surface [55], which may allow evaluation
of excipient binding on the protein surface (Figure 2).

The accuracy of docking predictions that do not account for protein flexibility and presence
of other components the solutions (water, ions, buffers) have always been debated. A common
solution is to set up molecular dynamics (MD) simulations that can potentially sample various protein
conformations upon ligand binding in explicit presence of water molecules and buffers, where a most
favourable docking pose can be used as a starting conformation for the simulation experiments.
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2.2. Molecular Dynamics (MD)

Molecular dynamics (MD) is a powerful computational modelling tool, which enables the
following of subtle atomic motions of a system of interest as a function of time [56]. All-atom (classical)
MD simulations sample configurations by integrating Newton’s law of motion to all the atoms in the
system simultaneously over a femtosecond time step. A trajectory is recorded with precise atomic
positions and velocities giving the user an indication of how the system evolves with time [57].
These positions, defined by Cartesian coordinates of all atoms in a system, allow calculation of the
potential energy of the system and forces that act on each atom. Molecular dynamics commonly
employs molecular mechanics approximations and use of the force fields, sets of equations and
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associated constants to reproduce geometries of molecular systems [58]. These are calculated based
on the some commonly used force fields including CHARMM22 [59], CHARMM27 [60], AMBER [61]
and GROMOS [62]. There is a wide array of software packages available, including but not limited
to Gromacs [63], Amber [64], NAMD [65] and CHARMM [66], that have proven invaluable for the
advancement of molecular dynamics. A general summary of the molecular dynamics process is
provided below in Figure 3. A list of typically employed MD simulation times for various protein
dynamics events are listed below in Table 2. The main limitation of MD is the small time-step, relative to
a typical requirement for much longer simulation times. Longer simulations have been carried out on
the millisecond time scale [67,68]. This may potentially place a strain on computational resources when
simulating larger systems, however the benefits outweigh limitations due to the wealth of information
that can be obtained about the system on the atomistic level [69].
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Table 2. The typical molecular dynamics (MD) simulations timescales that can observe various protein
dynamics events.

Protein Dynamics Event MD Simulation Time Range

Vibrational motions Femtoseconds (10−15) to picoseconds (10−12)
Rotational motions Picoseconds (10−12) to nanoseconds (10−9)

Loop dynamics Picoseconds (10−12) to milliseconds (10−3)
Ligand binding/unbinding Nanoseconds (10−9) to seconds
Protein folding/unfolding Microseconds (10−6) to seconds

Aggregation Seconds and beyond

3. Overview of Nuclear Magnetic Resonance (NMR) Spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy detects nuclei of isotopes with spin angular
momentum (e.g., 1H, 15N, 13C and 19F) in a magnetic field with the goal to provide analytical
information regarding the structural and/or physical nature of any molecule under investigation.
The resultant NMR spectra contain highly defined resonances (often referred to as peaks) that reflect
the chemical nature of specific atoms in the molecule of interest. NMR has been applied in a diverse
range of pharmaceutical applications that include, characterisation of proteins, drug discovery and
design [70]. Despite the power and utility of NMR spectroscopy, linewidths of resonance peaks become
larger as molecular weight increases. This due to a reduction in nuclear T2 relaxation times as the
global tumbling of the molecule becomes slower. However, all is not lost as advances in NMR have
allowed protein observations to be made over a wide-range of molecular timescales e.g., domain shifts



Pharmaceutics 2018, 10, 165 7 of 24

(microseconds to milliseconds), side chain motions (picoseconds to nanoseconds) and changes in loop
regions (nanoseconds to microseconds) [71,72].

For the purpose of this review, we are considering solution-state NMR methods where there
are several observable NMR parameters including chemical shifts (δ) and relaxation times (T1 and
T2). A chemical shift of a nucleus in a molecule arises due to a nuclear shielding or de-shielding
effect of the NMR static applied magnetic field and is the result of electrons surrounding the nucleus.
Chemical shifts (δ) are measured in parts per million (ppm) [73,74]. The power of chemical shifts
provides structural information by distinguishing chemically-equivalent nuclei but where they are
in different molecular environments. For example, the proton (1H) NMR of acetone (CH3COCH3)
will only display one peak from two equivalent methyl groups but ethanol (CH3CH2OH) provides
three 1H NMR peaks representing those in the methyl (CH3), methylene (CH2) and hydroxyl (OH)
moieties respectively. These ethanol peaks are additionally subject to fine-structural splitting from
spin-spin J-coupling, a concept taught to many undergraduates and found in NMR and organic
chemistry textbooks. This example is a simplistic view of the power within chemical shifts and it
cannot be stressed enough that structural and chemical environment influence NMR peak observations.
For example, two alanine residues within a protein will both have methyl groups, but their observed
chemical shifts will be dependent on their individual structural environments and so display diverse
chemical shifts. Chemical shifts are ultimately derived from the Larmor frequency of resonance of
each NMR peak, where the distance (in Hertz) between any two peaks is dependent also on the
spectrometer magnetic field strength, because the Larmor frequency is proportional to magnetic field
strength. When defining peak separation in terms of chemical shift, a 1 ppm separation for a proton
(1H) spectrum on a 600 MHz (14.1 Tesla) spectrometer equates to a frequency separation of 600 Hz
whereas for an 800 MHz (18.7 Tesla) spectrometer it would be 800 Hz. This field dependence of peak
separation can be extremely useful when monitoring chemical exchange processes, as will be described
further below.

