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Abstract: Classical methodologies used in ocular pharmacokinetics studies have difficulties
to obtain information about topical and intraocular distribution and clearance of drugs and
formulations. This is associated with multiple factors related to ophthalmic physiology, as well as
the complexity and invasiveness intrinsic to the sampling. Molecular imaging is a new diagnostic
discipline for in vivo imaging, which is emerging and spreading rapidly. Recent developments in
molecular imaging techniques, such as positron emission tomography (PET), single-photon emission
computed tomography (SPECT) and magnetic resonance imaging (MRI), allow obtaining reliable
pharmacokinetic data, which can be translated into improving the permanence of the ophthalmic
drugs in its action site, leading to dosage optimisation. They can be used to study either topical
or intraocular administration. With these techniques it is possible to obtain real-time visualisation,
localisation, characterisation and quantification of the compounds after their administration, all in a
reliable, safe and non-invasive way. None of these novel techniques presents simultaneously high
sensitivity and specificity, but it is possible to study biological procedures with the information
provided when the techniques are combined. With the results obtained, it is possible to assume that
molecular imaging techniques are postulated as a resource with great potential for the research and
development of new drugs and ophthalmic delivery systems.
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1. Introduction

The access of drugs to the ocular structures through the route of systemic administration is greatly
hampered by the anatomical barriers that separate the eyeball from the general circulation. This makes
it necessary to systemically administer high doses of drugs in order to reach therapeutic concentrations
in the internal structures of the eye and the vitreous humour, which can cause toxicity and adverse
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effects [1]. Accordingly, topical application is considered the most suitable route of administration
for the patient. This is due to the fact that the ocular surface is an easily accessible area, especially
regarding pathologies affecting the anterior segment [2,3]. However, conventional ophthalmic dosage
forms present a low ocular bioavailability due to the multiple barriers of the eye, such as the cornea, the
conjunctiva, the retinal pigment epithelium and the dynamic barriers (tear replacement and blood and
lymphatic drainage mechanisms). To improve topical administration in the anterior segment, several
devices and systems for sustained drug release have been studied, such as polymers, colloidal systems,
emulsions, cyclodextrins, collagen and contact lenses [4–8]. Studying and identifying new ophthalmic
administration systems helps to improve the application and permanence of drugs, offering dosage
regimens that increase the adherence of patients [9].

Moreover, the intraocular administration of drugs is more complex and is reserved for the
treatment of intraocular pathologies in which concentrations of drugs are not reached, either topically
or systemically. In this case, the intravitreal, periocular, subretinal and suprachoroidal routes of
administration are the most commonly used [10]. The diversity of factors affecting biodistribution,
the invasiveness and the risks associated with the technique and sampling (vitreous haemorrhage,
retinal detachment and endophthalmitis) limit clinical pharmacokinetic research, making it difficult to
study appropriate dosages. Furthermore, preclinical ocular pharmacokinetic studies usually involve
sacrificing the animals at different times after administration and analysing different sections of the eye,
with the risk of redistributing the compound due to the dissection methods [11]. This is inconvenient
and costly, and requires a large number of animals in each study.

To successfully develop new methods and techniques of ophthalmic drug delivery, it is important
to have reliable ocular pharmacokinetic data. The complex and unique eye anatomy, as well as the
invasiveness of the sampling, lead to the lack of complete knowledge of the ocular mechanisms for
drug clearance, and therefore, for its pharmacokinetics [12,13]. In recent years, molecular imaging
techniques have become a turning point for the development and characterisation of new drugs and
formulations due to the fact that they are non-invasive and allow determining the distribution of the
studied compound in real time.

