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Abstract: ProTide technology is a powerful tool for the design of nucleoside/nucleotide analog
prodrugs. ProTide prodrug design improves cell permeability and enhances intracellular activation.
The hydrolysis of the ester bond of a ProTide is a determinant of the intracellular activation efficiency
and final antiviral efficacy of the prodrug. The hydrolysis is dictated by the catalytic activity and
abundance of activating enzymes. The antiviral agents tenofovir alafenamide (TAF) and sofosbuvir
(SBV) are typical ProTides. Both TAF and SBV have also been proposed to treat patients with COVID-
19. However, the mechanisms underlying the activation of the two prodrugs in the lung remain
inconclusive. In the present study, we profiled the catalytic activity of serine hydrolases in human
lung S9 fractions using an activity-based protein profiling assay. We evaluated the hydrolysis of
TAF and SBV using human lung and liver S9 fractions and purified enzymes. The results showed
that CatA and CES1 were involved in the hydrolysis of the two prodrugs in the human lung. More
specifically, CatA exhibited a nearly 4-fold higher hydrolytic activity towards TAF than SBV, whereas
the CES1 activity on hydrolyzing TAF was slightly lower than that for SBV. Overall, TAF had a nearly
4-fold higher hydrolysis rate in human lung S9 than SBV. We further analyzed protein expression
levels of CatA and CES1 in the human lung, liver, and primary cells of the two tissues using
proteomics data extracted from the literature. The relative protein abundance of CatA to CES1 was
considerably higher in the human lung and primary human airway epithelial cells than in the human
liver and primary human hepatocytes. The findings demonstrated that the high susceptivity of TAF
to CatA-mediated hydrolysis resulted in efficient TAF hydrolysis in the human lung, suggesting that
CatA could be utilized as a target activating enzyme when designing antiviral ester prodrugs for the
treatment of respiratory virus infection.
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1. Introduction

Nucleoside/nucleotide analogs remain an important class of antivirals in clinics. These
therapeutics commonly exert their antiviral effects intracellularly through the formed
active metabolites, triple phosphate nucleoside (TP-Nuc), which inhibit the viral poly-
merase or/and terminate the elongation of the viral nucleic acid chain [1]. However,
nucleotide/nucleoside analogs have limitations, such as limited cell permeability associ-
ated with the polar molecular structure and inefficient intracellular activation. To improve
cell permeability and pharmacokinetic performance, nucleoside/nucleotide analogs are
often structurally modified to be ester prodrugs [2]. The ProTide technology has been a
powerful tool to improve the cell permeability and the intracellular activation of nucleo-
side/nucleotide antivirals and anticancer drugs [3,4]. The most recent ProTide technology
is to structurally modify nucleoside/nucleotide analogs to aryloxy phosphoramidite pro-
drugs by masking two of the oxygens of the monophosphate and monophosphonate
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groups with an aryloxy group and an amino acid ester group. The ProTide prodrugs have
two advantages over parent nucleoside/nucleotide forms: (1) great cell permeability due
to low polarity; (2) rapid intracellular activation by avoiding the rate-limiting monophos-
phorylating process [3,5–7]. There are at least three FDA-approved ProTide prodrugs,
including tenofovir alafenamide (TAF), sofosbuvir (SBV), and remdesivir (RDV) (Figure 1).
Among these, TAF has been commonly used against hepatitis B virus (HBV) and human
immunodeficiency virus (HIV), while SBV is mainly used for treating hepatitis C virus
(HCV) infection. RDV was recently approved for the treatment of coronavirus disease 2019
(COVID-19) due to its promising antiviral effects against severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2). TAF and SBV have also been proposed to be alternatives for
COVID-19 treatment based on their anti-SARS-CoV-2 effects observed in vitro [8,9].
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phosphonate product, tenofovir, which is subsequently phosphorylated by kinases to generate the active metabolite ten-
ofivir-diphosphote (TFV-DP). 
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(rhCES1) were purchased from R&D Systems (Minneapolis, MN, USA). Recombinant hu-
man lysophospholipase 1 (rhLYPLA1) was purchased from OriGene (Rockville, MD, 
USA). Pooled human liver S9 fraction (HLS9) and pooled HlungS9 were products from 
XenoTech LLC (Kansas City, KS, USA). The demographic information about the tissue 
donors is summarized in Table S1. The ActivX™ desthiobiotin-FP probe and Pierce™ 
streptavidin agarose resin were obtained from Thermo Scientific (Rockford, IL, USA). Bis-
(p-nitrophenyl) phosphate (BNPP), dithiolthreitol, iodoacetamide, urea, ammonium bi-
carbonate, and Tris-base (Trizma base) were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Tris-HCl was purchased from Fisher Scientific (Fair Lawn, NJ, USA). The MES 
buffer (0.2 M, pH 5.5) was purchased from Alfa Aesar (Ward Hill, MA, USA). All other 
chemicals and reagents were of analytical grade and commercially available. 

2.2. ABPP of Serine Hydrolases HlungS9 
The experimental method was based on a previous ABPP proteomics study with 

some modifications [21]. The mechanism of this ABPP method is summarized in Figure 
S1. Briefly, 200 μg HlungS9 protein was diluted with PBS to 1 μg/μL. The protein solution 
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Figure 1. Chemical structures of the three FDA-approved antiviral ProTides, tenofovir alafenamide
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are masked by an aryloxy group and an amino acid ester group (highlighted in blue).

