




## **Supplementary Materials: Doxycycline-Eluting Core-**Shell Type Nanofiber-Covered Trachea Stent for Inhibition of Cellular Metalloproteinase and Its Related Fibrotic Stenosis

Rengarajan Baskaran, Un-Jeong Ko, Enkhzaya Davaa, Ji-Eun Park, Yixin Jiang, Junghan Lee and Su-Geun Yang \*

## Tissue MMP inhibition of doxy-releasing nanofiber

All animal care and experimental procedures were conducted in accordance with the guidance for Experimental Animal Research Committee of Inha University. HT1080 fibrosarcoma cells ( $5.0 \times 10^6$  cells in 100 µL) were subcutaneously injected on the flank side of female BALB/C nude mice (Orient Co., Korea). When the tumors grew to an average diameter of 10 mm, 10% doxy containing nanofiber membranes and blank membranes were sub-tumorally implanted under the tumor. After 2 weeks of implantation, tumor tissues were recovered and subjected to H&E histological assay and MMP RNA assay.



**Figure S1.** Tissue histologies and mRNA level of MMPs in HT1080 fibrosarcoma xenograft models. The tumors after 2 weeks of sutumoral membrane implantation (blank nanofiber membrane and doxy-eluting nanofiber membranes) were recovered for mRNA assay (**a**) and histological observation (**b** and **c**).

| Gene    | Primers (5'-3')                                                     | Product Size (bp) |
|---------|---------------------------------------------------------------------|-------------------|
| MMP-2   | Forward: GGCCCTGTCACTCCTGAGAT<br>Reverse: GGCATCCAGGTTATCGGGGA      | 120               |
| MMP-9   | Forward: CAACATCACCTATTGGATCC<br>Reverse: CGGGTGTAGAGTCTCTCGCT      | 100               |
| MT1-MMP | Forward: GCTTGCAAGTAACAGGCAAA<br>Reverse: AAATTCTCCGTGTCCATCCA      | 589               |
| β-actin | Forward: GGAAATCGTGCGTGACATTAAGG<br>Reverse: GGCTTTTAGGATGGCAAGGGAC | 700               |

## **Table S1.** The primer sequence of MMPs for RT-PCR study.

Table S2. Kinetic modeling on doxycycline release from core-shell fibers (1:2 and 1:4).

| Core-Shell (1:2) |        |        |         |           |  |  |
|------------------|--------|--------|---------|-----------|--|--|
|                  | $r^2$  | RMSE   | Slope   | Intercept |  |  |
| Zero order       | 0.7376 | 4.2090 | 2.5685  | 60.544    |  |  |
| First order      | 0.7898 | 0.0531 | -0.0375 | 1.5972    |  |  |
| Higuchi          | 0.8552 | 3.1264 | 10.828  | 50.412    |  |  |
| Korsmeyer-Peppas | 0.8520 | 0.3533 | 2.44    | 0.0063    |  |  |
| Hixson-Crowell   | 0.7248 | 0.0865 | 0.0511  | -0.7161   |  |  |

| Core-Shell (1:4) |        |        |         |           |  |  |  |
|------------------|--------|--------|---------|-----------|--|--|--|
|                  | $r^2$  | RMSE   | Slope   | Intercept |  |  |  |
| Zero order       | 0.9258 | 2.8398 | 3.651   | 40.066    |  |  |  |
| First order      | 0.9681 | 0.0182 | -0.0364 | 1.7903    |  |  |  |
| Higuchi          | 0.9851 | 1.2735 | 14.744  | 26.979    |  |  |  |
| Korsmeyer-Peppas | 0.8688 | 0.3430 | 2.5406  | -0.1587   |  |  |  |
| Hixson-Crowell   | 0.8988 | 0.0785 | 0.0851  | -1.2034   |  |  |  |