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Abstract: Teixobactin is a highly potent cyclic depsipeptide which kills a broad range of multi-drug
resistant, Gram-positive bacteria, such as Methicillin-resistant Staphylococcus aureus (MRSA) without
detectable resistance. In this work, we describe the design and rapid synthesis of novel teixobactin
analogues containing two cysteine moieties, and the corresponding disulfide-bridged cyclic
analogues. These analogues differ from previously reported analogues, such as an Arg10-teixobactin,
in terms of their macrocyclic ring size, and feature a disulfide bridge instead of an ester linkage.
The new teixobactin analogues were screened against Methicillin-resistant Staphylococcus aureus and
Methicillin-sensitive Staphylococcus aureus. Interestingly, one teixobactin analogue containing all
L-amino acid building blocks showed antibacterial activity against MRSA for the first time. Our data
indicates that macrocyclisation of teixobactin analogues with disulfide bridging is important for
improved antibacterial activity. In our work, we have demonstrated the unprecedented use of a
disulfide bridge in constructing the macrocyclic ring of teixobactin analogues.

Keywords: teixobactin; MRSA; disulfide bridge

1. Introduction

Antimicrobial resistance (AMR) is predicted to cause 10 million deaths every year, and US $100
trillion in economic damages by 2050 [1]. Current antibiotics have proven to be ineffective against the
recent surge of drug-resistant bacteria. Furthermore, the discovery and development of new antibiotics
has been considerably slower than increase in bacterial resistance. Thus, there is a constant need to
develop new and potent antibacterial compounds. The recently discovered natural product, teixobactin
(Figure 1A) has shown highly potent activity against major, clinically relevant, Gram-positive
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bacteria, including resistant bacterial strains such as Enterococcus spp. (vancomycin-resistant
enterococci, VRE), Methicillin-resistant Staphylococcus aureus (MRSA), and Mycobacterium tuberculosis [2].
The nonribosomal cyclic undecapeptide, teixobactin, comprises of four D-amino acids—namely,
N-Me-D-Phe1, D-Gln4, D-allo-Ile5, and D-Thr8, and the rare L-allo-enduracididine amino acid.
Teixobactin kills a number of Gram-positive bacteria without detectable resistance. Furthermore, it is
less prone to developing resistance because it operates by at least two known unique modes of action.
Teixobactin binds to lipid II (precursor of peptidoglycan), which is a highly conserved pyrophosphate
motif of multiple bacterial cell wall substrates and lipid III (a precursor of cell wall teichoic
acid) [2]. Previous publications on teixobactin describe the total syntheses of teixobactin [3,4] and its
analogues [5–7], as well as their biological activities. Our group [6] and others [5,7] have reported
the synthesis of Arg10-teixobactin by replacing the synthetically challenging L-allo-enduracididine
amino acid occurring in native texiobactin at position 10 with arginine. The first structure-activity
relationships (SAR) of Arg10-teixobactin and the importance of the four D-amino acids for antibacterial
activity was also described by our research group [6]. Subsequently, we also defined the 3D molecular
structures of teixobactin analogues using NMR [8]. The disordered structure of teixobactin analogues
was found to be crucial for their biological activity, whereas the D-amino acids were found to be
important for maintaining the disordered structure [8]. The crystal structure of a truncated teixobactin
analogue was reported by Yang et al., and showed the Ile6 and Ile11 to be closely placed together
through space [7].

Yang et al. [7] also reported the minimum pharmacophore of teixobactin, while Albericio et al. [9]
reported on a lysine scan of Arg10-teixobactin. We further reported on the design and synthesis of
potent teixobactin analogues against MRSA through the replacement of L-allo-enduracididine, showing
that L-allo-enduracididine can be designed out and analogues can be made to realise the therapeutic
potential of teixobactins [10,11].

Figure 1. (A) Teixobactin, (B) Cys8–Cys11 disulfide-teixobactins.

To further improve access to highly potent teixobactin analogues, we also strategically replaced the
synthetically challenging enduracididine with commercially available hydrophobic residues, such as
leucine and isoleucine [12]. It was shown that Leu10-teixobactin and Ile10-teixobactin displayed activity
against MRSA to the same extent as teixobactin. Brimble et al. have also reported on the synthesis and
antibacterial activity of teixobactin analogues by replacing L-allo-enduracididine with isosteres [13].
Furthermore, teixobactin analogues with lipid tails were reported by Jamieson et al. [14] and recently
we described highly potent teixobactin analogues containing proteogenic amino acids at position 10
and their antibacterial activity in vitro and in vivo [15]. As an alternative strategy, we were interested
in exploring cysteines and disulfide-briged macrocyclic mimics of teixobactin analogues.