2. Molecular Imaging Modalities in Ophthalmic Drug Delivery Studies

Molecular imaging techniques allow for the visualisation, characterisation and quantification
of the biological procedures at the cellular and subcellular level [14,15], and their advantage over
conventional study methods is that it is possible to take measurements from the same animal at different
times without causing harm and with enough spatial and temporal resolution, so as to study different
biological procedures in real time. Furthermore, it is possible to conduct a repetitive, uniform and
relatively automatic study of the same living subject using identical or alternating biological images at
different times. Thus, we can take advantage of the statistical power of longitudinal studies and reduce
costs [14,16,17]. Moreover, it complies with the 3Rs principle of animal research proposed by Russel and
Burch in 1959: replacement, reduction and refinement [18]. The current molecular imaging modalities
include optic imaging-based techniques, positron emission tomography (PET), single-photon emission
computed tomography (SPECT) and some magnetic resonance imaging sequences (MRI) [19]. Among
this wide variety of tests, there is no perfect modality presenting at the same time high sensitivity,
specificity, and time and spatial resolution; however, it is possible to study biological procedures when
combining the information provided by each of them. The combination of two or more modalities
allows for obtaining images of the same biological procedure in the same animal [20]. The most
frequent combinations are those of high sensitivity with anatomic/morphologic techniques. Thus, the
combinations commonly used are PET and SPECT, with great sensitivity, along with morphologic
techniques like computed tomography (CT) scan and MRI [16].
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3. Positron Emission Tomography

Positron emission tomography (PET) is a relatively new imaging modality mainly used to study
brain metabolism, heart function and tumour detection [21]. The PET scanner detects photons emitted
by a radiopharmaceutical (molecule of interest which has been previously labelled with a radioisotope),
in a way that three-dimensional images are obtained from the concentration of the molecule throughout
the body by means of data reconstruction [22,23]. Different radioisotopes can be used to create
radiopharmaceuticals. The most commonly used are typically isotopes with short half-lives, such as
11C, 13N, 15O, 18F, 68Ga, 82Rb, or with longer half-lives, such as 124I o 89Zr. The 18F isotope is most
often used in clinical practice, since its half-life is long enough to be able to produce commercial
radiopharmaceuticals outside the place of study that can then be sent there [24].

This modality has not been widely used in the field of clinical ophthalmology to date [25],
although its use is promising for the diagnosis of primary ocular tumours and for neurophysiologic
studies [26–30]. In recent years, it has emerged in the research field as an essential tool for the study
of the pharmacokinetics of different ophthalmic formulations, since it provides images of the drug’s
biodistribution and/or its effect on the eye. Below, its application to the study of intraocular and topical
ocular routes of administration will be discussed.

The ophthalmic topical route of administration implies that the drug must overcome some
physicochemical, metabolic and biological barriers in order to reach the desired action area.
Physicochemical barriers include drug properties such as lipophilia, solubility, molecular size and
shape and drug loss from the ocular surface due to nasolacrimal drainage. Metabolic barriers
include the activity of cytochrome P450 enzymes in ocular tissues, and the biological barriers are the
corneal epithelium, the systemic absorption of the conjunctival sac, the blood-vitreous barrier and the
blood-retinal barrier [31].

