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Abstract: Drug delivery systems are used to improve the biopharmaceutical properties of curcumin.
Our aim was to investigate the effect of a water-soluble ‘two in one’ polymer containing covalently
bonded PEG and βCD moieties (βCPCD) on the solubility and bioavailability of curcumin and
compare it to a polymeric β-cyclodextrin (βCDP) cross-linked with epichlorohydrin. Phase-solubility
and dynamic light scattering (DLS) experiments showed that the solubility of curcumin increased
significantly in 10 m/m % βCPCD and βCDP solutions, but βCPCD–curcumin particles had higher
hydrodynamic volume. The formation of the βCPCD–curcumin complex in solution and sedimented
phase was confirmed by NMR spectroscopy. Biocompatibility and permeability experiments were
performed on Caco-2 cells. Polymers did not show cytotoxicity up to 10 m/m % and βCPCD
significantly increased the permeability of curcumin. DLS measurements revealed that among the
interaction of polymers with mucin, βCPCD formed bigger aggregates compared to βCDP. Curcumin
complexes were lyophilized into capsules and structurally characterized by micro-CT spectroscopy.
Drug release was tested in a pH 1.2 medium. Lyophilized complexes had a solid porous matrix and
both βCPCD and βCDP showed rapid drug release. βCPCD provides an opportunity to create a
swellable, mucoadhesive matrix system for oral drug delivery.

Keywords: curcumin; PEG-cyclodextrin polymer; complexation; bioavailability; NMR

1. Introduction

Covalently linked cyclodextrin-containing macromolecular drug carrier systems have
been investigated since the 1980s [1]. Several types of these macromolecular systems can
be distinguished according to their structure such as linear polymers containing pendant
cyclodextrin (CD) moieties [2], cross-linked cyclodextrin polymers [3,4] or polyrotax-
anes [5–7]. Epichlorohydrin is a widely used cross-linker for the synthesis of cyclodextrin
polymers [8], that are used for solubilization and stabilization of water-insoluble chemi-
cal substances [9,10]. Various drug molecules and bioactive agents such as doxorubicin
and artemisinin [11], glipizide [12], triclosan [13], naproxen [14] and paclitaxel [15] were
complexed by these water-soluble cyclodextrin polymers for drug delivery studies. By
manipulating the cross-linking reaction conditions, such as the addition rate of cross-linker,
reaction temperature and time, soluble or insoluble cyclodextrin polymers in water and/or
other organic solvents are produced [3,16–19].
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Cyclodextrin and polymer binary systems are also used to improve the solubilization
of poorly soluble drugs [20]. To achieve higher degrees of drug solubilization, the synergis-
tic effect of an active pharmaceutical ingredient (API), a cyclodextrin and a water-soluble
polymer in solution was reported [21]. The formed ternary complex gives an alternative
way for solubilization, especially when a high amount of CD is needed for complexation.
The interaction of water-soluble polymers with drug molecules may occur by means of
ion–ion, ion–dipole and dipole–dipole electrostatic bonds, van der Waals force, or 3-center
or 2-electron bonds [22]. The water solubility and absence of biological activity are the
most important requirements to choose polymers for complexes [22]. The most frequently
used polymers for this purpose may be classified as natural, semi-synthetic and synthetic
polymers [22]. The semi-synthetic polymers are carboxymethyl cellulose [21,23,24] and
hydroxypropyl methylcellulose [25,26]. In several studies, povidone, polyvinyl alcohol
and polyethylene glycol (PEG) promoted the complexation of drugs as a synthetic poly-
mer suitable for ternary complex formation [27–30]. PEG is widely used as excipient
or adjuvant in a variety of pharmaceutical formulations [31]. Nevertheless, CDs can be
covalently linked to form polymers. CD polymers containing PEG soft units have been
used to synthesize drug carrier gels for pharmaceutical applications [32–35]; however, in
our knowledge, a water-soluble polyethylene glycol cross-linked β-CD polymer has never
been tested as a drug carrier. Recently, semi-synthetic polymeric systems based on beta
and gamma cyclodextrins were produced in the U.K. [16–19] from renewable resources
and by ‘green chemistry’ processes. The green chemistry concept applies throughout the
entire life cycle of a chemical product, from its design and manufacturing to its use and
final disposal [36] and relates to the chemicals, process and products. The properties of
crystalline β-cyclodextrin have been modified by cross-linking in water with a family of
non-toxic diepoxides having variable length of polyethylene glycol spacers. Two different
polymeric systems with large hydrodynamic volumes were obtained: soluble cross-linked
polymers with defined chemistry and chemical-physical properties and insoluble hydrogels
with good physical integrity and important swelling power up to 200% [37,38]. The new
polymeric cyclodextrin-based systems are promising passive and/or active ingredients for
a variety of biomedical applications. Our concept was to test the water-soluble polyethy-
lene glycol cross-linked β-CD polymer as a ‘two in one’ polymeric system, which offers a
combination of β-CD and PEG properties. Curcumin was chosen as a model drug, which
can be solubilized by cyclodextrins [39], cyclodextrin polymers [39] and PEG 400 [40].

