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Abstract: Although current antiretroviral drug therapy can suppress the replication of human
immunodeficiency virus (HIV), a lifelong prescription is necessary to avoid viral rebound.
The problem of persistent and ineradicable viral reservoirs in HIV-infected people continues to
be a global threat. In addition, some HIV-infected patients do not experience sufficient T-cell immune
restoration despite being aviremic during treatment. This is likely due to altered hematopoietic
potential. To achieve the global eradication of HIV disease, a cure is needed. To this end, tremendous
efforts have been made in the field of anti-HIV gene therapy. This review will discuss the concepts of
HIV cure and relative viral attenuation and provide an overview of various gene therapy approaches
aimed at a complete or functional HIV cure and protection of hematopoietic functions.

Keywords: human immunodeficiency virus; acquired immunodeficiency syndrome; hematopoietic
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1. Introduction

Human immunodeficiency virus (HIV) infects CD4+ T cells and causes acquired immunodeficiency
syndrome (AIDS). AIDS remains as a global threat due to multifactorial reasons, including the difficulty
in developing an effective vaccine [1]. According to The Joint United Nations Programme on HIV/AIDS
(UNAIDS), in 2017, about 36.9 million people were living with AIDS while only 21.7 million patients
were receiving antiretroviral therapy (ART), resulting in about 1.8 million newly HIV-infected people per
year [2]. Although ART can limit the size and distribution of HIV reservoirs depending on the earliness
of its initiation, it cannot eliminate latent HIV infections from the host and thus, a lifelong prescription is
required for suppressing viral rebound from the reservoirs [3]. Therefore, further exploration is vital to
discover new treatment options and effective vaccines [4].

The depletion of memory CD4+ T cells preceding AIDS manifestation may be mainly due to the
infection of these cells. However, HIV may also reduce the production of naïve T cells by infecting
CD4+ thymocytes [5–8]. On the other hand, although the dynamics of hematopoietic stem/progenitor
cells (HSPCs) in HIV-infected settings is still unclear, it is well established that HIV infections are
associated with hematological changes, such as anemia and pancytopenia [9]. These hematological
changes are likely due to the modified HSPCs and hematopoietic potential of the host. Therefore,
a cure for HIV disease should consider not only the absence of newly HIV-infected CD4+ cells but also
the normal production rates of CD4+ T cells and other hematopoietic cells. To achieve an HIV cure in
its strict sense, the protection of bone marrow hematopoietic functions is essential (Figure 1).
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Figure 1. The concepts of human immunodeficiency virus (HIV) cure. A cure for the HIV disease is 
commonly interpreted as antiretroviral drug therapy (ART)-free life without viral rebound for 
prolonged periods. In addition, the cure for bone marrow dysfunctionalities observed in HIV-infected 
patients could be included in a stricter definition of a HIV cure. 

This review first describes the current evidence of modified bone marrow hematopoietic 
potential in HIV infection, leading to the strict definition of an HIV cure. It then explains how anti-
HIV gene therapy methods applied to HSPCs can support the preservation of hematopoietic potential 
and a functional cure. This will be followed by an overview of different potential gene therapy 
methods for achieving this goal. 

2. Evidence of Modified CD34+ Cell Dynamics and Functions in HIV Infection 

HIV-1 may cause the loss of primitive hematopoietic progenitors without directly infecting these 
cells [10]. However, HIV infection does not cause the complete loss of CD34+ stem cells and therefore, 
it is possible to harvest stem cells from HIV-infected patients suffering from lymphoma [11] albeit 
with reduced efficiencies in relation to the reduction of peripheral CD4+ T-cell counts [12] or reduced 
in vitro lymphopoiesis capacities [13]. The recovery of CD4+ T-cell counts after successful 
antiretroviral drug therapy treatment may depend on the recovery of CD34+ cell counts [14]. 

A number of potential mechanisms have been suggested for the changes of CD34+ cells in the 
presence of HIV, such as reduced expression of the proto-oncogene c-mpl on CD34+ cells [15] and 
elevated plasma stromal cell-derived factor 1 (SDF-1) levels [16]. HIV-1 infection causes the 
upregulation of inflammatory cytokine production that may affect the dynamics and functions [17] 
or induce Fas-mediated apoptosis [18] of bone marrow CD34+ cells. On the other hand, HSPCs 
themselves may contribute to inflammation and allergies [19]. This may be partly due to the fact that 
inflammatory signals are involved in HSPC development [20]. Recent evidence has suggested that 
CD34+CD226(DNAM-1)brightCXCR4+ cells may represent a subset of common lymphoid progenitors 
associated with chronic HIV infection and inflammation, reflecting the altered dynamics of natural 
killer cells and α/β T cells [21]. 