NMR is a spectroscopic process that involves excitation and energy transfer between nuclear
spin states which subsequently need to relax and return to equilibrium. This NMR relaxation is of
fundamental interest to NMR spectroscopists as the time constants (T1 and T2) and rates (R1 and R2)
of the associated mechanisms provide a wealth of information about the molecules being studied.
Indeed, nuclear relaxation, and in particular relaxation dispersion, has found use as a tool to study
protein folding and enzyme kinetics where chemical exchange events of interest, between species
or molecular environments, can be quantified through their influence on NMR relaxation processes,
as described in [75–77]. Each NMR-active nucleus in a molecule will possess a unique set of relaxation
times from many fundamental molecular and bulk solution properties which is beyond this review.
However, it is useful to note that molecular size and shape, proximity and the isotope of the nearest
NMR-active nucleus, in addition to temperature, viscosity and the NMR magnetic field strength,
all influence nuclear relaxation in quantifiable ways. The spin-lattice mechanism involves a nuclear
spin exchanging energy with its surroundings (i.e., lattice), and thereafter returning to its ground state
with time-constant T1 and relaxation rate R1. The second spin-spin relaxation mechanism involves the
loss of phase coherence and subsequent loss of bulk magnetization that underpins the NMR signal,
with time-constant T2 and relaxation rate R2. For both processes, Rx = 1/Tx. Although the processes
giving R1 and R2 are independent events, the R1 and R2 relaxation rates converge for small molecules
e.g., acetone and ethanol, whereas for larger species such as proteins in solution R1 and R2 are found to
be significantly different. Furthermore, protein relaxation is extremely powerful and can differentiate
the shape and internal motions of a molecule and reviews are available on this subject [78,79].

The linewidth of the individual NMR signals is proportional to R2 and therefore to the correlation
(time of the molecule. The crucial point is that R2 has a proportionality to the correlation time (τc);
the time for a molecule to rotate through 1 radian (i.e., molecular motion) which is subsequently related
to molecular size and shape. Assuming a sphere, correlation time can be estimated from [4πηr3/3kbT]
where η—viscosity of the solvent, kb—Boltzmann constant, T—temperature and r the radius of the
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sphere. As a molecule becomes larger, r increases and so τc increases, which then makes R2 increase
and is finally observed in NMR as an increase in linewidth. This is the fundamental reason why
protein NMR spectra are broader than small molecule spectra. Increasing the temperature and/or
lowering the viscosity would drop linewidth but many proteins are limited in their operational solvent
conditions and thermal limits. Taking this concept of molecular size influencing NMR a step further,
a ligand that binds to a protein would experience a significantly different correlation time, that is
dictated by the size of the complex, compared to when the same molecule is free solution. In many
cases, ligand binding is not permanent, but dynamic and is defined by an equilibrium with an affinity
that can further influence the NMR observation [80].

When a molecule is in equilibrium between two or more states, the rate of exchange determines
whether the chemical shifts of each of each state is visible or the chemical shift of a single time-averaged
state is observed. The observation is thus dictated by the equilibria involved in exchange as well as
the difference in nuclear spin relaxation rates R1 and R2. These two limits are known as slow and fast
exchange in the chemical shift timescale but there is an intermediate condition where all resonances
become broad and difficult to detect. At this condition, known as coalescence, the exchange rate
constant is comparable to the difference (in Hz) between the Larmor frequencies of the two states.
This ties in with the earlier concept of chemical shifts between peaks being frequency dependent and as
the relationship between chemical shift and the equilibrium is not based on parts per million (ppm) but
the fundamental Hertz distance between NMR resonances. Therefore, changing NMR field strengths
can help move the observation between the slow, intermediate and fast exchange regimes.