The PET image provides a quantifiable signal on the pharmacokinetic profile of the topically
administered radiopharmaceutical so that it is possible to obtain a signal in the eye after the instillation
during the initial times, with a subsequent signal detection in the nasolacrimal duct and in the nasal
cavity, given by that part of the formulations eliminated from the lacrimal sac towards the nasal
cavity, as we can see in Figure 1 [32]. To do this, two conditions must be taken into account: the drug
structure must not be significantly modified when being labelled with the radioisotope, and its effect
on the organ function and its metabolism can be assessed through molecular image biomarkers that
accumulate in the target organ [16].
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Figure 1. Fusion PET-CT-Real images of the rat’s head. Tacrolimus eye drops remain on the ocular
surface after instillation (a,b) subsequently observed as it is eliminated by the nasolacrimal ducts (c,d).
Axial (a) and sagittal (b) PET image and fusion PET-real images (10 min). Axial (c) fusion PET-CT image
and Sagittal (d) fusion PET-real images (90 min post-administration). Reproduced with permission
from [32], published by Elsevier, 2018.
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Through the PET technique, the behaviour of different types of polymers [33–36], such as chitosan
labelled with 124I or its combined derivative with N-acetylcysteine (NAC-chitosan) was studied [34].
Another topical ophthalmic hydrogel formulation composed by gellan and kappa-carrageenan gum
(0.82% weight/volume) labelled with 18F radiotracers was also assessed [33] (Figures 2 and 3). In
the aforementioned study, it was shown that it is possible to establish differences between the
permanence on the ocular surface for different types of ophthalmic formulations by using different
polymers as drug delivery vehicles; the technique proposed could be a safe method for this kind of
future studies in humans. Some tacrolimus topical formulations for atopic keratoconjunctivitis [32],
econazole-α-cyclodextrin formulated in hydrogel for the treatment of fungal keratitis [37], and
cysteamine dispersed in different types of hydrogel for the treatment of cystinosis [38] have also been
studied. Furthermore, the PET technique allows for the quantitative analysis of the formulations’
pharmacokinetic profile and the calculation of pharmacokinetic parameters, such as half-life and
ophthalmic residence time [38].Pharmaceutics 2019, 11, x FOR PEER REVIEW 4 of 19 
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hydrogel labeled with 18F-fluorodeoxyglucose (FDG) (right eye) in rats compared to a saline solution
containing 18F-FDG as control formulation (left eye). Reproduced from [33], which is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
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With this technology, it is also possible to know the biodistribution of compounds at an intraocular
level after their intravitreal administration and their pharmacokinetics (Figures 4 and 5) [39]. It is
important to bear in mind that in order to reach a sustained therapeutic concentration of drug in the
vitreous, the administration frequency must be based on the drug’s half-life. Its elimination in the
vitreous humour can be affected by diverse factors, such as molecular weight, its physicochemical
properties, its protein or melanin binding, its metabolism, the surgical procedure, the injected volume
or ocular inflammation, as well as the membrane transport mechanisms [40].
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When in vitro pharmacokinetic studies are carried out, there are a series of factors that are not
usually kept in mind, such as the absence of convection in the vitreous [41–44], the protein and
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melanin binding or the drug’s metabolism and its active transport [10,45]. Through classic in vivo
pharmacokinetic studies of intravitreal injections, these aspects could be solved, but as it has been
previously mentioned, they are limited due to the invasiveness of the technique [46,47]. Some models
that allow the in vitro simulation of intravitreal pharmacokinetics have been proposed, and they keep in
mind anatomy and ocular physiological aspects [45,48–50]. PET studies with anti-vascular endothelial
growth factor (VEGF) drugs, such as bevacizumab and ranibizumab have also been conducted, and
they allowed for the determination of the pharmacokinetic properties of these agents inside the vitreous
cavity [29].

4. SPECT

SPECT (Single photon emission computed tomography) is a molecular imaging technique that
provides a three-dimensional spatial distribution of the administered radiopharmaceuticals. The use
of a planar technique known as scintigraphy is common (Figure 6) [51]. This technique follows the
same rationale as the SPECT technique, but provides a projected image instead of three-dimensional
images [52,53].
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Figure 6. Scintigraphy image of a novel ion-sensitive hydrogel based on gellan gum and
kappa-carrageenan. In the upper images (control eye), the signal decreases in the corneal surface,
moving towards the nasolacrimal duct, while in the bottom images, signal obtained in the eye with
hydrogel remains unchanged. Reproduced with permission from [51], published by Elsevier, 2017.

The radioisotopes used in SPECT images include technetium (99mTc), indium (111In), iodine (131I,
123I) and gallium (67Ga) [10,52]. In the same way as the PET technique, the SPECT image provides
useful information at a clinical and preclinical level by simultaneously combining molecular imaging
and anatomical information obtained through CT images. This allows for a precise localisation
and quantification of the radiolabelled imaging probe, thereby making it possible to observe the
pharmacokinetic profile signal on the animal’s anatomy [32,54]. Its applicability in both animal and
human studies turns it into a translational research technique [55]. Like the PET technique, the labelling
with a radionuclide must preserve the drug structure, and its effect on the organ’s function and
metabolism must be assessable through molecular image biomarkers [16].