Humanized mouse models are useful for analyzing bone marrow CD34+ loss or changes after 
the HIV-1 challenge. In studies with humanized mice infected with CXCR4-tropic HIV-1NL4-3, CD34+ 
hematopoietic progenitor cells were depleted and showed impaired ex vivo myeloid/erythroid colony 
forming capacities after the challenge [22,23]. A reduction of bone marrow CD34+ cell counts after 
CCR5-tropic HIV-1 infection was also detected in another study [24]. Interestingly, the depletion of 
bone marrow CD34+ cells following CCR5-tropic HIV infection has been reported to depend on 
plasmacytoid dendritic cells [25] or to be associated with the expression of CXCR4 [26]. The latter 
implicates a potential role of the SDF-1/CXCR4 axis in the loss of CD34+ cells. Another recent in vitro 
study suggested that CD34+CD7+CXCR4+ lymphoid progenitor cells may be depleted in the presence 

Figure 1. The concepts of human immunodeficiency virus (HIV) cure. A cure for the HIV disease
is commonly interpreted as antiretroviral drug therapy (ART)-free life without viral rebound for
prolonged periods. In addition, the cure for bone marrow dysfunctionalities observed in HIV-infected
patients could be included in a stricter definition of a HIV cure.

This review first describes the current evidence of modified bone marrow hematopoietic potential
in HIV infection, leading to the strict definition of an HIV cure. It then explains how anti-HIV gene
therapy methods applied to HSPCs can support the preservation of hematopoietic potential and a
functional cure. This will be followed by an overview of different potential gene therapy methods for
achieving this goal.

2. Evidence of Modified CD34+ Cell Dynamics and Functions in HIV Infection

HIV-1 may cause the loss of primitive hematopoietic progenitors without directly infecting these
cells [10]. However, HIV infection does not cause the complete loss of CD34+ stem cells and therefore,
it is possible to harvest stem cells from HIV-infected patients suffering from lymphoma [11] albeit
with reduced efficiencies in relation to the reduction of peripheral CD4+ T-cell counts [12] or reduced
in vitro lymphopoiesis capacities [13]. The recovery of CD4+ T-cell counts after successful antiretroviral
drug therapy treatment may depend on the recovery of CD34+ cell counts [14].

A number of potential mechanisms have been suggested for the changes of CD34+ cells in
the presence of HIV, such as reduced expression of the proto-oncogene c-mpl on CD34+ cells [15]
and elevated plasma stromal cell-derived factor 1 (SDF-1) levels [16]. HIV-1 infection causes the
upregulation of inflammatory cytokine production that may affect the dynamics and functions [17]
or induce Fas-mediated apoptosis [18] of bone marrow CD34+ cells. On the other hand, HSPCs
themselves may contribute to inflammation and allergies [19]. This may be partly due to the fact that
inflammatory signals are involved in HSPC development [20]. Recent evidence has suggested that
CD34+CD226(DNAM-1)brightCXCR4+ cells may represent a subset of common lymphoid progenitors
associated with chronic HIV infection and inflammation, reflecting the altered dynamics of natural
killer cells and α/β T cells [21].

Humanized mouse models are useful for analyzing bone marrow CD34+ loss or changes after
the HIV-1 challenge. In studies with humanized mice infected with CXCR4-tropic HIV-1NL4-3, CD34+

hematopoietic progenitor cells were depleted and showed impaired ex vivo myeloid/erythroid colony
forming capacities after the challenge [22,23]. A reduction of bone marrow CD34+ cell counts after
CCR5-tropic HIV-1 infection was also detected in another study [24]. Interestingly, the depletion
of bone marrow CD34+ cells following CCR5-tropic HIV infection has been reported to depend on
plasmacytoid dendritic cells [25] or to be associated with the expression of CXCR4 [26]. The latter
implicates a potential role of the SDF-1/CXCR4 axis in the loss of CD34+ cells. Another recent in vitro
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study suggested that CD34+CD7+CXCR4+ lymphoid progenitor cells may be depleted in the presence
of CXCR4-tropic HIV-1 in the coculture of HIV-infected cord-derived CD34+ cells with mouse stromal
OP9-DL1 cells, which allow the differentiation of T cells [27].