The aim of this work was to study the complexation properties of a water-soluble
polyethylene glycol cross-linked β-CD polymer (βCPCD) using curcumin as a model drug
molecule and compare these properties to a water-soluble cross-linked with an epichloro-
hydrin β-CD polymer (βCDP)/curcumin system. We characterized the interaction of
βCPCD with mucin and determined curcumin solubilization. We also aimed to obtain
information about the role of the PEG spacer in the molecular interactions and reveal the
complexation properties and permeability enhancement of βCPCD. Finally, a hard gel
capsule formulation was prepared, and the dissolution profile was determined.

2. Materials and Methods
2.1. Materials

The cross-linked β-cyclodextrin with polyethylene glycol diglycidyl ether (βCPCD) was
synthetized at Cranfield University in the U.K., as previously described [17,18]. The soluble
(2-hydroxy-3-N,N,N-trimethylamino)propyl-beta-cyclodextrin polymer (QAβCDP), soluble
beta-cyclodextrin polymer cross-linked with epichlorohydrin (βCDP) were purchased from
Cyclolab Ltd. (Budapest, Hungary). Curcumin, porcine gastric mucin (type II, Mw~640 kDa)
and other reagents were obtained from Sigma-Aldrich Ltd. (Budapest, Hungary).

2.2. Phase-Solubility Test

The phase-solubility test was performed by adding a fixed excess amount of curcumin
powder to 2.0 mL aqueous solutions containing two different types of cyclodextrin poly-
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mers, βCPCD and βCDP, at increasing concentrations (0.5–10.0 m/m %). In the capped
vials, excess amounts of curcumin powder (20.0 mg) were measured, in which a constant
volume of purified water and increasing concentrations of each cyclodextrin were placed.
The vials were vortexed for 30 s to achieve well-mixed dispersions. They were rotated
at room temperature at 50 rpm and protected from light. After 24 h, each vial was cen-
trifuged at 4500 rpm for 20 min. The samples were taken from the clear supernatant, and
the curcumin content of the samples was analyzed by UV spectrophotometer (Shimadzu
UV-1900) at 430 nm. The phase-solubility profiles of curcumin were achieved by plotting
the solubility of curcumin versus the m/m % concentration of the cyclodextrin polymers.
The API loading capacity was calculated by Equation (1).

API loading capacity (‰) =
Weight of dissolved API
Weight of final product

× 1000 (1)

The weight of the final product was calculated from the measured mass of polymer
and the dissolved curcumin determined by UV spectrophotometry.

2.3. Preparation of Complexes

Using a 10.0 m/m % polymer solution in ultrapure water prepared by Millipore Direct-
Q 5UV system (Merck Millipore, Burlington, MA, USA), an excess amount of curcumin
was dispersed, then stirred at 50 rpm for 24 h to reach equilibrium. The suspension was
centrifuged at 4500 rpm for 20 min. The supernatant was frozen at −110 ◦C, and the sample
was lyophilized using a ScanVac CoolSafe freeze dryer (Labogene, Allerød, Denmark). The
complexes were stored at −20 ◦C until used in further experiments.