Gamma scintigraphy was first assessed by Rossomondo et al. in 1972 [56], and was later
used with modifications in preclinical studies [57] and in humans [58–62] to assess the lacrimal
drainage and the lacrimal gland inflammation [63]. Subsequently, it has been used with the
aim of understanding the ocular surface biodistribution of different formulations used as drug
delivery vehicles in mice and humans, as it is the case for artificial lacrimal products that contain
hydroxypropyl methylcellulose (HPMC), a combination of PVA and gellan gum for antiglaucoma
drug release [64,65], PVA [66–68] or sodium hyaluronate [69]. Furthermore, with this technique
the biodistribution and permanence on the ocular surface of ophthalmic ointments [70], liposomal
formulations [71,72], nanoparticles [72] and microemulsions w/o [73] have also been studied. SPECT
has been chosen for multiple ocular biopermanence studies of gels and gelation systems, such as
carbomer [74] and chitosan-HPMC [75,76]-based gels, thermosensitive poloxamer gels (Pluronic®F-127
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and Pluronic®F-68 in combination) [77], in situ ion-sensitive and thermosensitive gelation systems
based on a mixture of poloxamer (Pluronic®F-127 and Pluronic®F-68) and chitosan for ofloxacin
release [78]. Also, an in situ gelation system activated with ions and based on alginate and HMPC [79],
another one activated by ions and pH-based in gellan gum and chitosan [80] and a ion-sensitive gel
consisting of gellan gum and kappa-carrageenan [81] were studied. The SPECT/CT technique has
made it possible to study the ocular biodistribution of 3-123I-iodochloroquine, injected intravenously
in rats [82], allowing the non-invasive quantification of drugs in the eye throughout the time and the
melanin influence on the ocular distribution and elimination.

SPECT images of the intravitreal kinetics of HSP-70 protein in the retinal pigment epithelium of
ex vivo bovine eyes have been obtained, as well as measurements of its cytoprotective effects against
oxidative stress, which has appeared as a possible strategy against the degeneration of the retinal
pigment epithelium [83].

Both PET and SPECT techniques present an elevated quantification sensitivity, although the values
reached through PET (about nM) are higher than those obtained through SPECT. Both techniques
provide three-dimensional images that enable the interpretation and quantification of the results in
relation to other types of techniques, and even more so when they are combined with CT images,
which provide high-resolution anatomical information.

Moreover, as previously mentioned, the labelling of the molecules to be studied can change the
properties of some compounds, resulting in alterations in biodistribution. This especially occurs in the
case of small molecules. On the contrary, the pharmacokinetics of proteins, large molecules and drug
delivery systems are less sensitive to this kind of modifications [10]. In the case of ocular studies, the
blood-retinal barrier is an important consideration, since changes in the molecular size and lipophilia
can alter its permeability and cause changes in the vitreous clearance. The typical strategies include
the use of peptide bonding elements in the labelling of proteins [84], the encapsulation of hydrophilic
or lipophilic compounds in liposomes or nanoparticles [85,86], radiometal radiotracers with DOTA
complexes (1,4,7,10-tetraazaciclododecane-1,4,7,10-tetraacetic acid) [84]. The studied molecules are
considered relatively stable since they can carry out the ligand synthesis in situ and present relatively
long physical half-lives (that last from hours to days) [87,88]. It is important to bear in mind that, as
previously stated, the labelling of the studied molecules must not significantly affect their structure,
which could be translated into changes in its biodistribution and pharmacokinetics.