Cysteine-rich antimicrobial peptides containing multiple disulfide bonds were isolated from
plants [16] and animals [17,18]. These peptides have shown protective effects in the living host
against anti-bacterial infections [19]. In certain instances, disulfide bonds have been engineered to
study the structure-activity relationships (SAR) of antimicrobial peptides, which makes them an
interesting tool for SAR studies [20]. Furthermore, the easy introduction of cysteines via commercially
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available building blocks and mild conditions for synthesis of disulfide bonds [21] allow for rapid
and cost-effective macrocyclization. In this study, we describe simplified teixobactin analogues
by introducing cysteines at specific positions (D-Thr8 and Ile11) and subsequently constructing the
macrocyclic ring using disulfide bridges to better understand the structure-activity relationship
of teixobactin analogues (Figure 1B). This will also allow us to understand how the core ring
size of teixobactin analogues (similar ring size: 14 atoms, teixobactin: 13 atoms) impacts its
antibacterial activity.

Here, we report the design, rapid synthesis, and antibacterial activity evaluations against MRSA
of eight new teixobactin analogues containing cysteines and the unprecedented use of a disulfide
bridge in constructing the macrocyclic ring of teixobactin.

2. Materials and Methods

2.1. Materials

Fmoc-D-Ile-OH, Fmoc-D-Thr(Trt)-OH, and oxyma pure were purchased from Merck Millipore
(Watford, UK). All L-amino acids, 1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium
3-oxid hexafluorophosphate (HATU), Fmoc-D-Gln(Trt)-OH, Boc-D-Nmethylphenyl-OH, Fmoc-D-Cys-OH,
Fmoc-L-Cys-OH, Fmoc-Glu(OAll)-OH, Diisoproplycarbodiimide, and Triisopropylsilane were purchased
from Fluorochem, Hadfield, UK. The protecting groups for the amino acids are Pbf for Arg and
Trt for Gln, unless specified otherwise. Diisopropylethylamine, supplied as extra-dry, redistilled,
and 99.5% pure, was purchased from Sigma Aldrich (Gillingham, UK). Peptide-synthesis grade
Dimmethylformamide (DMF) and Trifluoroacetic acid (TFA) was purchased from Rathburn chemicals
(Walkerburn, UK). Diethyl ether, i-PrOH, MeOH (HPLC grade), and Acetonitrile (HPLC grade) were
purchased from Fisher Scientific (Loughborough, UK). Water with the Milli-Q grade standard was
obtained in-house from an ELGA Purelab Flex system. Rink amide Chemmatrix resin (manufacturer’s
loading = 0.49 mmol/g) was obtained from Biotage, Uppsala, Sweden. All chemicals were used
without further purification.

2.2. General Methods

All peptides were analyzed on a Thermo Scientific Dionex Ultimate 3000 HPLC (Thermo Scientific,
Hemel Hempstead, UK) equipped with a Phenomenex Gemini NX C18 110 Å (150 × 4.6 mm)
(Phenomenex, Macclesfield, UK)column, using the following buffer systems: A: 0.1% HCOOH in
milliQ water. B: ACN using a flow rate of 1 mL/min. The column was flushed with 95% A for 5 min
prior to an injection and was flushed for 5 min with 95% B and 5% A after the run was finished.
Peptides were dissolved in (1:1) 0.1% HCOOH buffer in water and acetonitrile (ACN) and analyzed
using the following gradient: 95% A for 2 min; 5–95% B for 25 min; 95% B for 5 min; and 5% A for 4 min.
Peptides were dissolved in 0.1% HCOOH buffer in water and in ACN (10–30% ACN), and purified
using the same gradient as mentioned above, on a Thermo Scientific Dionex Ultimate 3000 HPLC with
a flow rate of 5 mL/min using a Phenomenex Gemini NX C18 110 Å (150 × 10 mm) semi-prep column.
ESIMS spectra were recorded on a Thermo Scientific Mass Spectrometer (TSQ Endura, triple quad) in
the positive electrospray ion mode.