3.1. Limitations

The potential for NMR spectra to become very challenging to interpret is very real when
increasing the molecular weight of the protein. The number of proton resonances scales proportionally
with molecular weight, but the spectral width remains constant, leading to increased crowding of
peaks. In addition, line width increases with the molecular weight, leading to a further decrease
in resolution and in signal intensity with the consequence that, resonance overlap increases rapidly
with molecular size, until individual lines become too difficult to resolve. A commonly utilized
workaround is to expand the NMR spectra from one to more dimensions (2D, 3D, 4D, etc.) to
create more special representation of resonance peaks. Alternatively, data can be obtained at higher
magnetic fields (e.g., at 14.1, 18.8, 21.1 and 23.5 Tesla that equates to 600, 800, 900 and 1000 MHz 1H
resonant frequencies) to improve resolution. Other approaches include the addition of alternative
NMR-active nuclei than 1H, such as 15N and/or 13C in addition to reducing spin-spin (R2) based
relaxation by deuteration; the process of replacing 1H with 2H. As discussed, R2 is responsible for
line broadening and reducing this process will create narrower lines. However, as discussed further
below, TROSY NMR can be used to select slower NMR relaxation pathways to and therefore observe
narrower lines, which then extends the range of molecular weight for which peaks can be resolved.
Such a method is at its most powerful when combined with deuteration.

3.2. Protein-Observe Methods

As mentioned, the chemical shift is sensitive to the molecular environment around the nucleus
and when a ligand or excipient interacts with a protein, physical characteristics for both are altered.
The binding even creates a change in electron density and so influences the most prominent observable
NMR parameter, chemical shift. As a result, chemical shift mapping (CSM) or chemical shift
perturbation (CSP) methods are potential modes of investigation in protein-observe NMR [81].
CSM/CSP methods compare two protein NMR spectra, such as with and without the addition of
a ligand, and track any changes in chemical shift and/or disappearance of peaks. These changes will
identify any areas of the protein that are influenced by the binding event, with the largest changes
being typically observed in the region around the binding site. In addition, careful experimental
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design can utilize a suite of NMR spectra, obtained over a range of ligand concentrations, to provide
isotherms from which dissociation constants for the binding process can be determined.

High molecular weight protein species such as whole mAb, Fab fragment and Fc region can be
expressed with isotopic labelled nuclei, which enable greater resolution of peaks through the collection
of multidimensional heteronuclear correlation spectra. There are several labelling protocols that
exist for NMR studies. Uniform 15N isotopic enrichment is the simplest form of labelling a protein.
The protein is expressed in E. coli (BL21) [82] grown on minimal growth media and supplemented by
15NH4Cl and unlabelled glycerol/glucose that is purified using standard methods to provide a +90%
enriched protein product as shown in the schematic below in Figure 4. Heteronuclear single quantum
coherence (HSQC) NMR spectra are 2D NMR experiments recorded to show all nitrogen-hydrogen
correlations, which typically are dominated by backbone amide groups from the protein [83]. In the
case of studying excipient–protein interactions, a series of HSQC NMR spectra can be recorded of
the protein in presence and in the absence of the ligand. Binding effects of these interactions can be
investigated by overlaying the series of 15N HSQC spectrums. If there is an interaction between the
excipient and protein, the peaks on the spectra will be found to track from their initial position when
no ligand was present [84].

More complex labelling approaches exist, such as 2H/15N/13C triple labelling which uses bacteria,
yeast or insect cells as an expression system supplemented by 15NH4Cl, 13C-glucose and deuterated
water (D2O). This form of labelling enables detailed mapping of whole structural changes in the
protein upon excipient binding as it can offer significant coverage of the protein backbone and side
chains. Deuteration replaces the aliphatic and aromatic protons for 2H across the protein to reduce the
significant nuclear relaxation effect of 1H nuclei that facilitate line broadening. The proportion of 1H
to 2H depends greatly on the carbon source used and whether H2O or D2O is present [85]. However,
using specifically labelled methyl group probes (13CH3) in the study of high molecular weight proteins
has proven useful in expanding the molecular weight limit reached with perdeuterated proteins [86].
Methyl groups tend to occur in the hydrophobic cores of proteins and provide an excellent probe for
conformational modifications [87,88]. Several protocols for methyl group labelling are available [89–92].
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Figure 4. A schematic depicting the bacterial production of recombinant isotopically labelled protein,
and recording of an NMR spectrum.