2.4. Dynamic Light Scattering (DLS) Measurements of Complexes

The effect of complexation on the average particle size and particle size distribution
of 10 m/m % solution of complexes was measured by DSL. The cyclodextrin polymer
solutions and complex solutions were measured using a Malvern Nano-ZS Zetasizer
(Malvern Instruments, Malvern, UK) in purified water.

2.5. Solid Phase Solubilization Study

An excess of curcumin (5.0 mg) was added to a 10% m/m % solution of polymer
in water (3.0 mL). After stirring for 24 h, the supernatant was removed, filtered and the
dissolved curcumin content of the clear filtered supernatant was determined by UV-VIS
spectrophotometer (Shimadzu UV-1900) at 430 nm. Then, 1.5 mL of fresh water was added
to the remaining solid phase and then stirred for 24 h once more. The supernatant was
removed again, filtered and the curcumin content of the supernatant was measured by
UV-VIS spectrophotometer. The process was repeated once more to wash twice the reaming
solid phase.

2.6. Nuclear Magnetic Resonance (1H and NOESY NMR) Measurements

When the βCPCD polymer was used, 1H NMR measurements were performed on a
Bruker Ascend 400 MHz spectrometer with a BBFO probe to examine the solid phase after
the washing process. When curcumin was mixed with the polymer in deuterated water
(D2O) as previously described in Section 2.4, a well-dispersed suspension was observed.
The suspension was filtered using cotton wool and the solid was dried under high vacuum
and re-dissolved in deuterated dimethyl sulfoxide (DMSO-d6) and the spectrum was
recorded at ambient temperature for 16 scans. Signals representing the solvents served as
internal standards. The solvent peaks were referenced at 2.5 ppm (DMSO-d6) and 4.7 ppm
(HDO, H2O). Peak multiplicities were described as follows: singlet (s), multiplet (m) and
broad (br).



Pharmaceutics 2021, 13, 1710 4 of 17

2.7. Cytotoxicity Test

The cytotoxic effects of the cyclodextrin polymers were evaluated using the MTT
test. The Caco-2 cell line was obtained from the European Collection of Authenticated
Cell Cultures (ECACC, U.K.). Cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM, Sigma-Aldrich Ltd., Budapest, Hungary) supplemented with 10.0% heat-
inactivated fetal-bovine serum (Sigma-Aldrich Ltd., Budapest, Hungary), 1.0% non-essential
amino acid (Sigma-Aldrich Ltd., Budapest, Hungary) and penicillin–streptomycin solution
at 37 ◦C in an incubator containing 5% CO2. The passage number of the cells was between
37–52. The Caco-2 cell line is a colon epithelial cell line, in which the cells grow tightly
together, forming a single cell layer. A total of 10,000 cells/well were seeded on 96-well
plates. After 3 days, the medium was removed, and the cells were incubated for 30 min
with the solutions of cyclodextrin polymers at 37 ◦C. Then, the samples were removed,
and a 0.5 mg/mL MTT solution (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide dissolved in phosphate buffered saline) was added to each well. The plates were
incubated for 3 h. Then, the MTT solution was removed and 0.1 mL isopropanol–1 M
hydrochloride acid (25:1) was added to each well to dissolve the formed formazan crystals.
The absorbance of formazan was measured at 570 nm and the background was mea-
sured at 690 nm by the Thermo Fisher Multiskan Go (Thermo Fisher, Waltham, MA, USA)
microplate reader.

2.8. In Vitro Permeability Study

For in vitro permeability studies, Transwell® polycarbonate filters (area: 1.12 cm2,
pore size: 0.4 µm) were used to grow Caco-2 monolayers. Studies were started after the
initial seeding of 250,000 cells/well and the transepithelial electrical resistance (TEER) was
monitored regularly by Millicell ERS Voltohmmeter (Millipore, USA). After TEER reached
900 Ωcm2, the permeability tests were performed. A total of 500 µL of 6 m/m % complex
solutions were prepared in Hanks’ Balanced Salt Solution (HBSS) and the cell monolayers
were also washed with HBSS. The solutions of complexes were put onto the apical surface
of cell layers. The samples were taken from the basal sides of the cell layers containing fetal
bovine serum (FBS) at certain time points (0.5 h, 1 h and 2 h) and purified from protein by
adding acetonitrile to the sample (1:1 ratio) and centrifuged at 12,500 rpm for 15 min.