Besides the antiviral potency observed in vitro, whether the in situ intracellular con-
centration of active metabolite reaches and maintains the effective level (e.g., EC50) is also
critical for the successful treatment of an antiviral prodrug. It has been well documented
that TAF [10,11], SBV [12], and RDV [13] undergo a similar metabolism pathway mediated
by a series of enzymes to generate the active metabolite, TP-Nuc. After entering cells, the
ester groups are reportedly cleaved by cathepsin A (CatA) and carboxylesterase 1 (CES1),
and then the P-N bond is cleaved mainly by histidine triad nucleotide-binding protein 1
(HINT1) to release the MP-Nuc metabolite. The MP-Nuc is subsequently phosphorylated
by kinases to form TP-Nuc [12–14] (Figure 2, a putative metabolism pathway exemplified
by the TAF metabolism). Multiple studies have shown that the antiviral efficacy of TAF,
SBV, and RDV is highly associated with the ester hydrolysis rate, and the hydrolysis pro-
cess is dependent on the activity and the protein abundance of CatA and CES1 [12–14].
Recently, some scholars indicated that the ProTide technology might be more suitable for
therapeutics against liver diseases (e.g., HBV and HCV) rather than lung diseases because
a large fraction of the prodrug would be hydrolyzed and exert ensuing antiviral efficacy in
the liver due to the high abundance of CES1 and CatA in the liver [15]. A more recent study,
however, demonstrated that human lung tissues also have sufficient CatA and CES1 to
activate RDV [13]. Our recent study found that CES1 protein abundance was over 200-fold
higher in the liver than in the lung, while CatA protein expression was comparable between
the lung and the liver [16]. As such, we hypothesized that a greater susceptivity to CatA
and lower susceptivity to CES1 might facilitate the pulmonary activation of a ProTide.
The activity of CatA for TAF hydrolysis has been reported to be higher than that for SBV
and RDV [12–14]. However, to our knowledge, the hydrolysis profiles of TAF and SBV in
human lungs have not yet been evaluated.
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Figure 2. The putative intracellular activation pathway of TAF. TAF exhibits a significantly improved cell permeability
compared to tenofovir. After cell entry, TAF is hydrolyzed by CatA and CES1 and is converted to its alanine metabolite (TFV-
Ala) following several rapid chemical reaction steps. TFV-Ala is further hydrolyzed by HINT1 to form the monophosphonate
product, tenofovir, which is subsequently phosphorylated by kinases to generate the active metabolite tenofivir-diphosphote
(TFV-DP).

Serine hydrolases, including CES1, CatA, and more than 200 other members, are
among the largest and most diverse enzyme classes in humans [17]. Some of the enzymes
catalyze ester hydrolysis and are involved in nucleoside/nucleotide ester prodrug hydrol-
ysis [2]. Most of these enzymes exert their catalytic functions via nucleophilic attacking
the carbonyl carbon atom of the carboxylic ester through its serine-histidine-aspartate
triad [18]. Activity-based protein profiling (ABPP) is a powerful chemoproteomic strategy
for assessing the catalytic activity of target enzymes in native biological systems [17–20]. In
this study, we conducted an ABPP study using the desthiobiotin-fluorophosphonate (FP)
probe [18] to globally assess the catalytic activity of serine hydrolases in human lung S9
(HlungS9) fractions in an effort to identify hydrolyses that can be targeted for activating
an ester prodrug in the human lung. We further investigated the hydrolysis of TAF and
SBV in HlungS9 and by purified CatA and CES1 to assess whether TAF and SBV could be
effective oral drugs to treat human respiratory infectious diseases (e.g., COVID-19) from a
prodrug activation perspective.

2. Materials and Methods
2.1. Materials

TAF, SBV, RDV, and telaprevir were purchased from MedChemExpress (Monmouth
Junction, NJ, USA). Recombinant human CatA (rhCatA), CathepsinL (rhCatL), and CES1
(rhCES1) were purchased from R&D Systems (Minneapolis, MN, USA). Recombinant
human lysophospholipase 1 (rhLYPLA1) was purchased from OriGene (Rockville, MD,
USA). Pooled human liver S9 fraction (HLS9) and pooled HlungS9 were products from
XenoTech LLC (Kansas City, KS, USA). The demographic information about the tissue
donors is summarized in Table S1. The ActivX™ desthiobiotin-FP probe and Pierce™
streptavidin agarose resin were obtained from Thermo Scientific (Rockford, IL, USA).
Bis-(p-nitrophenyl) phosphate (BNPP), dithiolthreitol, iodoacetamide, urea, ammonium
bicarbonate, and Tris-base (Trizma base) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Tris-HCl was purchased from Fisher Scientific (Fair Lawn, NJ, USA). The MES
buffer (0.2 M, pH 5.5) was purchased from Alfa Aesar (Ward Hill, MA, USA). All other
chemicals and reagents were of analytical grade and commercially available.
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2.2. ABPP of Serine Hydrolases HlungS9