3. The Idea of Intracellular Immunization of HSPCs to Replace the Whole Hematopoietic System

After this, it is important to consider how we could deal with hematopoietic changes in
HIV infection. A potential solution is gene therapy. In 1988, David Baltimore presented his idea
of intracellular immunization by gene therapy [28] and his concepts are still valid today. First,
he suggested expressing inhibitory molecules against HIV in target cells. Second, he proposed
using retroviral vectors to transduce cells although lentiviral vectors are widely used today. Third,
he conceived the use of gene-modified HSPCs to replace the immune system of the hosts with an
HIV-resistant one. These concepts may be summarized as intracellular artificial immune systems
designed against HIV and working independently from HIV-specific CD4+ helper T cells, which are
the most vulnerable HIV targets [29]. Since his work, a number of candidate gene therapies have been
proposed and tested and are described later in this article.

4. The Protection of Bone Marrow CD34+ Cells by an Anti-HIV Gene Therapy Demonstrated In Vivo

However, there have been few reports so far that have tested the protection of CD34+ cells after
HIV infection by gene therapy. This may be because viral suppression and CD4+ counts have been
widely accepted as measures for the effect of gene therapies against HIV. However, the true goal for
any gene therapy against HIV should be the protection of hematopoietic potential because this is
another arm of the definition of AIDS, i.e., the loss of cellular immunity (Figure 1).

Regarding this, we have recently reported that a transcriptional gene silencing (TGS) approach
using a short hairpin (sh) RNA, which is called shPromA (Figure 2), resulted in limited
CXCR4-associated depletion of bone marrow CD34+ cells following CCR5-tropic HIV infection in
humanized mice (Figure 3). This suggests that anti-HIV gene therapy can support the preservation of
the hematopoietic potential of the hosts [26]. Further characteristics of shPromA and previous studies
testing its efficacy as a functional cure gene therapy method is discussed in Section 8.
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Figure 2. A schematic overview of PromA. PromA induces chromatin compaction in the human
immunodeficiency virus (HIV)-1 promoter. This prevents HIV-1 DNA from reactivation, such as
NF-κB-mediated reactivation by tissue necrosis factor (TNF). For details on the molecular mechanisms
involved in transcriptional gene silencing induced by PromA, see Klemm et al., 2016 [30] and
Mendez et al., 2018 [31].
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Figure 3. Summary of the humanized mouse study to test the efficacy of shRNA PromA (shPromA) 
[26]. Newborn NOD/SCID/Jak3null mice were intrahepatically transfused with unmanipulated cord-
derived CD34+ cells or CD34+ cells lentivirally transduced with shPromA. Those mice showing 
engraftment of human cells were challenged with CCR5-tropic HIV-1JRFL. Two weeks after the challenge, 
the mice were sacrificed and their bone marrow (BM) CD34+ cells and peripheral T cells were analyzed. 
Interestingly, mice transplanted with unmanipulated CD34+ cells showed unexpectedly low BM CD34+ 
cell counts 2 weeks after HIV infection, with concomitant depletion of peripheral CD4+ T cells. On the 
other hand, mice engrafted with shPromA-expressing CD34+ cells showed preserved BM CD34+ cell 
and peripheral CD4+ T-cell populations at 2 weeks post challenge. 