The samples were analyzed using an HPLC system (Merck-Hitachi ELITE with pho-
todiode array detector). The column was Agilent HC-C18(2) (150 × 4.6 mm) and kept at
40 ◦C, and the detector was set at 430 nm. The mobile phase was the mixture of acetonitrile
and 2% acetic acid solution (4:6) and a 1.0 mL flow rate was used. The analyses were
performed with EZChrom Elite softwareTM (Hitachi, Tokyo, Japan), which was also used
for collecting and processing data. In total, 10.0 µL standard solution and purified samples
were injected.

The apparent permeability coefficient (Papp) of curcumin was calculated using Equation (2):

Papp =
dQ
dt

× 1
(C0 × A)

(2)

where Papp is the apparent permeability coefficient (cm/s); dQ/dt is the permeability
rate of substances (mol/s); C0 is the initial concentration of the substances in the upper
compartment (mol/mL); and A is the surface area of the membrane (cm2).

2.9. In Vitro Mucoadhesive Test of Polymer

To reveal the dominant interactions between mucin and the cyclodextrin polymers, dy-
namic light scattering (DLS) and zeta potential measurements were performed. The QAβCDP
(positive control), βCPCD and βCDP were dissolved in pH 1.2 buffer at 10.0 m/m % con-
centration. The mucin dispersion was prepared by adding mucin to deionized water in a
concentration of 1 g L−1. The dispersion was stirred overnight, and finally centrifuged for
5 min at 4500 rpm. The clear supernatant was used in further experiments. The 1:1 ratio of
cyclodextrin polymer solutions with water or mucin solution were prepared and the size
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distribution, zeta potential and mobility were measured using a Malvern Nano-ZS Zetasizer
(Malvern Instruments, Malvern, UK).

2.10. MicroCT Analysis

A 10.0 m/m % solution of the polymer complexes was filled directly into 00 size hard
gelatin capsules, which were frozen at −110 ◦C and lyophilized as described above. The
formulations were kept at −20 ◦C until the study. The following microCT protocol was
used to determine the formed structures. Measurements were performed with the SkyScan
1272 desktop micro-CT device with the following settings: image pixel size = 5 microns;
matrix size = 1344 × 2016 (rows × columns); 50 kV; 200 µA.

2.11. Dissolution Test

During the experiment, three parallel measurements were performed with the 00 size
capsules prepared as described above. Each capsule contained 50 mg complexes. A total
of 300 mL of hydrochloric acid media, pH = 1.2, without pepsin was selected for the
dissolution tests. The rotating paddle method with the rotation speed of 75 rpm and 37 ◦C
was set up in a dissolution tester (Erweka DT 800). Samples of 1.0 mL were withdrawn
after 5 min, 15 min, 30 min and 1 h. The released amount of curcumin was determined by
the HPLC method described above.

2.12. Statistical Analysis

For statistical analysis, SigmaStat (version 3.1; SPSS Inc.) and GraphPad Prism 6 soft-
ware (GraphPad Software Inc., San Diego, CA, USA) were used. Data are presented as
means ± SD. Comparisons of two groups were performed by unpaired t-tests, while
comparisons of more than two groups were performed using ANOVA. Differences were
considered significant at p < 0.05.

3. Results
3.1. Phase-Solubility Test

Figure 1 shows the phase-solubility curve of curcumin in the presence of increasing
concentrations of βCDP and βCPCD. Both cyclodextrin polymers were able to improve
the water solubility of curcumin in a cyclodextrin concentration-dependent manner.

The capacity results are shown on Table 1. In solution, the βCDP has higher curcumin
loading capacities than βCPCD.