The experimental method was based on a previous ABPP proteomics study with
some modifications [21]. The mechanism of this ABPP method is summarized in Figure S1.
Briefly, 200 µg HlungS9 protein was diluted with PBS to 1 µg/µL. The protein solution
(200 µL) was incubated with 2 µM (final concentration) ActivX™ desthiobiotin-FP probe
or vehicle (DMSO, final concentration: 1%, v/v) for 1 and 12 min at 37 ◦C on a shaker
(Benchmark, Multi-ThermTM, Tempe, AZ, USA) at 1200 rpm. The labeling reaction was
terminated by adding 1.6 mL of acetone containing the internal standard (IS) biotinylated
BSA (600 ng). The mixture was vortexed for 1 min and stored at 4 ◦C overnight before
being centrifuged at 21,130× g for 15 min to remove the supernatant. The excess probe
was removed by washing twice with 1 mL methanol. The precipitated proteins were
resuspended in 200 µL 8 M Urea/100 mM ammonium bicarbonate solution containing
4 mM dithiolthreitol (DTT), incubated at 37 ◦C for 45 min, and shaken at 1200 rpm. The
sample was allowed to cool to room temperature before adding 40 µL (0.5 M) iodoacetamide
(IAA). The mixture was placed in the dark for 30 min for alkylation. The sample was
then diluted with 1.6 mL of PBS. Then, 50 µL of 50% slurry of Pierce™ streptavidin
agarose (beads) was washed with PBS (20 mL) three times and mixed with the proteome
sample. The mixture was incubated for 3 h at room temperature with gentle shaking on
a shaker (Benchmark, B3D 1320 Super Nutation Mixer). The beads were then isolated by
centrifugation and washed five times with 0.5 mL of 0.8 M urea and then five times with
0.5 mL of PBS. The proteins on the beads were digested overnight with sequencing grade
trypsin in 500 µL PBS at 37 ◦C with gentle shaking. The digested peptides were extracted
and cleaned using Waters Oasis HLB columns following the manufacturer’s instructions.
The eluted peptides were dried and stored at −80 ◦C for liquid chromatography–tandem
mass spectrometry (LC-MS/MS) analysis.

2.3. Enzyme and Tissue S9 Activity Assays

The activity of rhCatA and rhCES1 for hydrolyzing TAF and SBV was measured
using a method reported in a previous study [12] with minor modifications. Briefly, the
optimized buffer systems for rhCatA and rhCES1 were MES assay buffer (pH 5.5, 0.2 M
MES buffer containing 100 mM NaCl, 1 mM DTT, and 0.1% Nonidet) and Tris buffer (pH 7.5,
50 mM Tris, prepared by dissolving 6.06 g Tris-HCL and 1.39 g Tris-base in 1000 mL water),
respectively. rhCatA was activated by rhCatL following the manufacturer’s instructions.
The CatA assay was carried out in a 50 µL reaction mixture containing 0.5 ng/µL activated
rhCatA and 20 µM TAF or 20 µM SBV in the MES assay buffer (pH 5.5). The rhCatA assay
mixture was incubated at 37 ◦C for 5 min with shaking at 1200 rpm. The rhCES1 assay
was conducted in a 20 µL reaction mixture containing 40 ng/µL rhCES1 and 20 µM TAF
or 20 µM SBV in the Tris buffer (pH 7.5). The rhCES1 assay mixture was incubated at
37 ◦C for 20 min with shaking at 1200 rpm. Our preliminary study confirmed a linear
relationship of TAF hydrolysis with the tested enzyme concentrations (CatA: 0.1–0.5 ng/µL;
CES1: 20–40 ng/µL) and the incubation times (CatA: 0–5 min; CES1: 0–30 min) and a linear
relationship of SBV hydrolysis with CES1 concentrations (20–40 ng/µL) and incubation
times (CES1: 0–40 min). The tested SBV concentration (20 µM) was well below the Km
value (700 µM) for CatA reported in a previous study [12]. The rhLYPLA1 activity for TAF
hydrolysis was tested in Tris pH 7.5 condition because its subcellular expression location
is mainly cytosol [22]. The rhLYPLA1 assay was conducted in a 50 µL reaction mixture
containing 20 or 40 ng/µL rhLYPLA1 and 20 µM TAF at 37 ◦C for 15 and 30 min with
shaking at 1200 rpm on a shaker (Benchmark, Multi-ThermTM). The enzyme activity was
calculated by dividing the reduction of TAF or SBV by the enzyme concentration and
incubation duration time.

The tissue S9 assay was carried out in MES assay buffer (pH 5.5) and Tris buffer
(pH 7.5) to optimize the activity of native CatA and CES1, respectively. Then, 20 µM
prodrug (TAF or SBV) was incubated with 0.5 mg/mL HLungS9 or HLS9 protein at
37 ◦C for 15 min and 30 min with shaking at 1200 rpm on a shaker (Benchmark, Multi-
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ThermTM). The reactions were terminated by adding a two-fold volume of acetonitrile
(ACN) containing the internal standard RDV (5 µM). The samples were then vortexed for
0.5 min and centrifuged at 21,130× g for 10 min at 4 ◦C to remove the precipitated proteins.
The resulting supernatant was collected and diluted with ten volumes of 3% (v/v) ACN
containing 0.1% (v/v) formic acid before being injected into an LC-MS/MS system with an
assay method described below.