2.3. Synthesis of Teixobactin Analogue 3

Teixobactin analogue 3 was synthesized as described in Scheme 1. (step a) Commercially available
Rink amide Chemmatrix resin (manufacture’s loading 0.49 mmol, 204 mg, 0.1 mmol) resin was swelled
in DMF in a reactor. To this resin all the amino acids in the sequence were coupled by the use of 4 equiv
of amino acids, 4 equiv of DIC/Oxyma in a microwave peptide synthesiser (Biotage Initiator + Alstra).
The coupling time was 5 min at 70 ◦C. The deprotection was done using 20% of Piperidine in DMF for
3 min at 70 ◦C, and then for 10 min at room temperature. (step b) After building the linear peptide 2,
full cleavage was achieved using TFA/TIS/H2O = 95:2.5:2.5% by being stirred for 1 h. The peptide was
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filtrated into cold diethyl ether (−20 ◦C) and the precipitate was centrifuged 3 × 10 min at 7000 rpm
to obtain crude peptide. (step c) The crude peptide 2 was cyclized using DMSO/MQ water = 3:1
while maintaining a peptide concentration of 1 mM, and was stirred for 12 h at room temperature.
The reaction mixture was purified by using semi-prep RP-HPLC (Figures S1, S3, S5, S7, S9, S11, S13
and S15 in Supporting Information) using the protocols described in the general methods. All the
pure fractions were combined together and lyophilized to obtain a white solid. All the teixobactin
analogues were purified to ~95% purity, as indicated by HPLC (Figures S1, S3, S5, S7, S9, S11, S13 and
S15 in Supporting Information). All the peptides were synthesized using the method described above
for teixobactin analogue 3, and isolated yields were in the range of 15–25%. All teixobactin analogues
were characterized by ESIMS in positive mode (Table S1, Figures S2, S4, S6, S8, S10, S12, S14 and S16).

Scheme 1. Synthesis of analogue 1, 2, and 3: a. Fmoc-AA(PG)-OH (AA = amino acid, PG = protecting
group), DIC/Oxyma microwave couplings, followed by 20% piperidine in Dimmethylformamide (DMF).
b. TFA:TIS:H2O = 95:2.5:2.5, 1 h. c. DMSO:miliQ water = 1:3 (peptide concentration 1 mM), 12 h.

2.4. Antibacterial Screening

For minimum inhibitory concentration (MIC) assays, all peptides were dissolved in DMSO
containing 0.002% polysorbate 80. Bacteria was grown in Mueller Hinton broth (Oxoid) in triplicate.
All incubations were at 37 ◦C. Dilutions were carried out in triplicate, and 100 µL of autoclaved Mueller
Hinton broth was added to wells 2–11 in a 96-well plate. 200 µL of the peptide was added to well one
at a concentration of 128 µg/mL. 100 µL of peptide in well one was taken up and pipetted into well
two. The mixture was then mixed via pipetting before 100 µL was taken up and pipetted into well
three. This process was repeated up to well 10. Once the peptide was added to well 10, 100 µL was
taken up and then discarded, ensuring that well 11 had no peptide present. Thus, the concentrations
(in µg/mL) were: 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, and 0 (no peptide present). Each well was then
inoculated with 100 µL of bacteria that had been diluted to an OD 600 nm of 0.1. This was repeated
three times. The 96-well plates were then incubated at 37 ◦C for 24 h. The MIC was determined to be
the lowest concentration at which there was no growth visible.

3. Results and Discussion

3.1. Design and Synthesis

In our major ongoing project to develop simplified teixobactin analogues against multi-drug
resistant bacteria which are easily synthetically accessible, we were particularly interested in
understanding the role of the ester bond and the ring size of the teixobactin macrocycle. To test
this, we selected cysteines to replace D-Thr8 and Ile11, and a disulfide bridge instead of the ester
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linkage in the macrocyclic ring of teixobactin. This replacement allows for the synthesis of an analogue
with a larger macrocyclic ring (14 atoms) similar to the native teixobactin macrocycle (13 atoms).
The use of a disulfide bridge in teixobactin analogues allows the incorporation of all amino acids in an
automated manner from commercially available building blocks. Moreover, the macrocyclization can
be achieved in solutions using mild conditions, such as air oxidation.