Another advantage is that the radioactive signal is not affected by changes in the environment,
so it provides an excellent depth and a dynamic linear range of the measurements [10]. Regarding
PET, the most common and important biological elements (carbon, oxygen, nitrogen and fluorine)
have positron-emitting isotopes, which facilitate the labelling of a wide variety of compounds through
covalent bonds, leading to great versatility in the development of PET biomarkers in comparison with
the 99mTc (attached via bulky chelating linker groups) or 123I (which forms a biologically unstable
bond with carbon) used in the SPECT technique. The molecular structure and chemical properties of
the final molecule will be, in many occasions, almost identical to the initial one when it is possible to
directly substitute the stable isotope for the radioisotope [16].

The main advantage of SPECT over PET is the possibility to use and detect a variety of radioactive
agents based on radioisotopes with different energies, which allows for simultaneously visualising
two or more molecular routes. Additionally, SPECT radionuclides have more specific activity in
comparison with PET tracers and they are more long-lasting, which makes their application more
economical [89]. The use of radiotracers in much lower dosages than the pharmacological ones (in
the nano- or microgram range) allows for the safe acquisition of images without the interference
of the radiotracer in the studied biological processes. Thus, they present similar pharmacokinetic
characteristics but in the range of absence of therapeutic effects, while pharmacological dosages are
in the milligram or gram range and are associated with pharmacodynamical effects. In this way,
the lowest possible masses of injection compounds to be studied are obtained, guaranteeing the
pharmacodynamical inertia of the image-creation process [16].
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The injected dose of radiotracers in pharmacokinetics assays depends on the half-life of the
radioisotopes, sensitivity of technique and the design of the study (timing, duration, etc.). Thus, in
ocular studies with PET and SPECT different activities have been used from 10 MBq (124I, half-life
= 4.17 days) [35,90] to 1 MBq (99mTc half-life = 6 h) [34]. Obviously, this issue is especially relevant
for the clinical implementation of these procedures due to the fact that a detailed assessment of
the radiation protection of the patient must be performed previously. Eye lenses have very high
radiosensitivity when compared with other organs and tissues and radiation doses around 2 Gy leads
to the development of cataracts. A calculation of the dose delivered to the eye lens in a clinical study
using the dose of radiotracers employed in preclinical studies provided values of radiation doses in
the range of 10–20 mGy, which are significantly below the dose limits [33]. Molecular imaging has
been widely used in clinical ophthalmology but the specific application for ocular pharmacokinetic
studies is not still considered as reference for the design of pharmacokinetic clinical trials.

Another limitation of PET and SPECT images is their low spatial resolution (0.5–2 mm), which
only allows visualizing the eye without details of tissues such as the retina. This becomes a problem
for the delineation of the vitreous area, which implies that the measurements cannot be exclusively
restricted to the area of the vitreous [39]. For this reason, it is necessary to combine the computed
tomography scan and the MRI for the anatomic localisation of tissues.

5. Fluorescence

The optic fluorescence-based image has been used in ophthalmology since the 1980s. The original
in vivo fluorometers, were developed as clinical instruments which aimed at determining the lacrimal
flow rate, the aqueous renovation, the blood-retinal barriers (in diabetes) and the early formation
of cataracts. The fluorometer allows the detection of fluorophore emission signals (e.g., fluorescein)
after excitation through the transparent ocular tissues (e.g., cornea, aqueous humour, different depths
of the visual axis through time). Fluorophotometry is limited to the evaluation of the movement of
fluorescent compounds in the aqueous and vitreous humour. This technique has been used in vivo to
control fluorescence levels, mainly in humans and rabbits [91].

Nowadays, there are various fluorophores available (such as Alexa Fluor dyes) that are compatible
with in vivo fluorophotometers wavelengths. They have improved the brightness, the stability
in the presence of light excitation and allow for more robust fluorescence spectrums in changing
environments [92]. These features provide a dynamic range with longer linearity (fluorescence emission
versus drug concentration) that allowed for the intravitreal pharmacokinetic control of ranibizumab in
a 20 times concentration range [93].

