Supplementary Materials: On the Stability and Degradation Pathways of Venetoclax under Stress Conditions

Nina Žigart, Martin Črnugelj, Janez Ilaš and Zdenko Časar

List of supplementary material

Page	Content
3	Figure S1 – Line charts depicting the percentage of degradation products in 14 day
	degradation testing
4	Figure S2 – Chromatogram of the venetoclax stress sample with added 3% H ₂ O ₂ at 50
	°C for 7 days
5-7	Table S1 – ¹³ C and ¹ H NMR spectroscopic data for venetoclax and its degradants
8-13	Venetoclax information
8	Figure S3 – Venetoclax with NMR assignations
9	Figure S4 – ¹ H NMR spectrum of venetoclax
10	Figure S5 – ¹³ C NMR spectrum of venetoclax
11	Figure S6 – (¹ H, ¹ H)-COSY spectrum of venetoclax
12	Figure S7 – (¹ H, ¹³ C)-HSQC spectrum of venetoclax
13	Figure S8 – (¹ H, ¹³ C)-HMBC spectrum of venetoclax
14-22	Degradation product A1 information
14	Figure S9 – Degradation product A1 with NMR assignations
15	Figure S10 – ¹ H NMR spectrum of A1
16	Figure S11 – ¹³ C NMR spectrum of A1
17	Figure S12 – (¹ H, ¹ H)-COSY spectrum of A1
18	Figure S13 – (¹ H, ¹³ C)-HSQC spectrum of A1
19	Figure S14 – (¹ H, ¹³ C)-HMBC spectrum of A1
20	Figure S15 – IR spectrum of A1
21	Figure S16 – DSC curve for A1
22	Figure S17 – HRMS spectrum of A1
23-30	Degradation product A2 information
23	Figure S18 – Degradation product A2 with NMR assignations
24	Figure S19 – ¹ H NMR spectrum of A2
25	Figure S20 – ¹³ C NMR spectrum of A2
26	Figure S21 – (¹ H, ¹ H)-COSY spectrum of A2
27	Figure S22 – (¹ H, ¹³ C)-HSQC spectrum of A2
28	Figure S23 – (¹ H, ¹³ C)-HMBC spectrum of A2
29	Figure S24 – IR spectrum of A2
30	Figure S25 – HRMS spectrum of A2
31-38	Degradation product A3/B3 information
31	Figure S26 – Degradation product A3 with NMR assignations
32	Figure S27 – ¹ H NMR spectrum of A3
33	Figure S28 – ¹³ C NMR spectrum of A3