5. Target Cells for Anti-HIV Gene Therapies 

Recent studies, including the above shPromA study, indicate that ideal anti-HIV gene therapy targets 
should be hematopoietic stem cells rather than more differentiated cells, such as peripheral CD4+ T cells, 
because the transduced cells could engraft the host bone marrow and act as a lifelong source of HIV-
resistant CD4+ cells [26,32,33]. Potential gene therapies using CD34+ cells have been investigated in vitro 
using cell culture experiments [26,34-36] or in vivo using humanized mice [26,35,37-40]. Furthermore, the 
transplantation of macaques with gene-modified autologous CD34+ cells followed by an infection 
with SIV has also been tested [41,42] although strategies may differ between gene therapies [33]. 
Based on such basic study results, the clinical trials using the transplantation of retrovirally or 
lentivirally gene-modified CD34+ cells in HIV-positive patients have been carried out [43-45]. Gene 
therapies of CD34+ cells have been considered as a cure for monogenic immune diseases. For example, 
the patients with adenosine deaminase deficiency [46], Wiskott–Aldrich syndrome (WAS) [47] and 
X-linked severe combined immunodeficiency [48,49] were successfully treated in clinical trials by 
transplantation of autologous CD34+ cells retrovirally or lentivirally transduced with the wild-type 
gene. Lentiviral vectors may be more efficient in gene transfer into resting stem cells at the G0/G1 
phase compared with murine retroviral vectors [50]. If applied to the gene therapy of HSPCs, both 
retroviral and lentiviral vectors could have adverse effects, including the deregulation of gene 
expression [51] and the triggering of the p53 protein [52]. However, lentiviral vectors may be safer 
than retroviral vectors because the latter may occasionally cause insertional mutagenesis near the 
active start regions of genes, which could possibly lead to oncogenesis and cancers, such as leukemias 
[48]. Self-inactivating retroviral or lentiviral vectors lacking the U3 region of 3′ LTRs have further 
safety advantages [53]. Moreover, recent evidence has shown that the transplantation of WAS 
patients with autologous CD34+ cells transduced with lentiviral vectors encoding WAS protein results 
in the long-term survival of genetically engineered hematopoietic stem cells and lymphoid-
committed progenitors [54]. Thus, this provides hope for lifelong protection from HIV. 

Induced pluripotent stem cells (iPSCs) may also be candidates for anti-HIV gene transfer. iPSCs 
can be generated from the somatic cells of patients, which can differentiate to any cells in vitro and 
are expected to be utilized for the treatment of a broad range of genetic diseases [55-58]. Although 
CD34+ cells can engraft in the bone marrow following transplantation and differentiate to 
hematopoietic cells in vivo, iPSCs may be more convenient for in vitro hematopoiesis compared to 

Figure 3. Summary of the humanized mouse study to test the efficacy of shRNA PromA (shPromA) [26].
Newborn NOD/SCID/Jak3null mice were intrahepatically transfused with unmanipulated cord-derived
CD34+ cells or CD34+ cells lentivirally transduced with shPromA. Those mice showing engraftment of
human cells were challenged with CCR5-tropic HIV-1JRFL. Two weeks after the challenge, the mice were
sacrificed and their bone marrow (BM) CD34+ cells and peripheral T cells were analyzed. Interestingly,
mice transplanted with unmanipulated CD34+ cells showed unexpectedly low BM CD34+ cell counts 2
weeks after HIV infection, with concomitant depletion of peripheral CD4+ T cells. On the other hand,
mice engrafted with shPromA-expressing CD34+ cells showed preserved BM CD34+ cell and peripheral
CD4+ T-cell populations at 2 weeks post challenge.

5. Target Cells for Anti-HIV Gene Therapies

Recent studies, including the above shPromA study, indicate that ideal anti-HIV gene therapy
targets should be hematopoietic stem cells rather than more differentiated cells, such as peripheral CD4+

T cells, because the transduced cells could engraft the host bone marrow and act as a lifelong source of
HIV-resistant CD4+ cells [26,32,33]. Potential gene therapies using CD34+ cells have been investigated
in vitro using cell culture experiments [26,34–36] or in vivo using humanized mice [26,35,37–40].
Furthermore, the transplantation of macaques with gene-modified autologous CD34+ cells followed by an
infection with SIV has also been tested [41,42] although strategies may differ between gene therapies [33].
Based on such basic study results, the clinical trials using the transplantation of retrovirally or lentivirally
gene-modified CD34+ cells in HIV-positive patients have been carried out [43–45]. Gene therapies of
CD34+ cells have been considered as a cure for monogenic immune diseases. For example, the patients
with adenosine deaminase deficiency [46], Wiskott–Aldrich syndrome (WAS) [47] and X-linked severe
combined immunodeficiency [48,49] were successfully treated in clinical trials by transplantation of
autologous CD34+ cells retrovirally or lentivirally transduced with the wild-type gene. Lentiviral vectors
may be more efficient in gene transfer into resting stem cells at the G0/G1 phase compared with murine
retroviral vectors [50]. If applied to the gene therapy of HSPCs, both retroviral and lentiviral vectors
could have adverse effects, including the deregulation of gene expression [51] and the triggering of the
p53 protein [52]. However, lentiviral vectors may be safer than retroviral vectors because the latter may
occasionally cause insertional mutagenesis near the active start regions of genes, which could possibly
lead to oncogenesis and cancers, such as leukemias [48]. Self-inactivating retroviral or lentiviral vectors
lacking the U3 region of 3′ LTRs have further safety advantages [53]. Moreover, recent evidence has
shown that the transplantation of WAS patients with autologous CD34+ cells transduced with lentiviral
vectors encoding WAS protein results in the long-term survival of genetically engineered hematopoietic
stem cells and lymphoid-committed progenitors [54]. Thus, this provides hope for lifelong protection
from HIV.