This technique has been used for the development of an in situ gelation system
Gelrite/alginate-based activated by ions for the ophthalmic administration of matrine, in which
the time of permanence on the ocular surface was measured in human volunteers [94]. Some studies
correlated the rheology and precorneal retention time in humans, proving that formulations based on
gellan gum remained on the ocular surface for 1–3 h (depending on the polymer concentration), while
poloxamer and carbomer formulations remained for less than 1 h [95–97].

As previously mentioned, the ranibizumab intravitreal kinetics have been recently studied
using in vivo fluorophotometry (AlexaFluor tracer 488) and ELISA, being obtained pharmacokinetic
parameters similar with both approaches. This study proved that it is crucial to use a minimum
number of fluorophores for labelling, and select those with brightness, photosensitivity and sensitivity
at minimal pH levels. It is possible to measure the effects of drugs and delivery systems on the blood
ocular barrier by following the entrance of intravenous FITC-dextran to the eye. This method was
demonstrated to be used to study transscleral drug delivery [98–100].

The main advantage of this technique lies in its capacity to provide optical images with useful
information about the pharmacokinetics of macromolecules and drug delivery systems in the eye [10,93].
One of the potential uses of this technique is the monitoring retention of drug delivery systems on
both the ocular surface and vitreous. Currently, there are new in vivo fluorometers available that are
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more robust than the classic ocular in vivo fluorometer. This would allow potentially expanding the
use of this methodology [10].

On the other hand, one of the main disadvantages of in vivo fluorophotometry is quantification
accuracy, since the fluorescence signal depends on geometrical factors and fluorescence probe properties.
The fluorescence emission depends on the medium (e.g., pH), the concentration (not linear relationship
between signal-fluorophore concentration) and light exposure (photo-quenching) [101].

Moreover, only a few drugs present intrinsic fluorescence spectrums that would allow for obtaining
non-invasive fluorometric images. Drugs that do not have intrinsic fluorescence should be labeled.
The stability is usually one of the critical points for the correct development of the trial [10].

6. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is another imaging technique used for the study of ocular
structures [102,103], pathologies [104,105] and ophthalmic drug delivery [11,106]. It is a non-invasive
technique, like the previous ones, that provides transversal images from the inside of living
organisms [107]. It allows for real-time determination of the distribution pattern of the compound of
interest in the eye, without disturbing the tissue or the redistribution of said compound [11].

This method is based on nuclear magnetic resonance signals emitted by magnetically labelled
nuclei (for example, Gd) [102]. The MRI depends on the magnetic properties of the tissues and its
interactions with strong external magnetic fields [16]. It is a very versatile technique that provides
morphological images with excellent contrast and spatial resolution (<50mm for preclinical devices
and 300mm in experimental clinical devices of ultra-high field) [108]. Thus, it is possible to obtain
information about tissue composition, perfusion, oxygenation, tissue elasticity, metabolism, and to
detect molecular probes in just one acquisition session without radiation exposure [109].

MRI has been used in preclinical studies to determine permanence on the ocular surface of
ion-sensitive hydrogels based on gellan gum and kappa carrageenan to be employed as vehicles for
ophthalmic drug delivery [110] (Figure 7). Through this study, Ferreiro et al. assessed the time of
in vivo corneal contact and the hydrogel residence place after its administration, showing the absence
of liquid solution 30 minutes after delivery, whereas in the case of the gellan gum formulation, it was
still present three hours after delivery. The main improvement of this method is the absence of a
contrast agent. In fact, the large quantity of water retained in the gel increases the intensity of the signal
and, therefore, MRI seems to be a good and relevant method for assessing the precorneal retention
time of the in situ gelation delivery systems.
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In addition to the studies on animals, Bert et al. [111] studied solute diffusion through the anterior
route in the human eye by using dynamic magnetic resonance with contrast. The pilocarpine effects on
the blood-aqueous barrier after its topical application have been assessed in humans [112].