2.4. Inhibition Assay

An in vitro study was performed to evaluate the effects of the CatA inhibitor telaprevir
and the CES1 inhibitor BNPP on TAF hydrolysis in HlungS9. TAF concentration was
determined after incubation of TAF (20 µM) with pooled HlungS9 (0.5 mg/mL) at 37 ◦C for
30 min in the absence or presence of various concentrations of telaprevir (0.5, 5, and 50 µM)
and BNPP (1, 10, and 50 µM). The reactions were terminated by adding a two-fold volume
of ACN containing the internal standard RDV (5 µM). The samples were then vortexed
for 1 min and centrifuged at 21,130× g for 10 min at 4 ◦C to remove the precipitated
proteins. The resulting supernatant was collected to analyze TAF using an LC-MS/MS
assay described below.

2.5. LC-MS/MS-Based Proteomics Analysis

We used an established LC-MS/MS-based data-independent acquisition (DIA) pro-
teomics approach [23,24] to quantify the relative abundance of serine hydrolases enriched
by ActivX™ desthiobiotin-FP probe from HlungS9 in the ABPP experiment. The analysis
was carried out on a TripleTOF 5600 plus mass spectrometer (AB Sciex, Framingham,
MA, USA) coupled with an Eksigent 2D plus LC system (Eksigent Technologies, Dublin,
CA, USA). Briefly, we used a trapping column (ChromXP C18-CL, 120 Å, 5 mm, 0.3 mm
cartridge; Eksigent Technologies) to load the samples and an analytical column (ChromXP
C18-CL, 120 Å, 150 × 0.3 mm2, 5 mm; Eksigent Technologies) to separate peptides. The
mobile phase consisted of water with 0.1% formic acid (A) and acetonitrile (ACN) contain-
ing 0.1% formic acid (B). Mobile phase A was delivered at a flow rate of 10 µL/min for
3 min to load 1~2 µg proteins to the trapping column. A gradient elution at a flow rate of
5 µL/min was used to separate the injected peptides on the analytical column. The gradient
parameters are summarized in Table S2. A blank sample (30% ACN, v/v) was injected
between each run to minimize carryover. MS data were collected in a positive mode with
the source temperature set at 280 ◦C and the ion spray voltage of 3000 V for ionization.

2.6. LC-MS/MS Analysis of TAF and SBV

TAF and SBV were quantified based on a previously reported method with some
modifications [25]. The LC-MS/MS system consisted of a PE SCIEX API 3000 spectrometer
and a Shimadzu UFLC system (Shimadzu, Tokyo, Japan). We used a RESTEK Ultra II C18
column (5 µm, 50 cm × 2.1 mm, Bellefonte, PA, USA) with a RESTEK UltraShield UHPLC
precolumn filter (0.2 µm frit, Bellefonte, PA, USA) for chromatographic separation at 45 ◦C.
Mobile phase A was water containing 0.1% (v/v) formic acid, and mobile phase B was
ACN containing 0.1% (v/v) formic acid. The mobile phase flow rate was 0.5 mL/min, and
1 µL sample was injected for analysis. For the gradient program, mobile phase B was at 5%
for the first 0.1 min, increased to 90% during the period of 0.1 min–2 min and maintained
at 90% for 1 min, then returned to 5% at 3.1 min and maintained at 5% until the end of
the gradient at 5 min. We operated the MS in a positive mode with turbo electrospray
ionization. We set the following MS parameters: nebulizer gas: 15 psi; curtain gas: 15 psi;
collision gas: 6 psi; ionspray voltage: 5500 V; source temperature: 550 ◦C; declustering
potential: 14 V; focusing potential: 30 V; entrance potential: 6 V; collision energy: 35 V;
collision cell exit potential: 15 V. In a multiple reaction monitoring (MRM) mode, the
following transitions were monitored: TAF, m/z 477.20 > 176.10; SBV, m/z 530.30 > 243.00;
RDV, m/z 603.23 > 200.10. The peak area ratios of TAF and SBV to RDV were used to
quantify TAF and SBV. The regression coefficients of calibration curves were greater than
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0.99 analytes’ concentrations between 1.25 µM and 20 µM. Accuracy and precision results
met the FDA bioanalytical method validation guidance requirements.

2.7. Meta-Analysis of CatA, CES1, HINT1 Protein Expression in Human Respiratory and
Hepatic Systems

The protein expression data of CatA, CES1, and HINT1 in human respiratory (lungs
and airways) and hepatic systems were retrieved from the literature. The protein expression
data in HLS9 and HLungS9 were obtained from two recent studies [13,16]. The protein
expression data of autopsy samples from COVID-19 patients’ lung and liver tissues were
extracted from a recent study by Nie et al. [26]. The global proteome data of primary
human tracheal bronchial epithelial cells (TBECs) from healthy nonsmokers (n = 4; males)
were obtained from the study by Foster et al. [27], in which a label-free data-dependent
acquisition (DDA) method was used for proteomics analysis, and the peptides raw data
were provided [27]. We calculated the abundance of proteins of interest using a label-
free DDA-total protein approach algorithm (DDA-TPA) established in our lab [23]. The
proteome data of human primary hepatocytes from normal liver tissues of seven donors
were obtained from the study by Wiśniewski et al. [28]. The protein expression data in
Huh7 and A549 cell lines were extracted from a recent study by Nusinow et al. [29].