Induced pluripotent stem cells (iPSCs) may also be candidates for anti-HIV gene transfer. iPSCs
can be generated from the somatic cells of patients, which can differentiate to any cells in vitro and are
expected to be utilized for the treatment of a broad range of genetic diseases [55–58]. Although CD34+

cells can engraft in the bone marrow following transplantation and differentiate to hematopoietic cells
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in vivo, iPSCs may be more convenient for in vitro hematopoiesis compared to CD34+ cells because of
their ease of culture [59]. Interestingly, the impact of shPromA-transduced iPSCs on the suppression of
viral replication in vitro has recently been demonstrated, suggesting that the large-scale production of
gene-modified monocytes or lymphocytes in vitro for adoptive therapy could be a future option [60].
Additionally, the generation of iPSCs from HIV epitope-specific CD8+ cytotoxic T cells followed by
their redifferentiation into the identical epitope-specific CD8+ T cells for adoptive transfer could be an
effective immunotherapy [61].

6. Complete Cure vs. Functional Cure for HIV Infection

Before describing individual anti-HIV gene therapy methods, this review looks back on Figure 1
to summarize two major strategies for the treatment of HIV infection. One is to eliminate all the HIV
DNA copies within the host, which is termed a complete cure (Figure 1). In pursuing the feasibility of
this goal, tremendous efforts have been made to (1) find a method to detect all the latently infected HIV
DNAs in viral reservoirs and to (2) eliminate all the detected HIV DNAs so that the host would become
sterile in terms of HIV infection [62]. Among the methods to achieve this, the so-called “shock and
kill” method, in which the reactivation of the viral reservoir is attempted with a shock-inducing agent
followed by the immune-mediated killing of the reactivated cells, has been widely investigated [63–67].
These efforts have been partly successful [62,68]. However, the difficulty of viral eradication in vivo
is not limited to HIV but include other viruses that induce long-lasting latent infections, such as
herpes simplex viruses, varicella–zoster virus, cytomegalovirus and Epstein–Barr virus, making them
ineradicable [69]. HIV may differ from other latently infecting viruses as the viral replication from the
latent reservoir can resume quickly even if the host is not considered to be immunocompromised [70].
Moreover, even in the case of the Berlin patient who exhibited no sign of HIV existence following
allogeneic transplantation with CCR5-∆32/∆32 hematopoietic stem cells, a complete cure was assumed
rather than being fully demonstrated [71,72].

Alternatively, some potential gene therapy methods aim at a functional cure that is evidenced by
the control of HIV replication below the limit of detection and the immune system being functionally
normal despite residual cells harboring HIV proviral DNAs in the host (Figure 1) [68,73]. This approach
might be more practical than the complete cure approach, given that many successful vaccines for
chronic viral infections so far exert a functional cure rather than achieving the elimination of the
targeted viruses [74]. In light of this, it could be stated that for those pathogens where an effective
vaccine has not been developed to date, researchers could instead develop gene therapies aimed at a
functional cure. In this way, there is an overlap between the concept of functional-cure gene therapy
and the concept of vaccines against chronic pathogens [75]. In the next paragraph, the relevance of
this is better clarified by looking at a similarity between live-attenuated vaccines and functional-cure
gene therapy.