Diverse studies have demonstrated the usefulness of the MRI for characterising penetration routes,
ocular barriers and dynamic procedures [113,114], transscleral penetration routes, mechanisms that
allow for an improved drug delivery flow, the location of periocular and intraocular devices (or implants)
and its release kinetics in periocular, intrascleral, suprachoroidal and intravitreal administration, as
well as the study of the ocular iontophoresis [106,115–125]. With the appropriate MRI contrast agents,
it is possible to study the blood-aqueous barrier and the clearance in the anterior chamber, being this
an important surmise that contrast agent clearance and water clearance in the aqueous humour are
the same. The difference between them may lead to errors in the kinetic assessment of the aqueous
humour [11].

MRI can be used in the posterior segment of the eye in order to examine the blood-retinal barrier
and the vitreous fluidity in a non-invasive way [126–129]. The dysfunction in this barrier can be
studied through MRI by using a contrast agent such as GdDTPA2−, intravenously administrated into
the retinal blood vessels and by controlling its dysfunction in the vitreous humour, which allows for
quantifying the barrier’s permeability after inducing lesion in the retina [104,129,130]. Similar studies
have determined the effects of the endotoxininduced endophthalmitis and the experimental diabetic
retinopathy in the blood-retinal barrier function [131,132], as well as ischemic-induced injuries [133]
and their hyperpermeability after the sustained elevation of the vascular endothelial growth factor
(VEGF) in the vitreous cavity [134]. For this reason, the MRI is a technique with potential for the
study of ocular drug delivery systems for the treatment of posterior ocular diseases related to the
blood-retinal barrier function.

In the intraocular drug delivery field, the pharmacokinetics of Gadolinium-DTPA after polymeric
intraocular implants administration in rabbits have been studied with the MRI technique [115,123].
Furthermore, the biodistribution of magnetic micro- and nanoparticles subsequent to intraocular
delivery has also been studied [135]. Nowadays, the dynamic contrast images modality (DCE-MRI) is
the most commonly used for preclinical and early clinical assessment of anti-angiogenesis inhibitors
like bevacizumab, sorafenib or sutinib [136].

One advantage of the MRI over other molecular imaging techniques is its excellent spatial
resolution, but its usefulness in ocular pharmacokinetic studies is limited, as the quantification and
sensitivity linear range (approximately 0.1 mM) is rather limited in comparison to radioimaging
techniques [10]. MRI has a sensitivity from three to six orders of magnitude lower than the PET
technique [137]. Thus, nowadays MRI images are not an attractive option for ocular pharmacokinetics
studies. Nevertheless, in association with SPECT and PET, it can be a useful technique in order to
improve radiolabelled molecules’ localisation thanks to the anatomical information provided therein.

The majority of the contrast agents used in MRI are hydrophilic filler compounds that can establish
specific interactions with the eye, potentially interfering with ocular clearance and pharmacokinetics
in permanence time characterisation studies of hydrogels on the ocular surface [138].

One of the advantages that MRI offers over the PET and SPECT radiolabelling techniques is that γ
radiations emit relatively low energy levels in comparison to α and β radiations, at the same time as
the 99mTc exhibits a relatively short half-life (6 h). This is translated into a low risk for health associated
with studies with this technique, both for trial subjects and for researchers [139]. Studies on mice have
proven the absence of toxicity at the tissue level in epithelium and cornea with the use of Gd-DTPA as
a contrast agent [125]. In addition to this, the magnetic resonance imaging projection is not affected by
medium opacities such as cataracts [89].