34	Figure S29 – (¹ H, ¹ H)-COSY spectrum of A3
35	Figure S30 – $(^{1}H, ^{13}C)$ -HSOC spectrum of A3
36	Figure S31 – $(^{1}H, ^{13}C)$ -HMBC spectrum of A3
37	Figure S32 – IR spectrum of A3
38	Figure S33 – HRMS spectrum of A3
39-46	Degradation product A4 information
39	Figure S34 – Degradation product A4 with NMR assignations
40	Figure S35 – ¹ H NMR spectrum of A4
41	Figure S36 – ¹³ C NMR spectrum of A4
42	Figure S37 – (¹ H, ¹ H)-COSY spectrum of A4
43	Figure S38 – (1 H, 13 C)-HSOC spectrum of A4
44	Figure S39 – $(^{1}H, ^{13}C)$ -HMBC spectrum of A4
45	Figure S40 – IR spectrum of A4
46	Figure S41 – HRMS spectrum of A4
47-55	Degradation product B1 information
47	Figure S42 – Degradation product B1 with NMR assignations
48	Figure S43 – ¹ H NMR spectrum of B1
49	Figure S44 – ¹³ C NMR spectrum of B1
50	Figure S45 – (¹ H, ¹ H)-COSY spectrum of B1
51	Figure S46 – (¹ H, ¹³ C)-HSQC spectrum of B1
52	Figure S47 – $(^{1}H, ^{13}C)$ -HMBC spectrum of B1
53	Figure S48 – (¹ H, ¹⁵ N)-HMBC spectrum of B1
54	Figure S49 – IR spectrum of B1
55	Figure S50 – HRMS spectrum of B1
56-63	Degradation product B2 information
56	Figure S51 – Degradation product B2 with NMR assignations
57	Figure S52 – ¹ H NMR spectrum of B2
58	Figure S53 – ¹³ C NMR spectrum of B2
59	Figure S54 – (¹ H, ¹ H)-COSY spectrum of B2
60	Figure S55 – (¹ H, ¹³ C)-HSQC spectrum of B2
61	Figure S56 – (¹ H, ¹³ C)-HMBC spectrum of B2
62	Figure S57 – IR spectrum of B2
63	Figure S58 – HRMS spectrum of B2
64-67	Degradation product B3 information
64	Figure S59 – Overlay chromatogram of a stress sample of venetoclax with added 1M
	NaOH after 1 day at 50 °C and degradation product A3
65	Figure S60 – Chromatograms and UV spectra of degradation product B3 and
	degradation product A3
66	Figure S61 – Chromatograms of a stress sample of venetoclax with added 1M NaOH
	after 1 day at 50 °C and degradation product A3 obtained with UV and MS detector
67	Figure S62 – MS spectra of degradation product A3 and degradation product B3
68-70	Degradation product N-oxide information
68	Figure S63 – Overlay chromatogram of a stress sample of venetoclax with added 3%
	H ₂ O ₂ after 7 days at 50 °C and commercially obtained <i>N</i> -oxide venetoclax impurity
69	Figure S64 – Chromatograms and UV spectra of degradation product <i>N</i> -oxide in stress
	sample of venetoclax with added H ₂ O ₂ and commercially obtained <i>N</i> -oxide venetoclax
70	Figure S65 - MS spectra of a commercially obtained <i>N</i> -oxide venetoclax and
	degradation product <i>N</i> -oxide in stress sample of venetoclax with added H ₂ O ₂

(a)

(b)

Figure S1. – Line charts depicting the percentage of degradation products in 14 day degradation testing. a) Line chart representing the percentage of degradation products in the venetoclax stress sample with added HCl (1 M) as a stress medium at 50 °C. Degradation products are named by their approximate retention times.

b) Line chart representing the percentage of degradation products in the venetoclax stress sample with added NaOH (1 M) as a stress medium at 50 °C. Degradation products are named by their approximate retention times.

Figure S2. – Chromatogram of the venetoclax stress sample with added 3% H₂**O**₂ **at 50 °C for 7 days.** The rise of one degradation product was noticeable, which was later identified as an *N*-oxide venetoclax, where the piperazine moiety is oxidized.