2.8. Data Analysis

Proteomics data were analyzed using the Spectronaut Pulsar software (version 11.0;
Biognosys AG, Schlieren, Switzerland) with a spectral library generated from pooled HLS9
and HlungS9 in a previous study [16] and the human proteome FASTA file downloaded
from UniProtKB. The human serine hydrolases proteomics data were extracted using a
FASTA file containing 238 human serine hydrolases [16]. The normalized abundance of a
specific serine hydrolase was the ratio of its intensity to the intensity of biotinylated BSA
(internal standard) in each sample. The enrichment ratio of each hydrolase was calculated
by dividing its normalized abundance in the probe-treated group with its normalized
abundance in the control group.

The estimated contribution of CatA and CES1 to TAF and SBV hydrolysis was cal-
culated by timing the activity of rhCatA and rhCES1 with the enzyme abundance in a
specific biological system (e.g., HlungS9, HLS9, and primary human cells) [16]. It was
assumed that the activity of a recombinant human enzyme was similar to the activity of
its native counterpart in human tissue S9 and primary human cells. The total hydrolysis
rate of TAF or SBV in a specific biological system was established by summing CatA and
CES1 contributions.

GraphPad Prism version 8.3.0 (GraphPad Software, San Diego, CA, USA) was used
for statistical analysis and generating graphs. The Student’s t-test was used to analyze the
differences between the enzyme’s activity for TAF and SBV, and the difference between the
remaining TAF and SBV after incubation with tissue S9 fractions. The analysis of variance
(ANOVA) was sued to analyze the difference between groups treated by various concentra-
tions of inhibitors and the difference of the estimated prodrug hydrolysis rates among the
three human primary cells. A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Serine Hydrolase Activity Profiles in HlungS9

The HlungS9 serine hydrolases ABPP results are shown in Figure 3. The desthiobiotin-
FP probe enriched about 5 and 20 serine hydrolases after 1 min and 12 min probe labeling
incubations, respectively. Specifically, LYPLA1 and CatA (CTSA) were enriched consider-
ably faster than other enzymes by the desthiobiotin-FP probe. Moreover, LYPLA1, CatA,
and CES1 showed the highest catalytic activity in both 1-min and 12-min incubations,
indicating that the three enzymes are the predominant hydrolases in the human lung. No
significant differences were observed in the enrichment folds of LYPLA1, CatA, and CES1
between 12-min and 1-min incubations, suggesting the enzymes could be rapidly enriched
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by the probe within 1 min. In comparison, the enrichment of several other serine hydro-
lases, including LYPLA2, CPVL, SCPEP1, ESD, CTSG, PAFAH1, TPP1, TPSB2, LTF, PLG,
and CFI, was significantly increased by a longer period time of (12 min) probe incubation.
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3.2. Enzyme Activity

Based on the HlungS9 serine hydrolases ABPP result, we tested the activity of rhLY-
PLA1, rhCatA, and rhCES1 on hydrolyzing TAF. Both rhCatA and rhCES1 demonstrated
significant activity; however, rhLYPLA1 showed no activity towards TAF hydrolysis even
at high concentrations (20 and 40 ng/µL) (Figure S2). The activities of rhCatA and rhCES1
on SBV hydrolysis were also determined and compared with those for TAF (Figure 4). The
activity of CatA for TAF was approximately 4-fold higher than that for SBV (3941 ± 77
vs. 772 ± 262 pmol/min/µg protein, n = 3, p < 0.01); while the CES1 activity for TAF was
slightly lower than that for SBV (8.35 ± 0.43 vs. 9.79 ± 0.36 pmol/min/µg protein, n = 3,
p < 0.01). The activity ratios of CatA to CES1 on hydrolyzing TAF and SBV were 472:1 and
79:1 for TAF and SBV, respectively, suggesting that, relative to SBV, TAF is more susceptible
to CatA.
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Figure 4. Activity of rhCatA (a) and rhCES1 (b) for TAF and SBV hydrolysis. 0.5 ng/µL rhCatA and
40 ng/µL rhCES1 were incubated with 20 µM TAF or SBV at 37 ◦C for 5 and 20 min, respectively.
The enzyme activity was calculated by dividing the disappearance amount of the prodrug by the
enzyme concentration and incubation time. Bars show mean values (±S.D.) of three independent
experiments (n = 3). * p < 0.05 and ** p < 0.01 indicate statistically significant difference between TAF
and SBV groups by Student’s t-test.
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3.3. TAF and SBV Hydrolysis in HlungS9 and HLS9