3.2. Dynamic Light Scattering of Complexes

The average sizes of polymers and the created complexes in purified water were
measured by Malvern Nano-ZS Zetasizer and are presented on Table 2. The curcumin–
βCDP complex showed smaller size than only βCDP polymer, while the curcumin–βCPCD
complex has almost ten times higher particles than the size of the starting polymer.

Table 1. Curcumin loading capacities of βCDP and βCPCD in water (data are presented as
means ± SD; n = 3).

Complex Capacity ‰ ± SD

βCDP 0.332 ± 0.004
βCPCD 0.220 ± 0.007

Table 2. The average sizes of βCDP and βCPCD and their curcumin complexes in purified water
(data are presented as means ± SD; n = 5).

Type of CD Polymer Size of CD Polymer ± SD (nm) Size of Curcumin
Complex ± SD (nm)

βCDP 21.1 18.4
βCPCD 255.0 1978.0
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3.3. Solid Phase Solubilization Study

As there was a significant difference in curcumin solubilization between the two poly-
mers in the phase-solubility test with bigger aggregates observed by DLS after complexation
with βCPCD, the solid, sedimented phase of the samples was also examined. The supernatant,
containing the soluble complexes, was removed and the solid phase was washed twice with
water for 24 h. After the first wash, a significantly higher amount of solubilized curcumin was
washed out from the solid phase formed with βCPCD (Figure 2, left, blue box) than βCDP
(Figure 2, second from left, green box). After the second wash, the solid phase of the βCPCD
sample still contained solubilized curcumin (Figure 2, center blue box), while in the case of
the βCDP sample, the curcumin concentration in the supernatant was identical (Figure 2,
second from right, green box) to the curcumin own solubility (Figure 2, right, purple box).
As expected, the results confirmed that the solubility of the βCPCD polymer in water was
affected by the content of curcumin complexed by the network.

3.4. NMR Study

To further investigate the composition of the solid sedimented phase of the βCPCD–
curcumin complex discussed above, the 1H NMR spectra were examined and compared
with those of the starting materials registered in D2O and DMSO-d6 (SI, Figures 1 and 2);
no reference was used in the deuterated solutions as for the inclusion properties of the
βCPCD sample. Figure 3 shows the chemical structure of βCPCD, which was solu-
ble in both solvents, while curcumin floated in D2O and totally dissolved in DMSO-d6
(Supplementary Figures S1 and S2).

When curcumin was mixed with the polymer (as in Section 2.2) in D2O at room
temperature, for 24 h, a well-dispersed yellow-orange suspension was observed to con-
firm its solubilization in water due to partial complexation in the cross-linked polymeric
structure. After filtration of the suspension, the spectrum in DMSO-d6 of the insoluble
βCPCD–curcumin fraction in D2O was compared with the spectrum of the mixture in
DMSO-d6 and those of the starting materials. As expected, no changes were observed
in the number of peaks associated to the two components, confirming that no chemical
modification occurred upon their mixing in DMSO-d6. We note that (i) the solubility
of the βCPCD polymer after complexation decreased in water; (ii) broader peaks were
associated to the hydroxyl groups of the βCPCD in the regions of 6.00–4.30 ppm (Figure 4,
purple line—curcumin, blue line—βCPCD, red line—βCPCD–curcumin complex fraction
insoluble in D2O, black line—βCPCD–curcumin complex) were observed, indicating the
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complexation of the curcumin in the βCPCD network (Figure 4, OH-a and OH-b) and
CD toroid (Figure 4, H-1, OH-6); and (iii) a small chemical shift of aromatic (7.60 ppm to
7.10 ppm) (Figure 5) and vinylic protons (6.86 ppm to 6.71 ppm) of curcumin (Figure 6)
confirmed the interaction of the two molecules.
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Additionally, preliminary two-dimensional (2D) NOESY NMR analysis of the βCPCD–
curcumin complex in DMSO-d6 provided further evidence of the spatial relationships
among the protons of βCPCD within the complex when the curcumin guest molecule
is placed inside the 3D structure of the cross-linked polymer. Figure 7 reports the 2D
NMR NOESY spectra of the βCPCD and βCPCD–curcumin complex in DMSO-d6. The
intramolecular cross peaks centered at 5.70 ppm (Figure 7, H-1 anomeric protons) and
4.80 ppm (Figure 7, OH-a, OH-b and OH-6) indicated that the curcumin takes on the
motional properties of the βCPCD while bound. Further characterization of the βCPCD–
curcumin complex formation by using two-dimensional NMR spectroscopy and scanning
electronic microscopy is under investigation.