The increased relaxation already mentioned for proteins increases with increasing magnetic
field strength, which creates additional issues. Consequently, several protein-NMR methodological
advances have been utilized to address this challenge, the most popular being Transverse relaxation-
optimised spectroscopy (TROSY) [93,94]. TROSY which uses spectroscopic means to reduce the
observed T2 relaxation by selecting the slower relaxation pathway for observation. Remember, T2 is
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related to line width and accessing the slowest relaxing pathway will produce narrower resonance
lines. Therefore, TROSY accompanied by various isotopic labelling techniques especially deuteration
allows the study of biomolecules above 25–30 kDa [95]. The effect of TROSY on the relaxation rate of
an excipients and proteins is demonstrated in Figure 5.
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Figure 5. (a) The NMR spectrum for a small molecule ligand will depict a narrow linewidth due to
a longer transverse relaxation time. (b) In contrast, a protein has a shorter transverse relaxation time
and thus a broad linewidth is shown. (c) TROSY prolongs the transverse relaxation times and thereby
improves the protein signal in the spectrum.

TROSY, when combined with higher magnetic fields (e.g., equal to or greater than 18.8 T–800 MHz
1H) and the introduction of cryogenic probes has enabled NMR fingerprinting using 1H/2H, 15N 13C
isotopes at natural abundance of full mAb, Fab, Fc and other therapeutic proteins possible [96–99].

3.3. Ligand-Observe Methods

Ligand observe methods exploit the dependence of relaxation rates on molecular size described
earlier in this review, specifically via the difference in molecular weight between a small ligand and
a significantly larger protein. Nuclear Overhauser Effects (NOEs) are defined as the change in intensity
of NMR resonances caused by dipole-dipole coupling. The sign and the magnitude of the NOE is
dictated by the hydrodynamic radius (r6) and the correlation time (τc). This makes NOEs available to
detect intramolecular and intermolecular interactions. Large molecules tend to tumble slower and
so it is anticipated that a negative NOE will be observed. In contrast ligands tumble fast resulting in
a positive NOE [100]. Two prominent NOE based NMR methods include Saturation Transfer Difference
(STD) and WaterLOGSY (Water Ligand-Observed via Gradient spectroscopy.

STD NMR involves recording a STDon spectrum, whereby only the 1H protons of a protein and
not the excipient (ligand) are selectively saturated by a narrow selective 1H NMR pulse typically placed
between −1 and −3 ppm. The saturation is transferred throughout the protein via spin diffusion and
onto any bound ligand, resulting in a reduction in the intensity of the ligand resonances as shown
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in Figure 6a. In order to detect this transfer, the ligand must dissociate from the protein. Therefore,
the dissociation constant (KD), which describes the affinity of an excipient to the protein, has to be
favourable for this process. A favourable KD also allows multiple excipient molecules to bind and
dissociate, each receiving saturation from the protein and increasing the observable signal in the STDon

experiment, as compared to when a small number of molecules bind during saturation. STD requires
a difference spectrum which is created by subtracting a second control experiment spectrum (STDoff)
acquired when no saturation of the protein takes place and is usually created by saturating outside the
protein chemical shift envelope. In reality these two experiments (STDon and STDoff) are acquired in
a single interleaved experiment and processed simultaneously using a spectrometer macro to provide
both 1D datasets STDoff and STDdiff (a spectrum automatically created as the subtraction of STDoff
and STDon). The nature of the transfer from protein to ligand uses a negative NOE which manifests for
any peaks from nuclei involved in saturation transfer having lower magnitude signals in the a STDon

spectrum when compared to the STDoff spectrum. Any nuclei not involved in saturation transfer will
have resonances of identical magnitude in both STDoff and STDon. The resulting difference spectrum
between STDoff and STDon will display only resonances where saturation transfer has occurred [101].
Additionally, and with careful experimental set-up, the magnitude of the difference spectrum also
provides an indication of the orientation of the molecule upon binding to the protein.

WaterLOGSY [102,103] operates by observing a NOE between the ligand and water molecules.
The water molecules are either in the bulk solution or in the vicinity of a protein’s surface. In the case of
the latter, the water molecules take up the tumbling characteristics of the protein, resulting in a negative
NOE upon ligand binding. Conversely, the ligand molecules interacting with the bulk water will result in
positive NOE, by inheriting the tumbling characteristics of the water molecules. Binders and non-binders
can be identified via a spectrum displaying negative and/or positive peaks. Control experiments with
and without the protein are required to ascertain the sign of the positive NOE (Figure 6c).
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and WaterLOGSY (c) NMR. Increasing saturation of the ligand’s resonances is indicated by a colour
gradient from blue (no saturation) to grey (high saturation).
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Diffusion based experiments such as pulsed-field gradient (PFG)-based pulse sequence are
another group of ligand-observe experiments. The PFG experiments enable the study the general
molecular displacements occurring in either complex or simple mixtures. Diffusion measurements can
be obtained by experiments using either spin echo (SE) or stimulated-echo (STE). When combined with
the acronym PFG, the full abbreviation becomes PFGSE and PFGSTE, respectively. Diffusion data can
be demonstrated in many ways as diffusion curves or 2D maps. A pictorial representation of a DOSY
spectrum as a 2D map is common, with one dimension constituting to chemical shifts and the other
dimension representing diffusion coefficients. In addition to identifying the various components of
a mixture, DOSY can also offer an insight into the hydrodynamics of the molecular system of interest
by observing the self-diffusion of molecules in solution [104]. DOSY works by utilizing pulsed-field
gradient NMR spectroscopy to measure translational diffusion of molecules where the pulsed-field
gradient can spatially label resonances in a molecule of interest.