7. Connection between Functional-Cure Gene Therapies and Live-Attenuated Vaccine Approaches

Anti-HIV gene therapy might be compared to some of the vaccine candidates tested so far in
order to better foresee its future direction. Live-attenuated vaccines have been tested in macaque
AIDS models using simian immunodeficiency virus (SIV) strains [76–82]. After the infection of a
host with a live-attenuated SIV or simian-human immunodeficiency virus (SHIV), the vaccine strain
is controlled by T-cell response but remains slowly replicating in the infected host. This results in
further immunization of the host to prepare for the subsequent superinfections of wild-type SIV or
SHIV. Therefore, even if live-attenuated vaccines are powerful, they provide a functional but not a
complete cure. This means that there is a scientific connection between live-attenuated vaccines and
gene therapy approaches for a functional cure because the latter confer viral attenuation indirectly
by rendering the host cells HIV-resistant (Figure 4a). The two distinct strategies can be collectively
interpreted as the relative attenuation of the infected virus to the unmanipulated/gene-modified host
cells (Figure 4b). Thus, relative viral attenuation might help the host immunity to control the virus [83].
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Figure 4. The concept of relative viral attenuation. (a) A schema describing direct and indirect
viral attenuation. HIV usually infects host CD4+ cells efficiently and replicates rapidly. As a result,
the host immune system fails to control viral replication (left). However, accumulating evidence
in macaque AIDS models suggests that a live-attenuated virus, which infects and replicates slowly
because of partial defects in the viral genome, can be controlled by the immune system and helps in
further immunization against a potential superinfection with immunodeficiency virus strains that are
homologous to the vaccine strain (upper right). The live attenuation method cannot be directly applied
to HIV infection in humans because of safety concerns. However, indirect viral attenuation can be
achieved by rendering the host cells HIV-resistant by an “intracellular immunization” gene therapy
(lower right); (b) The definition of relative viral attenuation. This idea can connect live-attenuated
vaccine studies and gene therapy approaches to achieve a functional cure. While live-attenuated
HIV vaccines are not testable in humans for safety concerns, functional-cure gene therapy could be
an alternative.
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8. Gene Therapy Strategies against HIV

The Berlin patient, an HIV-positive male United States citizen who was diagnosed with HIV
while attending university in Berlin and later suffered from acute myelogenous leukemia, received a
transplantation of allogeneic hematopoietic stem cells homozygous for CCR5-∆32. This resulted in a
subsequent functional HIV cure [71,72]. Because CCR5 is critical in HIV infection and transmission,
as observed with CCR5-∆32 homozygous cells resistant to HIV infection [84], the manipulation
of CCR5 expression on HIV target cells has been intensively investigated and is considered to
be effective [34,35,37,39,40,85–102]. CCR5 can be targeted by zinc finger nucleases [103,104],
ribozymes [105], CRISPR/Cas9 methods [106], transcription activator-like effector nucleases [106] and
shRNAs [86,107,108]. Among these, several gene therapy methods, including one using lentiviral
vector LVsh5/C46 that expresses shRNA against CCR5 and HIV-1 entry inhibitor C46 [109] have
been tested in clinical trials [93]. While CCR5 is involved in numerous pathologic states, including
inflammatory and infectious diseases [110], a complete knockout of CCR5 can be related to an increased
sensitivity to some viral infections [111,112]. Therefore, CCR5 gene editing should only be considered
for an HIV cure [110].

The targeting of HIV RNA sequences by ribozymes or RNAs [44,99,113–123] and HIV DNA
sequences by the CRISPR/Cas9 system [124] has been investigated and is also considered a major
strategy [100,125]. The latter method has recently been of great interest, which is primarily because of
its potential for targeting and disrupting integrated HIV DNA sequences to achieve a complete cure.
A recent study targeted and inactivated the HIV-1 long terminal repeat (LTR) U3 region in vitro by
Cas9 and guide RNAs (gRNAs), with no off-target gene editing to the host cells being detected [126].
Another study also successfully targeted the HIV-1 LTR U3 region using the CRISPR/Cas9 system.
However, this study also detected the emergence of escape variant viruses mediated by the error-prone
non-homologous end joining (NHEJ) DNA repair following the CRISPR/Cas9 targeting in the host
cells [127]. The mutagenesis problem with CRISPR/Cas9 has also been observed in the treatments
of other diseases [128] but can be a serious problem when targeting the HIV DNAs because the
strategy might require sustained expression of Cas9 and gRNA in the potential HIV target cells,
which means a sustained risk of mutagenesis [129]. Therefore, an improved method for disrupting
HIV DNA while prohibiting the emergence of replication-competent escape variants caused by the
NHEJ repair system might be necessary. Nevertheless, radical approaches can still be tested in
cultured cells and animals. For example, a recent study demonstrated that the in vivo gene delivery of
multiplex single-gRNAs and Staphylococcus aureus Cas9 to transgenic mice bearing HIV DNA using an
adeno-associated virus (AAV) vector resulted in an efficient excision of HIV DNA in various tissues
and organs [130]. If safety concerns are met, such a gene delivery method can be a powerful tool to
achieve the systemic elimination of latent viral reservoirs in hematopoietic cells and nonhematopoietic
cells, such as astrocytes [131]. Wang et al. (2018) have written a thorough review of topics regarding
the targeting of HIV DNA by CRISPR/Cas9 [124].