3.5. Cytotoxicity Test

Figure 8 shows that cyclodextrin polymers were not cytotoxic on Caco-2 cells after
30 min of incubation up to 5.0 m/m % concentration, but at 10.0 m/m %, the cell viability
decreased significantly compared to the untreated control (p < 0.05, n = 5).

3.6. In Vitro Permeability Study

The permeability of curcumin using cyclodextrin polymer complexes of 6.0 m/m %
were tested on Caco-2 monolayers. Both polymers were able to significantly improve
(p < 0.005) the curcumin permeation. The Papp value of curcumin, 1.23 × 10−6 cm/s, was
increased to 5.70 × 10−6 cm/s and 22.40 × 10−6 cm/s by the βCDP and βCPCD complexes,
respectively (Figure 9).

TEER values of the Caco-2 monolayers were measured before and after the perme-
ability test. No significant decreases in TEER values were observed after the in vitro
permeability study, indicating that the integrity of the monolayers was not damaged.
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Figure 9. Permeability of curcumin on Caco-2 monolayers treated with curcumin–cyclodextrin
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3.7. In Vitro Mucoadhesive Test of Polymers

The in vitro mucoadhesive test result is summarized in Table 3. Mucin had an average
size of 391.0 ± 7.2 nm with negative zeta potential. A positively charged cyclodextrin
polymer, QAβCDP, was used as a positive control, which had positive zeta potential
value. In the case of QAβCDP and mucin mixture, we detected increased particle size
and increased zeta potential. The βCDP had also a negative charge with a similar size to
QABCDP. The size of the βCDP–mucin particles doubled, compared to mucin, while the
zeta potential did not increase significantly. The βCPCD polymer showed the highest size
increase after the interaction with mucin with the particle diameter of 2052.0 ± 120.9 nm;
however, there was no significant change in the zeta potential.

Table 3. Interaction of mucin with different cyclodextrin polymers measured by DLS and zeta
potential (data are presented as means ± SD, n = 5).

Sample Name Size ± SD (nm) Zeta Potential ± SD (mV) Mobility ± SD (µm cm/s)

Mucin 391.0 ± 7.2 −3.12 ± 0.36 −0.2445 ± 0.0276
QAβCDP 9.3 ± 0.2 2.28 ± 0.65 0.1785 ± 0.0508

QAβCDP + Mucin 1326.0 ± 89.7 −0.77 ± 0.65 −0.0603 ± 0.0976
βCDP 11.9 ± 0.2 −2.02 ± 0.16 −0.1584 ± 0.0126

βCDP + Mucin 803.0 ± 22.0 −2.34 ± 0.22 −0.1835 ± 0.0170
βCPCD 33.1 ± 0.2 0.08 ± 7.07 × 10−5 0.006 ± 7.7800 ×10−6

βCPCD + Mucin 2052.0 ± 120.9 −2.40 ± 0.27 −0.1877 ± 0.0213

3.8. MicroCT Analysis

The images of microCT scans performed on curcumin–cyclodextrin polymer com-
plexes formulated into hard gelatin capsules are presented in Figure 10. The capsule
formulations were prepared by lyophilization, and the complexes showed different struc-
tures after removal of the solvent. The cyclodextrin polymer complex formed by βCPCD
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showed a highly porous structure with filaments (Figure 10a); in contrast, the other complex
(curcumin–βCDP complex) created a porous but granular structure with higher density.
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3.9. Dissolution Test

The capsules filled with the two types of complexes were tested by dissolution tests.
During dissolution, complete drug release was observed within 1 h in both cases. In the case
of the curcumin–βCDP complex, the total capsule dissolution occurred after 15 min, while
in the case of the curcumin–βCPCD complex, the dissolution finished after 30 min. In the
case of the curcumin–βCDP complex, complete dissolution occurred after disintegration,
while in the second case, the disintegration and the release of the active ingredient into
solution took place simultaneously (Figure 11).
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4. Discussion