Atom No.	Venetoclax		VENE-B1		VENE-B2		VENE-A1		VENE-A2		VENE-A3		VENE-A4	
	¹³ C shift [ppm] & peak multiplici ty	¹ H shift [ppm], peak multiplici ty & coupling constants []]	¹³ C shift [ppm] & peak multiplicity	¹ H shift [ppm], peak multiplici ty & coupling constants []]	¹³ C shift [ppm] & peak multiplici ty	<pre>¹H shift [ppm], peak multiplici ty & coupling constants [ʃ]]</pre>	¹³ C shift [ppm] & peak multiplici ty	<pre>¹H shift [ppm], peak multiplici ty & coupling constants [J]</pre>	¹³ C shift [ppm] & peak multiplici ty	<pre>¹H shift [ppm], peak multiplici ty & coupling constants [J]</pre>	¹³ C shift [ppm] & peak multiplici ty	¹ H shift [ppm], peak multiplici ty & coupling constants [J]	¹³ C shift [ppm] & peak multiplici ty	¹ H shift [ppm], peak multiplici ty & coupling constants [J]
2	127.7 s	7.49 – 7.51 m	127.9 s	7.54 m	127.9 s	7.50 – 7.53 m		-	127.6 s	7.47 m	125.3 s	7.34 (d) 2.5	127.7 s	7.52 m
3	100.0 s	6.38 (dd) 1.8, 3.0	100.1 s	6.43 (dd) 1.9, 3.4	100.0 s	6.42 (dd) 1.9, 3.4			99.9 s	6.38 (dd) 1.9, 3.3	112.6 s		99.9 s	6.42 (dd) 1.9, 3.4
3a	119.8 s		119.9 s		119.9 s				119.8 s		119.5 s		120.0 s	
4	117.9 s	7.54 (d) 2.5	118.5 s	7.62 (d) 2.5	118.3 s	7.60 (d) 2.6			116.3 s	7.38 – 7.41 m	117.3 s	7.66 (d) 2.6	118.8 s	7.63 (dd) 0.5, 2.6
5	$146.5 \ \mathrm{s}$		146.1 s		146.1 s				148.3 s		$145.5 \mathrm{~s}$		$146.4 \mathrm{~s}$	
6	135.3 s	8.05 (d) 2.5	135.4 s	8.07 – 8.08 m	135.4 s	8.06 (d) 2.6			134.6 s	7.98 (d) 2.6	135.2 s	7.97 (d) 2.6	135.8 s	8.03 (d) 2.6
7a	145.4 s		145.6 s		145.6 s				144.9 s		145.9 s		145.5 s	
8	157.8 s		$158.1~\mathrm{s}$		158.1 s				$158.4 \mathrm{~s}$		158.1 s		$159.7 \mathrm{\ s}$	
9	102.4 s	6.18 (d) 1.6	102.6 s	6.22 (d) 2.3	102.6 s	6.23 (d) 2.4			105.6 s	6.41 (d) 2.5	102.3 s	6.19 (d) 2.3	104.7 s	6.57 m
10	154.5 s		153.5 s		153.6 s				153.4 s		153.5 s		151.0 s	
11	108.7 s	6.66 (dd) 1.6, 9.2	109.0 s	6.68 (dd) 2.3, 8.9	109.1 s	6.71 (dd) 2.4, 9.0			109.5 s	6.77 (dd) 2.5, 8.9	109.0 s	6.69 (dd) 2.3, 9.0	110.0 s	6.65 (dd) 2.0, 8.1

Table S1 – ¹³**C and** ¹**H NMR spectroscopic data for venetoclax and its degradants** (125 and 500 MHz, in DMSO-*d*₆). Chemical shifts (δ) are expressed in ppm with reference to residual solvent signal (2.50 ppm and 39.5 ppm for ¹H and ¹³C, respectively).