If 2D DOSY maps are used, they should be accompanied with diffusion curves that display
the NMR peak intensity as the NMR gradients are perturbed. This curve can be analysed to obtain
a diffusion constant. It is also important to define the process of DOSY calibration using known
diffusion standards such as dioxane. PFG experiments can provide insights into mixtures containing
excipients and these will be highlighted in the next section.

4. Nuclear Magnetic Resonance (NMR) Spectroscopy Applications in Aggregation and Formulation

Here we discuss the applications of NMR already implemented in the study of aggregation and
formulation design. We also discuss the significance of the examples provided. A key component
of many protein aggregation mechanisms is the formation of oligomeric protein complexes that are
thermodynamically unfavourable, and therefore exist only transiently and at very low populations.
Heteronuclear spin relaxation rates have been measured previously to determine weak association
constants for the transient formation of oligomers of bovine low molecular weight protein tyrosine
phosphatase (BPTP) under equilibrium conditions [105]. The approach combined hydrodynamic
calculations with the conventional measurement of R1 (longitudinal) and R2 (transverse) at different
BPTP concentrations, to reveal the formation of tetramers, and also that the tetramerisation interface
was formed by a cluster of residues on the surface of the dimer. However, in irreversible protein
aggregation mechanisms the soluble oligomers form under pseudo-equilibrium as transient and rarely
populated intermediates, and so their detection by NMR is far more challenging. A significant amount
of work using NMR has been focused on amyloid fibril aggregates which play a huge in role several
prominent diseases such as Parkinson’s and Alzheimer’s. Fibril formation of α-synuclein (αSyn),
responsible for Parkinson’s disease has been studied using Paramagnetic Relaxation Enhancement
(PRE) NMR to depict the various contacts between heterogeneous disordered monomers. PRE NMR
involves a nitroxide spin-label being attached to a particular protein region and while in its oxidized
state (paramagnetic) improves the relaxation during the 1H-15N HSQC experiment [106]. PRE-based
contacts exceed the conventional NOE distances (≤5 Å) by at least 4-fold and provide probes that
interrogate molecular structure over long-ranges [107].

The exchange dynamics between amyloid-β (Aβ) monomers and polydisperse, NMR-invisible
(‘dark’) protofibrils was investigated by a novel technique called Dark-state Exchange Saturation
Transfer (DEST). DEST follows similar principles to that of Saturation Transfer Difference (STD) NMR.
This structural and kinetic study of the protofibril formation was highly significant as the build-up of
toxic, soluble aggregate forms of Aβ, then forms larger assemblies which contribute to the development
of Alzheimer’s disease. The main findings showed 15N-R2 values being significantly larger for Aβ42
than the closely related variant Aβ40. This supported the known observation that Aβ42 demonstrated
a higher propensity for rapid aggregation and fibril formation than Aβ40 [108].

The human immunoglobulin kIV light chain variable domain (LEN) has the potential to be
converted into amyloid under stress conditions. CPMG [109,110] relaxation NMR experiments were
used to identify residues undergoing slow millisecond motions. Multidimensional solution NMR
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experiments were implemented at physiological and acidic pH. The main findings revealed that
certain flexible residues at the dimer interface drive the formation of partially misfolded conformers.
By identifying the specific residues and regions which contribute to the early stages of unfolding,
such work may pave the way for the rational design of stable tertiary and even quaternary structures,
that prevent aggregation [111].

NMR spectroscopy considers the structural properties of therapeutic proteins, however overlook
the presence of a solvent, typically water. The solvent plays a vital role in influencing protein dynamics.
A new method called water proton NMR was proposed to use the transverse relaxation (T2) time of
water protons to quantify protein aggregation. BSA (66 kDa) and γ-globulin (150 kDa) were subjected
to temperature-induced aggregation. The T2 of water protons increased linearly with the percentage of
aggregate formation. The correlation was consistent at high and low magnetic fields [112]. Furthermore,
a pH-induced aggregation procedure was also implemented on human insulin. A non-linear trend
between T2 of water protons and aggregates was observed in this case [113]. The water NMR method
was extended to investigate mAb aggregation under various stress conditions, in which the transverse
relaxation of water protons detected aggregate formation [114]. The NMR technique itself provides
a rapid and non-invasive method in characterising the extent of aggregation in finished products.