A new ‘two in one’ water-soluble β-cyclodextrin polymer (βCPCD) was synthetized
recently based on cyclodextrins covalently cross-linked with diepoxides having polyethy-
lene glycol (PEG) spacers [18]. Both polyethylene glycol and β-cyclodextrin are widely
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used in pharmaceutical formulations, but their covalent bond polymeric combination has
not yet been tested for complexation and drug delivery. Curcumin a water-insoluble drug
was used as a model drug, to test the complexation properties of water-soluble βCPCD,
and compared to those of the water-soluble βCDP. The two polymers differ in their cross-
linkers, as βCDP cross-linked with epichlorohydrin; thus, differences in their physical
and drug complexing properties were expected. In general, PEG chains can be hydrated,
causing larger hydrodynamic radius of the polymer molecules. This was reflected in the
DLS results, where βCPCD showed a larger size in two different experiments at two differ-
ent pH values compared to βCDP. It is especially interesting to associate their molecular
weights to the DLS data, as βCPCD is less than 5 kDa calculated from GPC experiments
using the PEG/PEO standards, while βCDP is around 105 kDa determined by the static
light scattering method referred by the manufacturer. The two methods are not identical,
but the dynamic light scattering test results indicate that βCPCD can be hydrated with
water at a much higher extent, causing a larger hydrodynamic radius. The other property
of βCPCD is the mucoadhesion. The interaction of mucin and the polymers was tested
in solution at pH 1.2 by DLS. As a positive control, the positively charged QAβCDP was
used. It is well known that mucin has a negative charge, which ensures the attachment
of positively charged particles and polymer chains on its surface, and on the other hand,
mucin also has the ability to form gel and adhere polymers. In the case of the QAβCD and
mucin mixture, we detected interconnected, significantly larger colloidal molecules whose
zeta potential was increased compared to mucin. Like mucin, βCDP also had negative
charges, but the polymer structure gave an opportunity for association. The formed mucin–
βCDP particle size is doubled, while the zeta potential did not increase significantly. The
βCPCD polymer was cross-linked with PEG, with presumed mucoadhesive properties.
Indeed, the highest size increase was observed with βCPCD, even if the zeta potential
showed just a minor change compared to mucin. Interestingly, PEG was reported earlier to
be non-mucoadhesive [41], but it can enhance the mucoadhesion of other polymers such
as poly(2-hydroxyethyl methacrylate) [42]. Mucins contain numerous hydrogen-bonding
active groups and this is the molecular basis of the primary interaction for mucins [43].
It seems that PEG increases the interaction of βCPCD with mucin by hydrogen bonding,
causing the enhanced aggregation of βCPCD and mucin compared to βCDP and QAβCD.
PEG seems to be more effective to increase mucoadhesion than epichlorohydrin cross-
linker, which can contribute to the enhanced drug penetration, but this relationship should
be confirmed.

Phase-solubility experiments showed that βCDP solubilized curcumin more effec-
tively than βCPCD; however, the size of the complex particles showed an interesting
phenomenon. The particle size of the βCPCD–curcumin complex was almost eight times
bigger than βCDP. This indicates the formation of an aggregated structure with a possibly
lower solubility in water. In general, the complexation ability of the cyclodextrin polymers
can be explained by their 3D conformation in water; they have two different regions where
the curcumin can be housed, (i) the toroid structure of CD or (ii) the network formed by the
cross-linkers in the polymers. However, PEG chains in βCPCD enhance the complexation
ability by the formed 3D network with its more flexible structure (Figure 12).