Pharmaceutics 2019, 11, 237 11 of 20

7. Other Imaging Techniques

7.1. Ultrasonography

Ultrasound imaging uses acoustic transducers that send and receive ultrasound frequency energy
to generate reflexion or direct transmission three-dimensional images [140]. Ultrasonography is
the most used clinical imaging modality due to its low cost, availability and safety, and it is ideal
for obtaining in vivo images in both animals and human patients. The image contrast depends on
the image generation algorithm and its use of the backscatter, the sound reduction and the sound
speed [141,142]. In ophthalmology, ultrasound probes of 10, 20, 40 and 50 MHz are used. However, the
resolution is still the limiting factor. Recent advancements in imaging technology with high-resolution
ultrasound devices and the development of specific microbubble contrast agents are promising for the
future of molecular imaging [141,143].

In ophthalmology, this technique has been used in diagnostic procedures [144], in order to
boost drug administration on the ocular surface (such as tobramycin and dexamethasone) [145,146],
protein-loaded nanoparticles [147] and intravitreal administration [148], and to obtain information
about juxtascleral administration [122].

7.2. Optical Coherence Tomography and Computed Tomography

The recent introduction of new imaging techniques has improved many aspects of the ophthalmic
procedures, both therapeutically and diagnostically. This is the case for retina diagnostic techniques:
optic coherence tomography (OCT) and OCT with angiography (OCTA) [149]. OCT generates images,
interferometrically measuring the amplitude and the delay of the reflected or backscattered light, while
OCTA also allows for the visualisation of the macular capillaries and the optical nerve head [150,151].
This technique has been used in comparative studies for artificial tears [152,153]. Its use is based on the
measurement of the corneal thickness before and after topical formulation administration at different
times. From the data obtained, it was observed that the hyaluronic acid increases the thickness of the
lacrimal layer for 30 min in healthy subjects, showing good reproducibility.

CT is an imaging technique that does not require radioactive labelling or contrast, but whose
functioning is based on the emission of a large series of two-dimensional X-ray images taken around a
single rotation axis [141,154]. This technique has also been used in ocular studies, but as a tool for
the anatomic support in the interpretation of images obtained through gammagraphy or PET [155].
Combined with these techniques, it provides an image of the subject’s anatomy at the same time that the
image of the radiologically labelled compound provides a quantifiable signal on the pharmacokinetic
profile, as we can see in Figure 8 [32].
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Table 1 summarizes imaging agents used in each technique and their administration, topical or
intraocular and the spatial resolution achieved with each technique.
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Table 1. Administration routes used in each molecular imaging technique, their imaging agents and
spatial resolution.

Technique Administration Imaging Agents Spatial Resolution Reference

PET
topical 18F, 124I

1–2mm
[31–38]

intraocular 18F, 124I [29,39]

SPECT
topical

99mTc,131I, 123I,
111In, 67Ga 0.5–2mm

[61–80]

intraocular 123I [82]

Fluorescence
topical Fluorescein,

AlexaFluor 488 1–10mm
[94–97]

intraocular Fluorescein,
AlexaFluor 488 [98–100]

Magnetic
resonance
imaging

topical Gadolinium
25–100um

[109,110]

intraocular Gadolinium [114,122,134]

Ultrasonography topical Microbubbles 30–100um [144–147]

Optical coherence
tomography topical None 10–20um [151,152]

8. Conclusions

Molecular imaging techniques make it possible to obtain reliable pharmacokinetic data with the
objective of improving the application and permanence of the ophthalmic drugs in its action site,
leading to dosage optimisation. The disadvantages of the classical methodologies were the difficulty
in obtaining information about topical and intraocular distribution and clearance, associated with
multiple factors related to ophthalmic physiology, as well as complexity and invasiveness intrinsic
to the sampling techniques. Contrary to these studies, the molecular imaging techniques allow for
the real-time visualisation, localisation, characterisation and quantification of the compounds after
their administration, all in a reliable, safe and non-invasive way. None of these techniques presents
simultaneously high sensitivity and specificity, but it is possible to study biological procedures with the
information provided when the techniques are combined. Therefore, molecular imaging techniques
are postulated as a resource with great potential for the research and development of new drugs and
ophthalmic delivery systems.
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