Teixobactin contains four D-amino acids (N-Me-D-Phe1, D-Gln4, D-allo-Ile5 and D-Thr8). To test
the feasibility of the synthesis of teixobactin analogues containing a disulfide bridge, we selected
all L-amino acids for cost-effectiveness. The synthesis of all teixobactin analogues 2–9 (Figure 2)
were achieved successfully, as described in Scheme 1. After establishing the synthesis of teixobactin
analogues with L-amino acids, we turned our attention to the synthesis of teixobactin analogues
(4,5) with four D-amino acids similar to teixobactin. Biological evaluation of these analogues would
facilitate an understanding of their role, as well as a comparison with teixobactin analogues containing
L-amino acids (2,3). D-amino acids of teixobactin analogues are reported to be important for their
biological activity. To test whether this was also true with cysteines containing teixobactin analogues,
we synthesized analogues (6,7). The analogues (8,9) were synthesized to evaluate the role methyl
group at D-phenylalanine1 in antibacterial activity.

Figure 2. Structure of teixobactin analogues, 2–9.

The synthesis of teixobactin analogue 3 started on Rink amide Chemmatrix resin, using an
automated microwave peptide synthesizer. The coupling of all amino acid (AA) building blocks
was achieved using four equivalents of AA and 4 equivalents of DIC/Oxyma at 70 ◦C for 5 min.
Fmoc deprotection was performed using 20% piperidine in DMF (Scheme 1). On completion of the
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synthesis, the peptide was released and deprotected from resin in a single step using TFA:TIS:H2O.
The crude teixobactin analogue 2 was cyclized in DMSO and miliQ water using air oxidation to
obtain analogue 3. Analogue 3 was purified using reverse phase HPLC (Figure S1), and its identity
was confirmed by ESI-MS (Figure S2). The isolated yields of teixobactin analogues were found to
be 15–25%.

3.2. Antibacterial Studies

Antibacterial activity of the teixobactin analogues was assessed against Methicillin-resistant
Staphylococcus aureus (MRSA ATCC 33591, MRSA ATCC 70069) and Methicillin-sensitive Staphylococcus
aureus. The minimum inhibitory concentration was measured using the broth microdiluation method
(see Experimental Section 2.4). Interestingly, the linear analogues 2 showed very low activity (MIC
128 µg/mL, Table 1) against MRSA ATCC 33591. The cyclisation of linear teixobactin analogues is
reported to improve antibacterial activity [7]. The analogue 3 surprisingly showed 2–4 times higher
activity (MIC 32–64 µg/mL) than analogue 2 against MRSA ATCC 33591, despite having all L-amino
acids. These results are of interest since, thus far, there has been no activity reported for linear or
cyclic analogues of teixobactin aganist MRSA containing all L-amino acids. Analogue 3 did not
exhibit any activity against MRSA ATCC 70069 and Methicillin-sensitive Staphylococcus aureus up to
the tested concentration of 128 µg/mL. Unexpectedly, the analogues 4,5 containing D-amino acids
(D-Phe1, D-Gln4, D-allo-Ile5 and D-Cys8) have not shown any activity against MRSA and MSAA. This
observation is contrary to previous findings where teixobactin analogues containing ester linkages
and D-amino acids were reported to show good antibacterial activity [8]. Thus, our finding indicates
that teixobactin analogues containing a disulfide bridge do not follow the structure activity trend
of teixobactin analogues containing an ester linkage in the macrocycle. The analogues 6,7 and 8,9
containing three D-amino acids (D-Phe1 (for 6,7), N-D-Phe1 (for 8,9), D-Gln4, D-allo-Ile5 and L-Cys8)
have not shown any antibacterial activity against MRSA and MSSA. The low activity (3) and lack
of any antibacterial activity (4–9) of teixobactin analogues is most probably due to a larger ring size
(14 atoms) and lack of hydrophobic contact between Ile6 and Ile11 [22] due to the replacement of Ile11

with cysteine in teixobactin analogues containing a disulfide bridge.

Table 1. List of teixobactin analogues (2–9). MIC: Minimum Inhibitory Concentration in µg/mL; all the
MIC runs in triplicate. (-) = Not evaluated.