The hydrolysis of TAF and SBV in HlungS9 and HLS9 were determined (Figure 5).
To optimize the performance of native CatA and CES1 in tissue S9, different pH buffer
systems were adopted: MES pH 5.5 was the optimized condition for CatA, and Tris pH
7.5 was used for CES1. TAF showed a much more rapid hydrolysis rate than SBV in both
HlungS9 and HLS9. Specifically, in HlungS9, TAF hydrolysis rate was approximately 4-fold
higher than that of SBV. After 30 min incubations, about 65% and 45% TAF was hydrolyzed
by HlungS9 in MES pH 5.5 and Tris pH 7.5, respectively. In comparison, only 15% and
10% SBV was hydrolyzed by HlungS9 in the pH 5.5 and pH 7.5 conditions, respectively.
Both HlungS9 and HLS9 showed an enhanced TAF hydrolysis capability in pH 5.5 than
in pH 7.5. However, the pH 5.5 condition did not significantly increase SBV hydrolysis in
HlungS9 and HLS9.
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Figure 5. TAF and SBV hydrolysis in HlungS9 and HLS9: 20 µM TAF were incubated with 0.5 mg/mL
HlungS9 (a) and HLS9 (b) at 37 ◦C for 15 and 30 min in MES assay buffer (pH 5.5) and Tris buffer
(pH 7.5); 20 µM SBV were incubated with 0.5 mg/mL HlungS9 (c) and HLS9 (d) at 37 ◦C for 15 and
30 min in MES assay buffer (pH 5.5) and Tris buffer (pH 7.5). Data are shown as the remaining TAF
or SBV (%) after incubations (mean ± S.D., n = 3, except for SBV with 0.5 mg/mL HlungS9 in MES
pH 5.5, where n = 2). * p < 0.05 and ** p < 0.01 vs. the Tris pH 7.5 condition (Student’s t-test).

3.4. CatA and CES1 Inhibitor Effects on TAF Hydrolysis in HlungS9

To further confirm the role of CatA and CES1 in HlungS9 for TAF hydrolysis, we
evaluated the effects of CatA inhibitor (telaprevir) and CES1 inhibitor (BNPP) on TAF
hydrolysis in HlungS9. The inhibitory effects are displayed in Figure 6. In both the pH 5.5
and pH 7.5 conditions, telaprevir at 0.5~50 µM could nearly abolish TAF hydrolysis in
HlungS9 (p < 0.01, compared with the control group). BNPP appeared to have a slight
inhibitory effect on TAF hydrolysis in HlungS9 only at 50 µM without reaching a statistically
significant difference (p = 0.15 and 0.09 compared with the control group at pH 5.5 and
pH 7.5, respectively).
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Figure 6. Effects of telaprevir and BNPP on TAF hydrolysis in HlungS9. TAF (20 µM) was incubated
with 0.5 mg/mL of HlungS9 at 37 ◦C for 30 min with the presence of various concentrations of
telaprevir (0.5, 5, and 50 µM) and BNPP (1, 10, and 50 µM). Incubations were performed in MES
assay buffer (pH 5.5) (a) and Tris buffer (pH 7.5) (b) to optimize the activity of native CatA and
CES1, respectively. Data are shown as the remaining TAF (%) after incubations (mean ± S.D., three
independent experiments). ** p < 0.01 indicates statistically significant difference compared to the
control group by ANOVA test.

3.5. Meta-Analysis of the Abundance of CatA and CES1 in Human Respiratory and
Hepatic Systems

The abundance of CatA and CES1 in human lung and liver tissues and primary
cells are summarized in Table 1. CatA abundance in HlungS9 was comparable to that in
HLS9, and CatA abundance in primary human airway epithelial cells was comparable
to that in primary human hepatocytes. Unlike CatA, the abundance of CES1 was much
higher in HLS9 and primary human hepatocytes than in HlungS9 and primary human
airway epithelial cells. The abundance ratio of CatA to CES1 in HlungS9 and primary
human airway epithelial cells was much higher than that in HLS9 and primary hepatocytes,
respectively (Table 1). Based on the enzymatic activity and protein abundance, CatA
was estimated to account for 97~99% of TAF hydrolysis in HlungS9 and primary human
airway epithelial cells. In HLS9 and primary human hepatocytes, CatA contributes to TAF
hydrolysis to a less extent (64~76%). The abundance of HINT1, the enzyme for converting
TAF ester hydrolysis product to the monophosphate nucleoside (tenofovir), is summarized
in Table S3. HLS9 had a relatively higher abundance of HINT1 than HlungS9, while
primary human airway epithelial cells expressed relatively more HINT1 than primary
human hepatocytes. Nevertheless, the differences of CatA and HINT1 expression between
the human lung and liver tissues and cells were generally much less than the tissue/cell
differences in CES1 expression.
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Table 1. Meta-analysis of the protein abundance of CES1 and CatA in human respiratory and hepatic tissues and cells.

Enzyme Resource Study
Reference

Sample Size Assay Method and
Quantification Type

Abundance Abundance Ratio a

CatA: CES1
CatA Contribution

to Hydrolysis bCatA CES1

Pooled HLungS9
[16]

4 donors, triplicate
measurement

Label-free DIA
MS-based

proteomics, absolute
quantification

0.130 ± 0.006 µg/mg
total protein

1.702 ± 0.063 µg/mg
total protein 1:13 97%

Pooled HLS9 200 donors, triplicate
measurement

0.071 ± 0.004 µg/mg
total protein

19.244 ± 0.083
µg/mg total protein 1:271 64%

HLung S9

[13]

n = 3

Western blot analysis

0.220 ± 0.004 µg/mg
total protein

2.1 ± 0.9 µg/mg total
protein 1:10 98%

HLS9 n = 3 0.23 ± 0.11 µg/mg
total protein

34 ± 1 µg/mg total
protein 1:148 76%

Primary human NHBE cells n = 3 0.33 ± 0.10 µg/mg
total protein

<0.1µg/mg total
protein >3.3:1 >99%

Primary human TBEC cells [27] n = 4 Label-free DDA
MS-based

proteomics, absolute
quantification

0.056 ± 0.013 µg/mg
total protein

0.019 ± 0.017 µg/mg
total protein 3:1 >99%

Primary human hepatocytes [28] n = 7 0.059 ± 0.014 µg/mg
total protein

13.7 ± 3.0 µg/mg
total protein 1:232 67%

Lung tissue autopsy from
COVID-19 patients

[26]
n = 30 Labeled DDA

MS-based
proteomics, relative

quantification

1.501 ± 0.878 0.249 ± 0.069 - -

Liver tissue autopsy from
COVID-19 patients n = 24 1.308 ± 0.300 3.465 ± 1.078 - -