A combined approach using DOSY-NMR and DLS was used to measure diffusion coefficients
and particle size distributions for five commercially available insulin drug products. The authors
revealed that DLS was more effective in detecting larger aggregates than DOSY-NMR due to the higher
sensitivity to high molecular weight species. In contrast DOSY-NMR was found to be more suitable in
detailing excipient behaviour in the formulation [115]. The findings do not diminish the potential of
NMR in the study of aggregates, but rather emphasize the importance in selecting the appropriate
NMR method based on prior information about the system being investigated.

There has been a significant contribution towards characterising solid dosage form formulations
with techniques such as 15N Dynamic Nuclear Polarisation [116] and 13C Magic angle spinning
NMR [117–119]. However, the applications of NMR on solid dosage formulations is beyond the scope
of this review.

Antibody-based therapeutics are frequently formulated with small concentrations of sugars,
amino acids, buffer salts and polysorbates. The presence of such excipients may potentially induce
protein structural changes which solution NMR can pin-point. Several notable NMR studies have been
carried out to assess the quality of new-age bio-therapeutics. Panjawani et al. have implemented 2D
NMR fingerprinting assays to detect the effects of excipients and pH conditions on the conformations
of two interferon (IFN) proteins (α-2a and α-2b). NMR spectra were recorded for both proteins
and compared to reference spectra already recorded by regulatory agencies. The first stage of the
formulation process was to add excipients used in products such as Roferon-A® and Intron-A®.
A deformulation process using Cation exchange chromatography was implemented to analyse the
various components of the formulation. A series of 2D HSQC NMR spectra were recorded following
the formulation and deformulation process under various pH conditions. The study revealed that
there was no alteration of the IFN structure during the deformulation process. Below pH 3, the protein
was found to unfold and at pH 4.5 the NMR spectra showed a tendency of the protein to oligomerise
even though the tertiary structure was intact [120]. Similar NMR methods have been implemented on
formulations relating to recombinant methionyl human GCSF (Neupogen® by Amgen) in preparation
for subsequent biosimilars entry into the market [121] and also on antibodies in presence of common
excipients, Tween® [122]. The three studies highlighted above all demonstrate the potential of NMR to
guide the formulation process by providing structural insights into changes in the active ingredient
under various formulation conditions.

The NMR methods for formulation design so far discussed all involve a form of isotopic labelling.
However, Golovanov and co-workers have attempted to address the challenge of working directly with
industrial formulation samples, by using 1D 1H NMR methods. One dimensional NMR spectra were
recorded for mAbs in presence of an excipient mixture arginine glutamate. The 1H NMR experiments
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helped to identify conditions whereby protein-protein interactions were restricted. They also revealed
that translational diffusion measurements were less useful than transverse relaxation data in finding
the most suited formulation [123]. The other ligand-based approach mentioned earlier was diffusion
NMR, this technique was used to differentiate NMR signals of the excipient that may potentially mask
mAb and insulin NMR signals [124–126]. Although, 1D 1H NMR spectra are unsuitable for in-depth
structural understanding of proteins, they can still provide an initial insight into whether the protein
of interest is in its folded or unfolded state within formulations.

5. Molecular Modelling Applications in Aggregation and Formulation Design

Ligand-protein and protein-protein interaction sites are functionally important for modulating
protein stability, including potentially for the control of aggregation in therapeutic protein formulations.
Steering the design of such sites can be challenging as often there are large surface areas involved,
structural dynamics and the presence of solvent molecules [127,128]. Strategies to engineer these sites
include mutating residues that are involved in the ligand-protein and protein-protein interactions.
Although there are a significant number of available protein and peptide structures obtained by
NMR or X-crystallography (PDB), there is a lack of experimental information on protein-protein
interfaces, particularly those involved in protein aggregation. MD has been found to be a useful tool
in predicting the influences of various factors on protein structures, including guiding site-directed
mutagenesis [129].

Protein unfolding may lead to aggregated states, which itself presents as an immense challenge in
maintaining conformational stability. Daggett and Levitt have simulated unfolding pathways using
MD to understand the mechanisms behind protein folding [130]. MD has also been found to be crucial
in providing molecular insights into the amyloidogenesis process. Simulations at neutral and lower pH
conditions were carried out to characterise the conformational changes of a prion protein from its native
cellular isoform (PrPC) to an infectious form (PrPSc). The latter is known to lead to neurodegenerative
diseases. The protein structure was found to be intact at a neutral pH, whereas at lower pH there was
more flexibility in the structure. Furthermore, the total sheet-like structure increased via the native
β-sheet and an additional portion formed in the N terminal of PrP [131,132].