Compound No. MRSA ATCC 33591 MRSA ATCC 700699 S. aureus ATCC 29213

2 128 >128 >128
3 32–64 >128 >128
4 >128 >128 >128
5 >128 >128 >128
6 >128 - >128
7 >128 - >128
8 >128 - >128
9 >128 - >128

Vancomycin - 2 4
Leu10-teixobactin12 0.25 0.25 0.062

Teixobactin12 0.25 - -

4. Conclusions

We have developed a rapid synthesis of new teixobactin analogues, either containing cysteines
or a disulfide bridge. This synthesis uses the automated incorporation of all amino-acid building
blocks. The teixobactin analogue containing L-amino-acid building blocks with a disulfide bridge
showed antibacterial activity against MRSA. These results suggest that the cyclization of teixobactin
analogues is important, but also that D-amino acids are not essential for antibacterial activity against
MRSA. Moreover, we have demonstrated the unprecedented use of a disulfide bridge in constructing
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the macrocyclic ring of teixobactin analogues. Our work lays the foundation for rapid synthesis of
further simplified teixobactin analogues containing cysteines and a disulfide bridge, and may provide
molecules suitable for addressing the challenges from antimicrobial resistance.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/10/4/183/s1,
Table S1: Compound number, name, chemical formula, exact mass and mass found for compounds 2–9. Figure S1:
HPLC trace of purified teixobactin analogue 2 (gradient: 5–95% ACN in 25 min using. A: 0.1% HCOOH in water,
B: ACN). Figure S2: ESI-MS of purified teixobactin analogue 2. Exact mass calcd. For C53H90N16O14S2 = 1238.63,
found M + H+ = 1239.62, M/2 + H+ = 620.38. Figure S3: HPLC trace of purified teixobactin analogue 3 (gradient:
5–95% ACN in 25 min using A: 0.1% HCOOH in water, B: ACN). Figure S4: ESI-MS of purified teixobactin analogue
3. Exact mass calcd. For C53H88N16O14S2 = 1236.61, found M + H+ = 1237.72, M/2 + H+ = 619.47. Figure S5: HPLC
trace of purified teixobactin analogue 4 (gradient: 5–95% ACN in 25 min using A: 0.1% HCOOH in water, B: ACN).
Figure S6: ESI-MS of purified Teixobactin analogue 4. Exact mass calcd. For C53H90N16O14S2 = 1238.63, found
M + H+ = 1239.57, M/2 + H+ = 620.76. Figure S7: HPLC trace of purified teixobactin analogue 5 (gradient: 5–95%
ACN in 25 min using A: 0.1% HCOOH in water, B: ACN). Figure S8: ESI-MS of purified teixobactin analogue 5.
Exact mass calcd. For C53H88N16O14S2 = 1236.61, found M + H+ = 1237.53, M/2 + H+ = 619.53. Figure S9: HPLC
trace of purified teixobactin analogue 6 (gradient: 5–95% ACN in 25 min using A: 0.1% HCOOH in water, B: ACN).
Figure S10: ESI-MS of purified teixobactin analogue 6. Exact mass calcd. For C53H90N16O14S2 = 1238.63, found M
+ H+ = 1239.57, M/2 + H+ = 620.76. Figure S11: HPLC trace of purified teixobactin analogue 7 (gradient: 5–95%
ACN in 25 min using A: 0.1% HCOOH in water, B: ACN). Figure S12: ESI-MS of purified teixobactin analogue
7. Exact mass calcd. For C53H88N16O14S2 = 1236.61, found M + H+ = 1237.56, M/2 + H+ = 619.36. Figure S13:
HPLC trace of purified teixobactin analogue 8 (gradient: 5–95% ACN in 25 min using A: 0.1% HCOOH in water,
B: ACN). Figure S14: ESI-MS of purified teixobactin analogue 8. Exact mass calcd. For C54H92N16O14S2 = 1252.64,
found M + H+ = 1253.64, M/2 + H+ = 627.44. Figure S15: HPLC trace of purified teixobactin analogue 9 (gradient:
5–95% ACN in 25 min using A: 0.1% HCOOH in water, B: ACN). Figure S16. ESI-MS of purified teixobactin
analogue 9. Exact mass calcd. For C54H90N16O14S2 = 1250.63, found M + H+ = 1251.63, M/2 + H+ = 626.24.
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