12	132.1 s	7.49 – 7.51	132.1 s	7.47 (d)	132.3 s	7.50 – 7.53			133.5 s	7.78 (d) 8.9	132.2 s	7.51 (d) 9.0	130.3 s	7.18 m
		m		8.9		m						. ,		() ())
13	112.6 s		113.5 s		113.2 s				113.0 s		113.2 s		108.1 s	6.34 (dd) 2.0, 8.1
14	163.8 s		163.3 s		163.5 s				165.9 s		163.5 s			
16	124.9 s		131.1 s		129.3 s		130.0 s				124.3 s			
17	127.7 s	8.57 (d) 2.2	110.0 s	8.07 – 8.08 m	126.1 s	8.39 (d) 2.4	124.7 s	8.47 (d) 2.3			127.9 s	8.58 (d) 2.3		
18	129.5 s		132.9 s		136.2 s		129.4 s				129.6 s			
19	147.3 s		140.3 s		156.1 s		146.7 s				147.5 s			
20	115.0 s	7.10 (d) 9.3	119.1 s	7.67 m	119.6 s	7.23 (d) 8.9	115.7 s	7.30 (d) 9.2			115.1 s	7.13 (d) 9.4		
21	133.9 s	7.81 (dd) 1.8, 9.3	120.6 s	7.67 m	133.9 s	7.98 (dd) 2.4, 8.9	132.7 s	7.82 (dd) 2.3, 9.2			133.9 s	7.84 (dd) 2.3, 9.4		
23	47.9 s	3.29 m	157.1 s				47.8 s	3.35 m			47.9 s	3.28 m		
24	33.8 s	1.88 m	31.9 s	3.37 m			33.9 s	1.90 m			33.9 s	1.86 m		
25, 28	30.2 s	1.25 m, 1.60 m	29.9 s	1.82 – 1.90 m			66.6 s	1.26 m, 1.61 m			30.1 s	1.23 m, 1.58 m		
26, 27	66.6 s	3.25 m, 3.84 m	66.5 s	3.50 m, 3.96 m			30.1 s	3.26 m, 3.85 m,			66.6 s	3.23 m, 3.82 m,		
2′, 6′	46.5 s	3.06 br.s	43.8 s	3.02 br.s, 3.64 br.s	43.8 s	3.01 br.s, 3.64 br.s				3.06 br.s, 3.74 br.s	43.8 s	3.00 br.s, 3.62 br.s	45.0 s	3.01 br.m, 3.65 br.m
3′, 5′	52.0 s	2.19 br.s	50.5 s	2.74 br.s, 3.26 br.s	50.5 s	2.75 br.s, 3.25 br.s				2.78 br.s, 3.28 br.s	50.5 s	2.74 br.s, 3.20 br.s	50.8 s	2.83 br.m, 3.33 br.m
7′	59.6 s	2.74 s	58.0 s	3.56 s	58.0 s	3.57 s			58.0 s	3.59 s	58.1 s	3.56 s	57.9 s	3.64 s
8′	128.5 s		121.7 s		121.7 s						121.8 br.s		121.7 s	
9′	134.6 s		141.6 s		141.6 s				141.7 s		141.6 br.s		141.7 s	
10'	46.3 s	1.93 s	46.6 s	2.00 s	46.6 s	2.00 s			46.6 s	2.02 s	46.6 s	2.00 s	46.5 s	2.05 s
11′	28.8 s		28.6 s		28.7 s				28.7 s		28.7 s		28.7 s	
12'	34.8 s	1.36 (t) 6.2	34.2 s	1.44 m	34.2 s	1.44 m			34.3 s	1.46 m	34.2 s	1.44 m	34.2 s	1.49 (t) 6.3
13′	25.1 s	2.12 br.m	24.7 s	2.18 br.m	24.8 s	2.17 br.m			24.8 s	2.20 br.m	24.8 s	2.18 br.m	24.8 s	2.23 br.m

1″	141.9 s		140.3 s		140.3 s			$140.4 \mathrm{~s}$		140.3 s		140.3 s	
2", 6"	130.0 s	7.02 m	129.7 s	7.07 m	129.8 s	7.07 m		129.8 s	7.09 m	129.8 s	7.07 m	129.8 s	7.13 m
3", 5"	128.1 s	7.32 m	128.7 s	7.38 m	128.7 s	7.39 m		128.7 s	7.38 – 7.41 m	128.7 s	7.37 m	128.7 s	7.43 m
4″	$130.8 \mathrm{\ s}$		131.7 s		131.8 s			131.8 s		131.8 s		131.8 s	
3-CH ₂										20.8 s	4.03 s		
11'- (CH3)2	27.9 s	0.90 s	27.8 s	0.93 s	27.8 s	0.94 s		27.9 s	0.95 s	27.8 s	0.93 s	27.8 s	0.97 s
1-NH		11.70 s		11.77 s		11.74 s			11.64 s		11.64 br.s		11.72 s
15-NH		11.32 br. s		11.68 s		11.77 br.s					11.43 (d) 2.5		
22-NH		8.61 (t) 5.8					8.75 (t) 6.0				8.62 (t) 6.0		
14 - OH									9.34 br. s				
NH+(4													0.25 hr c
<i>'</i>)													9.25 DI.S
15- NH2							7.32 (br.s)						

Venetoclax information

Figure S3. – Venetoclax with NMR assignations.