Daggett and co-workers hypothesized that rarely formed α-sheet structures are shared by
amyloidogenic proteins which are linked to toxicity. Molecular Dynamics was used to generate
structures for the rational design of novel anti-α-sheet peptides which were also tested experimentally.
These α-sheet structures provide a suitable target for neutralising the toxicity and preventing fibril
formation [133]. The novel α sheet design has the potential to prevent aggregation in several amyloid
proteins Aβ Alzheimer’s and amylin (type 2 diabetes) as they bind to the toxic species [134].

An extensive review of the wealth of computational tools to determine aggregation-prone hotspots
has already been carried out. The review highlights specific regions in either the structure or in the
sequence of a protein that induces aggregation. It proposes a list of sequence based computational
methods whereby Aggregation Prone Regions (APRs) can be identified [135]. Some of the more
prominent tools include; AGGRESCAN [136], TANGO [137] and PASTA [138]. A structural tool to
identify APRs has been used on therapeutically relevant mAbs. The Spatial Aggregation Propensity
(SAP) method employs molecular dynamics to map fluctuations and identify the number of aggregation
prone hydrophobic regions exposed on the antibody surface. These hydrophobic patches can
be exposed natively, via fluctuations or conformational shifts and can be observed by molecular
simulations. A high SAP value meant that there was a presence of APRs and these were used to inform
of potential mutations that inherently improved antibody stability [139–141].

Computational simulations can potentially provide molecular insights into drug formulations.
Although small molecule formulations are beyond the scope of this review, there are two notable
modelling studies that employ docking and MD to study their respective formulations. A combined
approach using both methods was used to investigate the interactions between hydrophilic excipients;
lactose, hydroxypropyl methyl cellulose (HPMC), mannitol and the poorly soluble, Bicalutamide (BIC).
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BIC is a non-steroidal antiandrogen drug used to treat prostate cancer. A Lamarckian genetic
algorithm within the AutoDock 4 software package [48] was used to seek out the lowest binding
energy of BIC-excipient during docking. The best conformation of each BIC-excipient complex
was then used as the starting MD structure. MD simulations of the docked complexes revealed
Lennard-Jones interactions between BIC-HMPC/mannitol and coulomb interactions between
BIC-lactose. Lactose formed the most hydrogen bonds with water and provided the best dissolution
performance in experimental studies [142]. Jha and Larson conducted a detailed molecular dynamics
study to assess the effects of polymeric excipients on a Phenytoin, which exhibits poor solubility in
water. This work demonstrates the use of MD utilities such as radial distribution functions between
API-API molecules to characterise aggregation and also between excipient-API to flesh out potential
interactions [143].

As mentioned earlier, excipients interact with proteins via many different mechanisms. Arginine is
particular has several mechanisms of actions, which makes it fascinating to study by MD. A series
of aqueous molecular simulations to investigate arginine’s aggregation inhibition properties were
set up. The simulations revealed arginine molecules had the tendency to form hydrogen bonded
clusters when in solution. The hydrogen bonds were found to be stronger within clusters than those
between arginine and water. A similar cluster formation was observed upon addition of proteins.
The clusters effectively crowded out protein-protein interactions. By contrast, cation-π interactions
between arginine and the protein were found to stabilise the unfolded intermediates [144].

In order for a protein to be conformationally stable, it would have to demonstrate good
solubility in water. An excipient mixture of arginine (L-Arg) and glutamate (L-Glu) has been explored
experimentally as a way forward to inhibit aggregation in proteins [145,146]. Preferential interaction
coefficients were derived in simulations to investigate this behaviour further. Preferential interaction
coefficients are a measure of the excess number of excipient molecules in the vicinity of a protein
compared to that in the bulk solution. The simulation conditions included a combination of Arg-Glu
mixtures at a range of concentrations, as well as single component L-arginine and L-glutamate system
in the presence of the well-characterised Drosophila Su dx protein WW34. The main findings indicated
that the equimolar mixture system enhanced the protein solubility more than systems consisting of
single co-solvent components. Again, the increase in crowding and hydrogen-bond formation between
co-solvent molecules led to a suppression of protein-protein interactions [147]. Another, MD study
investigated Arginine’s role as an eluent during Protein A chromatography. The main purpose of
this complementary study was to witness the effects of adding an excipient in an attempt to limit
aggregate formation at a crucial manufacturing step. Addition of arginine was successful in disrupting
the affinity between Protein A and an antibody. Meanwhile, another excipient, citrate, was found to
reverse the process [148].