An alternative to the CRISPR/Cas9 strategy is the silencing approach, which aims to reduce the
production rate of HIV viral particles per integrated HIV DNA copy [68]. Lentiviral gene delivery
enables RNA-based gene silencing, including the previously characterized small interfering RNA
(siRNA) called PromA [30,132]. PromA is a short RNA sequence specific for the two NF-κB binding
sites in the HIV LTR U3 region. While specific mRNA cleavage by post-transcriptional gene silencing
is the best-known mechanism for siRNAs, PromA triggers TGS, which is mediated by epigenetic
changes, such as DNA methylation and heterochromatin formation [116,133]. In fact, PromA has
been shown to induce chromatin compaction in the HIV-1 promoter region [133]. This means that
in contrast to methods attempting to eradicate HIV DNA, PromA locks and stabilizes the latently
infecting HIV provirus and prevents the reactivation of viral reservoirs from stimuli, such as tissue
necrosis factor (Figure 2) [31,134,135]. The efficacy of PromA in suppressing HIV-1 replication in vivo
was first demonstrated by an HIV challenge study using humanized NOD/SCID/JAK3null (NOJ)
mice transplanted with human peripheral mononuclear cells expressing shPromA [135]. Our recent



Pharmaceutics 2019, 11, 114 8 of 18

study to extend the results using NOJ mice engrafted with shPromA-transduced CD34+ cells and their
derivatives further demonstrated that PromA could be an effective gene therapy for protecting bone
marrow CD34+ cells and the hematopoietic potential of the host from HIV infection (Figure 3) [26].

Other potential gene therapy methods include the secretion of soluble HIV entry inhibitors [38];
the rescue of hematopoiesis, including myelopoiesis, erythropoiesis and megakaryopoiesis using
c-mpl [136]; the expression of a chimeric human-simian TRIM5α [137]; the expression of p68
kinase [138]; and the expression of HIV Gag mutants [36].

9. Application of Gene Therapy Methods to Immunotherapies

This section sheds lights on a different application of gene therapy methods to fight against
HIV. Immunotherapy approaches based on gene therapy methods have been extensively investigated.
Chimeric antigen receptor (CAR) T cells are engineered T cells expressing CARs for the recognition
and killing of target cells [139,140]. Most typical CARs are engineered to recognize an antigen with
a monoclonal antibody-derived extracellular domain that is conjugated to T-cell receptor-derived
transmembrane and intracellular domains. Therefore, despite the use of T-cell signaling pathways,
such CAR T-cell therapies might be regarded as an enhancement of antibody-based therapies [141,142].
To date, most successful CAR T-cell therapies have been against cancers [143]. For example, the
high efficacy of the adoptive transfer of CAR T cells recognizing CD19 has been demonstrated for
the treatment of patients with B-cell acute lymphoblastic leukemia [144] and diffuse large B-cell
lymphoma [145]. In contrast, CAR T-cell therapies may require the manufacture of autologous CAR T
cells for each patient and thus are not yet widely available [145]. Several broadly neutralizing antibodies
have been considered for generating CAR T cells against HIV infection [146–148]. Despite the shared
concern of escape mutations with antibody-based therapies, CAR T cells are MHC-independent and
more potent than the administration of neutralizing antibodies so better outcomes can be expected.
A further improvement of HIV CAR gene therapy has been tested to make CAR T cells HIV-resistant
by the insertion of the HIV CAR gene expression cassette into the CCR5 locus, which results in
the disruption of CCR5 [148]. Finally, an adoptive transfer therapy using autologous CD34+ cells
transduced with lentivirus expressing a CD4-based CAR that is able to bind the HIV envelope protein
has been tested in humanized mice infected with HIV-1 [149] and pigtail macaques infected with a
SHIV [150].