A549 cells (human pneumocyte
type II carcinoma cells)

[29]

n = 3 Labeled DDA
MS-based

proteomics, relative
quantification

0.765 0.797 - -

Huh-7 cells (human
hepatocellular carcinoma cells) n = 3 1.11 13.96 - -

a For relative abundance data, it is suitable to compare the abundance of same protein between cells/tissues, but not rational to compare different proteins in the same sample. b CatA contribution was calculated
by dividing the CatA contribution by the summation of CatA and CES1 contrition. The enzyme contribution was estimated by timing the enzyme activity with its abundance. NHBE: normal human bronchial
epithelial cells; TBEC: tracheal bronchial epithelial cells.
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The estimated hydrolysis rate of TAF and SBV in human tissue S9 and primary human
cells are shown in Figure 7. For TAF, CatA was estimated to be the major contributor to
its hydrolysis in HlungS9, HLS9, primary NHBE cells, TBEC cells, and primary human
hepatocytes. While for SBV, CatA was predicted to be the major contributor in HlungS9,
primary NHBE cells, and TBEC cells, CES1 was estimated to be the major enzyme hy-
drolyzing SBV in HLS9 and primary human hepatocytes. Overall, TAF was predicted to
have a higher hydrolysis rate than SBV in human lung and liver tissue S9 and primary
cells. In the human respiratory system (e.g., HlungS9, primary NHBE cells, and TBEC
cells), the hydrolysis rate of TAF was estimated to be approximately 4-fold higher than that
of SBV; in the human liver (HLS9 and primary human hepatocytes), TAF hydrolysis rate
was predicted to be about 1-fold higher than SBV hydrolysis rate. Unlike TAF that was
estimated to have a much higher hydrolysis rate in NHBE cells than in hepatocytes, the
hydrolysis rates of SBV in NHBE cells and hepatocytes were expected to be comparable.
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Figure 7. Estimated hydrolysis rates of TAF and SBV in human tissue S9 and primary cells. Estimated
hydrolysis rates of TAF and SBV in human tissue S9 based on the enzyme abundance from the study
by Li J. et al. [16] (a) and the study by Li R. et al. [13] (b) and in primary human cells (c). The estimated
hydrolysis rate of a prodrug in a specific biological system was calculated by summing the CatA
and CES1 mediated hydrolysis, which was calculated by timing the enzyme’s activity measured in
this study (n = 3) with enzyme’s mean abundance extracted from previous studies (mean ± S.D.).
NHBE: normal human bronchial epithelial cells; TBEC: tracheal bronchial epithelial cells. * p < 0.05
and ** p < 0.01 indicate statistically significant difference, “ns” indicates no significant difference. The
difference between TAF and SBV hydrolysis rates in each specific biological system was analyzed
by Student’s t-test; For each prodrug, the difference between HlungS9 and HLS9 was analyzed by
Student’s t-test, and the differences among three primary cells were analyzed by ANOVA test.
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4. Discussion

Our ABPP study identified more than 20 active serine hydrolases in HlungS9. Among
them, LYPLA1, CatA, and CES1 are likely to have the highest catalytic activity because
they were enriched most quickly (within 1 min), and the enrichment folds were the highest.
As a comparison, a few other serine hydrolyses, such as LYPLA2, CPVL, and SCPEP1,
were enriched by the probe to a much less extent, and the enrichment required a longer
period time of probe incubation. We then tested the activity of rhLYPLA1, rhCatA, and
rhCES1 on hydrolyzing TAF. The results showed that TAF was not a substate of LYPLA1,
whereas CatA and CES1 exhibited significant activity on TAF hydrolysis, an observation
consistent with previous studies [10,11]. Moreover, CatA and CES1 were found to be
involved in SBV hydrolysis. When evaluating an enzyme’s capability to metabolize its
substrate drug in a specific tissue, both the abundance and catalytic activity of the enzyme
should be taken into consideration. Unlike CatA, which is expressed in a broad range
of tissues [16,30], CES1 is predominantly expressed in the liver [16,31]. In the context of
COVID-19, human respiratory systems, including the airway and lung tissues, are the
major infection sites [32], and thus are the most important target activating sites for antiviral
prodrugs. It is noteworthy that, in human airway epithelial cells, the expression of CES1
was very low, while CatA expression was about 2-fold higher than CES1 [13,27]. CatA,
therefore, appears to be a desirable enzyme for activating an easter prodrug in human
respiratory system due to its high catalytic activity and considerable protein expression
level in human lung tissue [13,16] and airway epithelial cells [13,27].