Figure S4 – ¹H NMR spectrum of **venetoclax**

Figure S5 – ¹³C NMR spectrum of **venetoclax**

Figure S6 – (¹H, ¹H)-COSY spectrum of **venetoclax**

Figure S7 – (¹H, ¹³C)-HSQC spectrum of **venetoclax**

Figure S8 – (¹H, ¹³C)-HMBC spectrum of **venetoclax**

Degradation product A1 information

3-nitro-4-(((tetrahydro-2*H*-pyran-4-yl)methyl)amino)benzenesulfonamide: crystalline solid; m.p. 190.3 °C; HRMS [M+H]⁺: calculated 316.0962, found 316.0958.

Figure S9 – Degradation product A1 with NMR assignations

Figure S10 – ¹H NMR spectrum of A1

Figure S11 – ¹³C NMR spectrum of A1

Figure S12 – (¹H, ¹H)-COSY spectrum of A1

Figure S13 – (¹H, ¹³C)-HSQC spectrum of A1

Figure S14 – (¹H, ¹³C)-HMBC spectrum of A1

Figure S16 – DSC curve for A1

VEN_A1 #2 RT: 0.01 AV: 1 NL: 8.16E+006 T: FTMS + c ESI Full ms [140.0000-2100.0000]

Figure S17 – HRMS spectrum of A1

Degradation product A2 information

2-((1*H*-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((4'-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)methyl)piperazin-1-yl)benzoic acid: amorphous solid; HRMS [M+H]⁺: calculated 571.2470, found 571.2458.

Figure S18 – Degradation product A2 with NMR assignations

Figure S19 – ¹H NMR spectrum of A2

Figure S20 – ¹³C NMR spectrum of A2

Figure S21 – (¹H, ¹H)-COSY spectrum of A2

Figure S22 – (¹H, ¹³C)-HSQC spectrum of A2

Figure S23 – (¹H, ¹³C)-HMBC spectrum of A2

Figure S24 – IR spectrum of A2

Figure S25 – HRMS spectrum of A2

NL: 3.42E8 VEN_A2 #2 RT: 0.01 AV: 1 NL: 3.42E+008

Degradation product A3/B3 information

2,2'-((methylenebis(1*H*-pyrrolo[2,3-b]pyridine-1,5-diyl))bis(0xy))bis(4-(4-((4'-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)methyl)piperazin-1-yl)-*N*-((3-nitro-4-(((tetrahydro-2*H*-pyran-4-yl)methyl)amino)phenyl)sulfonyl)benzamide): amorphous solid; HRMS [M+H]⁺: calculated 1747.6435, found 1747.6434.

Figure S26 – Degradation product A3 with NMR assignations

Figure S27 – ¹H NMR spectrum of A3

Figure S28 – ¹³C NMR spectrum of A3

Figure S29 – (¹H, ¹H)-COSY spectrum of A3

Figure S30 – (¹H, ¹³C)-HSQC spectrum of A3

Figure S31 – (¹H, ¹³C)-HMBC spectrum of A3

Figure S32 – IR spectrum of A3

Figure S33 - HRMS spectrum of A3. Full spectrum (left) and spectrum of higher m/z (right)

Degradation product A4 information

5-(3-(4-((4'-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)methyl)piperazin-1-yl)phenoxy)-1*H*-pyrrolo[2,3-b]pyridine: HRMS [M+H]*: calculated 527.2572, found 527.2543.

Figure S34 – Degradation product A4 with NMR assignations

Figure S35 – ¹H NMR spectrum of A4

Figure S36 – ¹³C NMR spectrum of A4

Figure S37 – (¹H, ¹H)-COSY spectrum of A4

Figure S38 – (¹H, ¹³C)-HSQC spectrum of A4

Figure S39 – (¹H, ¹³C)-HMBC spectrum of A4

Figure S40 – IR spectrum of A4

NL: 5.67E8 VEN_A4 #2 RT: 0.01 AV: 1 NL: 5.67E+008 T: FTMS + c ESI Full ms [100.0000-1000.0000]