Another exciting gene transfer-based immunotherapy involves programming the production of
specific anti-HIV antibodies [151,152]. Compared with vaccination, passive immunization using a set of
broadly neutralizing antibodies is customizable, MHC-independent and provides instant and reliable
protection against HIV [153,154]. However, neutralizing antibodies need repeated administration to
provide prolonged protection [154]. Thus, the concept of antibody gene transfer is to overcome the
limitation of passive immunization, which is only transiently effective [155]. It was demonstrated in a
humanized mouse model that antibody gene transfer by intramuscular inoculation of an AAV vector
encoding a full-length antibody was able to induce the production of the antibody by muscle cells and
confer protection against intravenous HIV-1 challenge [156]. In another study, an adenovirus serotype
5 (Ad5) vector encoding an HIV-1-specific broadly neutralizing antibody PGT121 (Ad5.PGT121)
afforded a more rapid and robust antibody response than an AAV encoding PGT121 (AAV1.PGT121)
in HIV-1-infected bone marrow-liver-thymus humanized mice [157].

10. Biosafety and Bioethics Concerns Regarding the Application of Anti-HIV Gene Therapies to
Human Germline Cells for Pregnancy

In the last part of the review, I would like to comment on the recent issue raised against
anti-HIV gene therapy. In late 2018, it was reported that a Chinese researcher used the CRISPR/Cas9
technology to create twins bearing CCR5 double knockouts to confer HIV resistance [158]. However,
the inheritable gene modification of human germline cells culminating in human pregnancy is currently
unacceptable [159]. If applied to germline cells, CRISPR/Cas9 could cause additional inheritable
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mutations in the host genome DNA [128,160–162] and the influence of this is not entirely predictable at
this moment. Therefore, such an investigation on human germline cells should be limited to nonclinical
(i.e., in vitro) studies. Regarding the targeted gene, it should be emphasized that CCR5 knockout has
not been proven to be safe. Even if a small population of people, mostly of Caucasian origin, is living
without functional CCR5 alleles, this does not mean that the loss of CCR5 is universally harmless.
This is partly because CCR5 has been reported to play important roles in some viral infections [111,112].
Moreover, there is an unexcluded possibility that the lack of CCR5 function among those carrying the
CCR5-∆32/∆32 double mutations could be compensated by accompanying genetic variations that
do not exist in the majority of human populations with the wild-type CCR5 alleles. Regarding the
protection from HIV-1 infection, CCR5-knockout individuals are still susceptible to the infection of
CXCR4-tropic HIV-1 strains despite these risks. We refer to the statement published in 2017 by an
American Society of Human Genetics workgroup regarding human germline genome editing [163].

11. Conclusions

The evidence suggests that the HIV infection alters the bone marrow hematopoietic potential of
the host. This can lead to impaired CD4+ T-cell generation and contributes to the loss of peripheral
CD4+ T cells and the manifestation of AIDS. Further investigations on the topics discussed in this
review will collectively enhance our understanding of the important role that HIV gene therapy
can contribute toward an HIV cure. Intracellular immunization gene therapies, including silencing
approaches, are expected to confer relative viral attenuation without interfering with the HIV genome
and assist cellular immunity to kill HIV-infected cells. This will ultimately lead to better viral control
and a functional cure. In light of this, the long-term preservation of bone marrow CD34+ cells and
hematopoietic potential as well as aviremic states and restored peripheral CD4+ T-cell counts may be
an appropriate endpoint of future anti-HIV gene therapies. With this regard, our recent in vivo study
using humanized mice transplanted with shRNA (shPromA)-transduced CD34+ cells and challenged
with HIV-1 has been described to show that the anti-HIV intracellular immunization gene therapy can
indeed protect bone marrow HSPCs. Although the efficacy and safety of those novel gene therapy
strategies need further improvements for the future applications to autologous HSPC transplantation
of HIV-infected patients, a combination of a gene therapy and host immunization based on preserved
bone marrow hematopoietic potential and relative viral attenuation will give a hope for a functional
cure. Furthermore, the recent advances in gene therapy-based immunotherapy approaches against
HIV have also been described in this review.
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