A possible explanation for the solubility differences between the two polymers could
be that due to the precipitation of the βCPCD–curcumin complex into the sedimented solid
phase, the curcumin concentration in the supernatant solution decreased. To confirm this
hypothesis, the solid phase was washed, and we found that the βCPCD–curcumin complex
could be further dissolved from the sediment. The presence of the βCPCD–curcumin
complex in the sediment was proved by NMR. According to these results, the solubility
of both the guest and the host components is affected upon mixing. The curcumin is
trapped in the βCPCD polymeric network while the solubility of the polymer is decreased.
Interestingly, this could not be concluded from the shape of the phase-solubility diagram,
as it was also linear in the case of βCPCD. A possible explanation could be that the applied
host molecule was a polymer, which contains molecules with different molecular weights
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and with different solubility upon complexation. Applying different concentrations in the
phase-solubility test, the molecular fraction with less solubility precipitated proportionally,
resulting in a linear phase-solubility curve. This hypothesis should be further investigated.
Of note, the loading capacity of the polymers was low. This can be partially explained by
the way of calculation of the loading capacity of the polymer; due to their high molecular
weight, large amounts of polymers should be used to obtain a suitable molar ratio for
complexation, which reflects in the smaller value of the loading capacity. The loading
capacity could be improved by using other complexation methods and βCPCD kneading
could be an alternative method; however, this theory should be confirmed experimentally.
Curcumin was used as a model drug in the experiments. Indeed, the formulated dose is
small compared to the therapeutically applied doses, but βCPCD increased its permeability
twenty times. Due to this positive effect of the polymer on bioavailability of curcumin, the
orally applied dose could be reduced. More potent drugs with small doses (< 1mg) would
be more suitable to form therapeutically relevant new drug formulations.
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In the cytotoxicity test, both polymers showed toxic properties only at higher concen-
trations (10.0 m/m %); however, more than 80% of the cells remained viable after 30 min of
incubation. TEER measurements were carried out before and after the permeability tests to
confirm that cyclodextrin polymer complexes did not induce cell toxicity or the disruption
of the monolayer’s integrity during the 2 h of permeability test. TEER values did not
decrease significantly after the in vitro permeability studies, showing that the functionality
and the integrity of the monolayers were not damaged by cyclodextrin polymers at the
applied 6.0 m/m %. βCPCD improved the curcumin permeability to a significantly higher
extent than βCDP, which can be explained by its stronger mucoadhesion and improved
contact with the surface of the cell layer. Indeed, the larger hydrodynamic radius creates
a larger surface of the complex particles, improving the diffusion of curcumin from the
complex into the cell layer. On the other hand, βCPCD can more efficiently deliver the
complexed curcumin to the cell membrane, and possibly, the hydrated PEG chains may
easier pass through the unstirred water layer on the surface of the cell layer.

Finally, the structure analysis of the formed capsules demonstrated that βCPCD forms
a filament-like structure after lyophilization, which swelled during dissolution due to the
PEG cross-linker. Nevertheless, the dissolution of both formulations was fast—within 1 h,
complete curcumin release was observed.
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5. Conclusions

In conclusion, the new ‘two in one’ PEG–βCD polymer was applied for the first time
successfully to the complexation and formulation of curcumin. The PEG chains provide the
cyclodextrin-based polymer with some beneficial properties, including mucoadhesion and
complexation. Both PEG and βCD are widely applied pharmaceutical excipients, and thus,
the new PEG–βCD system formed through covalent cross-linking could be considered as a
new alternative for the formulation of matrix systems for poorly soluble drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13101710/s1. Figure S1, 1H NMR spectra of βCPCD in D2O and in DMSO-d6;
Figure S2, 1H NMR spectra of curcumin in D2O and in DMSO-d6; Figure S3, 1H NMR spectra of
βCPCD–curcumin mixture in D2O and in DMSO-d6; Figure S4, Full 1H NMR spectra of insoluble in
D2O βCPCD–curcumin mixture registered in DMSO-d6; Figure S5, 1H NMR spectrum of βCPCD
polymer in DMSO-d6 with proposed chemical structure and assignments of protons; Figure S6, Full
2D NMR NOESY spectra in DMSO-d6 of βCPCD–curcumin complex at 10.0–2.8 ppm; Figure S7,
Concentration vs. time dissolution curves of hard gelatin capsules filled with curcumin–cyclodextrin
polymer complexes (data are presented as means ± SD; n = 3).
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