It has been indicated that the antiviral potency of TAF, SBV, and RDV was significantly
associated with their hydrolysis rates in a cell, and the hydrolysis rate was highly dependent
on the abundance of CatA and CES1 [12–14]. For example, a cell-dependent antiviral
efficacy has been reported for SBV [33]. In that study, Huh-7 cells could generate much
more TP-Nuc of SBV than A549 (416 vs. 36 pmol/106 cells); consequently, SBV had stronger
anti-Zika activity in Huh-7 cells than in A549 (IC50 4 µM vs. >50 µM) [33]. The different
antiviral effects can be explained by the much greater protein expression of CES1 in Huh-7
than in A549 [29].

CES1 is expressed in the cytoplasm and the endoplasmic reticulum lumen where
pH is about 7.1–7.4, whereas CatA is mainly expressed in the lysosomes, which have an
acidic interior pH of approximately 4.7 [34]. In this study, we used pH 5.5 and pH 7.5 to
mimic the physiological environment for CatA and CES1, respectively, ensuring optimal
reaction conditions for measuring CatA and CES1 activity in HlungS9 and HLS9. Both
HlungS9 and HLS9 exhibited a relatively higher TAF hydrolysis activity at pH 5.5 than
pH 7.5, suggesting a critical role of CatA in hydrolyzing TAF in both tissues. Our results
demonstrated that CatA is the major enzyme responsible for activating TAF in the human
lung. Based on the enzyme activity and abundance in HlungS9, CatA was estimated to
account for approximately 97% of the total TAF hydrolysis in HlungS9. Our estimation
of TAF hydrolysis in HlungS9 was consistent with the observations from the tissue S9
incubations (Figure 5) and the inhibitory study (Figure 6). It has been well documented that
telaprevir does not affect CES1 activity, and BNPP does not hinder CatA activity [12,13].
We demonstrated that telaprevir could nearly abolish all TAF hydrolysis in HlungS9 at
a concentration as low as 0.5 µM, while BNPP only showed a slight inhibitory effect at
50 µM. Previous studies showed that BNPP at 50 µM could eradicate CES1 activity [35,36].
Moreover, our results showed that the pH 5.5 incubation condition (optimal condition
for CatA) could significantly enhance TAF hydrolysis in HlungS9, further suggesting that
CatA might play a more important role in TAF hydrolysis in HlungS9 than CES1.

The analysis of published proteomics data revealed that the abundance ratios of CatA
to CES1 in HlungS9 and primary human airway epithelial cells were much higher than
that in HLS9 and primary human hepatocytes (Table 1). Compared with SBV, TAF had
a significantly higher hydrolysis rate in HlungS9, which can be explained by its higher
susceptivity to CatA relative to CES1. From a prodrug activation perspective, our results
indicated that TAF could serve as an example for designing prodrugs with improved
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pulmonary hydrolysis. Our data also suggest that SBV was a less desirable candidate for
COVID-19 treatment due to its slow activation in the human lung. Interestingly, the protein
expression of CatA in lung tissues of COVID-19 patients was approximately 1-fold higher
than non-COVID-19 patients, further indicating CatA could be a desirable target enzyme
for activating anti-COVID-19 prodrugs. CatA expression in the liver is comparable to that
in the lung, and an extensive TAF hydrolysis was also observed in HLS9. As such, instead
of oral dosing, intravenous or inhalation administration should be adopted to avoid the
extensive TAF metabolism in the liver.

Previous studies have shown that the susceptivity to CatA could be adjusted by modi-
fying the ester moieties of ProTides using diverse amino acids and alcohols groups [14,37,38].
Recently, several nucleoside/nucleotide analogs have been identified as promising can-
didates against SARS-CoV-2, such as favipiravir [39] and molnupiravir (EIDD-2801) [40].
It is expected that the high susceptivity to CatA can be achieved by applying the ProTide
technology to these nucleoside/nucleotide analogs using suitable ester moieties. Further
investigations are warranted to evaluate whether a highly CatA susceptive ProTide form
could improve the pulmonary activation of other nucleoside/nucleotide analogs.

Admittedly, this study has several limitations. First, we only used tissue S9 to profile
the hydrolysis of TAF in the lung and liver. The tissue S9 fractions are usually isolated
from a mixture of different types of cells in a tissue, and the abundance of enzymes in the
tissue S9 may not reflect their intracellular expression in specific types of cells. Moreover, in
contrast to intact cells, S9 fractions are incapable of evaluating the impact of drug transport
across cell membranes on the activation of a prodrug. As such, primary cell culture
experiments and in vivo studies are needed to verify the theory that high susceptivity to
CatA can boost the ester prodrug activation in the lung.

5. Conclusions

TAF has a higher hydrolysis rate in HlungS9 and HLS9 than SBV. CatA is the major
enzyme responsible for TAF hydrolysis in HlungS9. The abundance ratio of CatA to
CES1 is much higher in primary human airway epithelial cells than in primary human
hepatocytes, and the abundance ratio of CatA to CES1 is also higher in HlungS9 than in
HLS9. The higher hydrolysis rate of TAF than SBV in HlungS9 may be attributed to the
higher susceptivity of TAF to CatA.
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HINT1 in the human lung and liver.
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