Similarly, MD simulations have been carried out with other excipients such as polyethylene glycol
(PEG) [149], polyvinyl alcohol [150], trehalose and its derivatives [151–153]. Mechanistic insights into
excipient interactions has also been studied using molecular dynamics in freeze-dried systems [154,155].
A recent computational study has implemented molecular docking approaches to identify binding
hotspots on a Fab A33 fragment surface, for a set of commercially available excipients as shown below
in Figure 7. The excipients selected for the study were from various categories such as amino acids,
sugars, surfactants and osmolytes. Each excipient pose was characterized in terms of their predicted in
silico binding energy, and also the Fab residues with which they interacted. All eight excipients were
found to bind on three particular hotspots. Protein-protein docking was implemented on two Fab A33
molecules using Hex [45] and Grammx [46]. This allowed an appraisal of the interacting Fab residues
with excipients and whether they coincided with protein-protein interaction sites. The regions through
which two Fab molecules are predicted by docking to interact during aggregation, can potentially
be shielded by adding excipients that also bind to those regions. The presence of such an effect was
validated with the experimental determination of thermal stability for each formulation [156].
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There have been efforts to demonstrate the possibility of using non-conventional classes of
excipients such as anti-inflammatory drugs to enhance therapeutic protein stability. For example,
the anti-inflammatory drug Dexamethasone phosphate was docked onto an in silico-built model of the
Bevacizumab®–Bevacizumab® interface to identify potential binding sites. A region on the Fc structure
was found to interact with a Fab fragment on the second bevacizumab molecule. An interaction with
Dexamethasone phosphate and Lys 445 on the protein was revealed to potentially suppress dimerization.
Bevacizumab® is a humanised whole mAb that is used to treat various cancers and eye disease [157,158].
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6. Future Perspectives

Molecular modelling and NMR spectroscopy are promising techniques for improving the
understanding of the structure and dynamics of proteins and the impact of formulation excipients.
However, the current wealth of literature only demonstrates individual use of these techniques in the
study of aggregation and designing formulations. There are opportunities to fill this void by combining
computational and NMR methods. Molecular Dynamics and NMR share a complementary relationship,
whereby observable NMR parameters can be used to validate those derived by molecular simulations.
This has been made possible by the introduction of methodologies such as CamShift [159,160], which can
be used to evaluate molecular dynamics derived backbone chemical shifts of proteins. The significance of
this going forward may help the characterisation of protein motions on an atomic level, which ultimately
can be invaluable when studying aggregation and informing the design of formulations.

Molecular docking has proven to be effective in finding excipient-binding hotspots on a protein’s
surface. During drug discovery, 2D 1H-15N HSQC chemical shift perturbations (CSPs) have been
used to guide molecular docking by selection of binding sites [161]. This also provides an excellent
way of refinement and/or validation of molecular docking of excipients where low affinity binding
and possibly non-specific interactions may occur. Once binding site(s) and results from docking are
experimentally validated for a range of excipients by NMR, molecular docking would then have the
potential to become more predictive, and therefore adopted in formulation design. Excipients could
be screened in silico against validated protein binding-sites for local structure stabilisation, or for
the shielding of protein surfaces that otherwise self-interact. Potentially even the design of novel
excipients may be undertaken. Eventually, as accuracy of docking improves, this could be converted
into an in silico high-throughput process which provides detailed insights into the nature of
excipient–protein interactions.

Such computer aided formulation design can be complemented with molecular dynamics
simulations by taking into consideration the simultaneous presence of multiple components,
by including not only water, salts and buffers, but also including a combination of excipients.
This would then enable a more detailed understanding of the complex interactions found between
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the effects of excipients, for example through competing affinity for either the same binding site or
multiple binding sites. Ligand observe NMR methods may be used to confirm these in silico results.
Judicious analyses of trajectories may also indicate a possible rationale for the effects of excipient
combinations on protein structure and/or stability.

The computer modelling approaches may have higher significance during the development stages,
particularly in industry where the availability of protein (native or isotope enriched) is low, and not
yet fully characterized by NMR. As the protein production and purification processes are established,
the issue of the availability for both NMR and experimental formulation, becomes less important.
At those stages, an extensive set of experimental information may be acquired to inform the rational
design of formulations, but will be able to build upon a wide pre-screen of available excipients in silico.

7. Conclusions

This review has highlighted the principles that govern molecular modelling tools and NMR
spectroscopy. It also has given an overview of the applications of NMR and molecular simulations to
provide atomic level insights into possible interactions between therapeutic proteins and excipients.
A key aim going forward will be to harness the relationship between NMR and computational
modelling, and the insights they provide, in the design of new formulations that will ensure
product stability.
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