Figure S41 – HRMS spectrum of A4

Degradation product B1 information

5-(N-(2-((1*H*-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((4'-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)methyl)piperazin-1-yl)benzoyl)sulfamoyl)-2-(tetrahydro-2*H*-pyran-4-yl)-1*H*-benzo[d]imidazole 3-oxide

Tautomer:

2-((1*H*-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((4'-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)methyl)piperazin-1-yl)-*N*-((1-hydroxy-2-(tetrahydro-2*H*-pyran-4-yl)-1*H*-benzo[d]imidazol-6-yl)sulfonyl)benzamide: amorphous solid; HRMS [M+H]⁺: calculated 850.3148, found 850.3132.

Figure S42 – Degradation product B1 with NMR assignations

Figure S43 – ¹H NMR spectrum of B1

Figure S44 – ¹³C NMR spectrum of B1

Figure S45 – (¹H, ¹H)-COSY spectrum of B1

Figure S46 – (¹H, ¹³C)-HSQC spectrum of **B1**

Figure S47 – (¹H, ¹³C)-HMBC spectrum of B1

Figure S48 – (¹H, ¹⁵N)-HMBC spectrum of B1

Figure S49 – IR spectrum of B1

Figure S50 – HRMS spectrum of B1

NL: 5.43E8 VEN_B1 #2 RT: 0.01 AV: 1 NL: 5.43E+008 T: FTMS + c ESI Full ms [140.0000-2100.0000]

Degradation product B2 information

2-((1*H*-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((4'-chloro-5,5-dimethyl-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)methyl)piperazin-1-yl)-*N*-((4-hydroxy-3-nitrophenyl)sulfonyl)benzamide: HRMS [M+H]⁺: calculated 771.2362, found 771.2351.

Figure S51 – Degradation product B2 with NMR assignations

Figure S52 – ¹H NMR spectrum of B2

Figure S53 – ¹³C NMR spectrum of B2

Figure S54 – (¹H, ¹H)-COSY spectrum of B2

Figure S55 – (¹H, ¹³C)-HSQC spectrum of B2

Figure S56 – (¹H, ¹³C)-HMBC spectrum of B2

Figure S57 – IR spectrum of B2

Figure S58 – HRMS spectrum of **B2**

NL: 9.01E7 VEN_B2 #2 RT: 0.01 AV: 1 NL: 9.01E+007 T: FTMS + c ESI Full ms [140.0000-2100.0000]

Degradation product B3 information (see Figure S25 – Degradation product A3)

Figure S59 – Overlay chromatogram of a stress sample of venetoclax with added 1M NaOH after 1 day at 50 °C (black) and degradation product A3 (blue).

Figure S60 – Chromatograms (left) and UV spectra (right) of degradation product B3 in stress sample of venetoclax with added 1M NaOH after 1 day at 50 °C (top) and degradation product A3 (bottom)

Figure S61 – Chromatograms of a stress sample of venetoclax with added 1M NaOH after 1 day on 50 °C and degradation product A3 obtained with UV and MS detector

Figure S62 – MS spectra of degradation product A3 (top) and degradation product B3 (bottom).

Figure S63 – Overlay chromatogram of a stress sample of venetoclax with added 3% H₂O2 after 7 days at 50 °C (black) and commercially obtained *N*-oxide venetoclax impurity (red) (top) and a close up of the same chromatogram from 6.3 to 12.1 min (bottom). The impurities eluting at approximately 9 min and 9.2 min are process related impurities present in the venetoclax substance.

Figure S64 – Chromatograms (left) and UV spectra (right) of degradation product *N*-oxide in stress sample of venetoclax with added 3% H₂O₂ after 5 days at room temperature (top) and commercially obtained *N*-oxide venetoclax (bottom).

Figure S65 – MS spectra of a commercially obtained *N*-oxide venetoclax (top) and degradation product *N*-oxide in stress sample of venetoclax with added H₂O₂ (bottom). MS spectra was obtained with a triple quad mass spectrometer.