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Abstract: Vaginal drug delivery systems can provide a long-term and constant liberation of the active
pharmaceutical ingredient even for months. For our experiment, FDM 3D printing was used to
manufacture the vaginal ring samples from thermoplastic polyurethane filament, which enables fast
manufacturing of complex, personalized medications. 3D printing can be an excellent alternative
instead of industrial manufacturing, which is complicated and time-consuming. In our work, the 3D
printed vaginal rings were filled manually with jellified metronidazole or chloramphenicol for the
treatment of bacterial vaginosis. The need for manual filling was certified by the thermogravimetric
and heatflow assay results. The manufactured samples were analyzed by an Erweka USP type
IT Dissolution Apparatus, and the dissolution profile can be distinguished based on the applied
jellifying agents and the API's. All samples were considered non-similar based on the pairwise
comparison. The biocompatibility properties were determined by prolonged MTT assay on HeLa
cells, and the polymer could be considered non-toxic. Based on the microbiological assay on E. coli
metronidazole and chitosan containing samples had bactericidal effects while just metronidazole or
just chitosan containing samples bacteriostatic effect. None of these samples showed a fungistatic or
fungicide effect against C. albicans. Based on our results, we successfully manufactured 3D printed
vaginal rings filled with jellified metronidazole.

Keywords: personalized medication; vaginal ring; 3D printing; FDM; dissolution test; biocompatibility;
MTT assay

1. Introduction

Since the first patent of the vaginal ring as a possible drug delivery system in 1970 [1],
different vaginal rings had been approved [2], which are mostly used as contraceptives to
provide a long-acting effect, including the opportunity to initiate or discontinue use when-
ever desired [3]. As these drug delivery systems do not provide protection against sexually
transmitted diseases, a new approach has been considered, and as a result, dapivirine
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containing vaginal rings were approved by EMA in 2020, which provides risk reduction of
HIV-1 infection [4].

The design and manufacturing methods vary according to each product because
neither guidelines nor regulations are provided by the medical agencies. The drug delivery
systems can be matrix or reservoir types manufactured by injection molding, hot-melt
extrusion, or additive manufacturing as well [5].

Additive manufacturing or 3D printing encompasses a wide range of processes and
is used for the manufacturing of a wide variety of drug delivery systems [6]. Fused
deposition modeling (FDM) technology is the most commonly used technology and enables
the manufacturing of oral dosage forms [7,8], intrauterine systems [9], implants [10,11] or
vaginal rings [5,12].

Vaginal infections are extremely widespread. Even though these infections are not
resulting in high mortality, but can be long-lasting and difficult to cure, which can result
in high levels of anxiety and decrease the quality of life [13]. Relapsing is a serious
problem due to the particular anatomy of the vagina and to the bacterial diffusion between
the rectum and the vagina, thus, the intestinal tract becomes a pathogen microorganism
reservoir and plays an important role in the infection reappearance [14].

Bacterial vaginal infections can be treated both orally or locally. For the oral treatment,
mostly clindamycin and metronidazole are used. Despite the majority of women being
effectively treated with these antimicrobials, 30% will experience a recurrence after 4 weeks
of treatment due to the incomplete eradication of pathogens, unsuccessful reestablishment
of lactobacilli flora, or resistance development [13]. The local administration of different
vaginal suppositories dates back to the 1980s in Hungary, and the gynecologists mostly
prescribe magistral formula of chloramphenicol, nystatin, sulfadimidine or metronidazole
combinations (named as suppository CNS or CNS + M) [15].

Chloramphenicol (CAP) is a broad-spectrum and widely-used antibiotic that has a
good inhibitory effect on brucella, Gram-positive bacteria, Gram-negative bacteria, rick-
ettsia, and chlamydia. The resistance development is small-scale compared to other an-
tibiotic agents [16,17]. The API belongs to class III according to the Biopharmaceutical
Classification System (BCS) [18]. The most important concerns that limit the utility of this
antibiotic are the adverse effects, such as neurotoxicity, bone marrow depression and in
some cases, severe aplastic anemia [19]. The chloramphenicol can be easily characterized
by UV-VIS spectroscopy at the wavelength of 273.8 mm [20].

Metronidazole is the first-line therapy against bacterial vaginosis and is used both
orally and locally [21]. The API is a model class I drug according to the BCS System [22].
Side effects of metronidazole include metallic taste, nausea (in 10% of patients), transient
neutropenia (7.5%), disulfiram-like effect with alcohol, prolongation of international nor-
malized ratio, and peripheral neuropathy, but these unwanted effects can be eliminated
with local administration [23]. The metronidazole’s UV-VIS spectra can be characterized at
320 nm wavelength, but at lower pH the maximum can be at 280 nm [24].

For the manufacturing of a drug delivery system with 3D printing, researchers in-
corporate the API into the filament with hot-melt extrusion, and then the API-containing
filament is printed with FDM technology [25]. The high extrusion temperature used in
FDM (more than 120 °C) and in hot-melt extrusion (more than 150 °C) enables only heat-
stable APIs incorporation into the polymeric filament [26]. Polymer modification [27] or
different added excipients can also decrease the printing temperature, but the lowest used
printing temperature was 165 °C, which is still not adequate for a lot of API’s [28]. Even
though many research projects are trying to solve the problem of high printing temperature,
the most promising solution would be to manufacture a carrier system in which all types
of APIs can be incorporated [29].

Our innovative idea was to manufacture the vaginal rings as carrier systems by 3D
printing and then fill them with jellified API's. Vaginal gels are easy to manufacture,
comfortable, and have the ability to cover the surface of mucosal membrane and to display
the effect on the vaginal mucosa. The use of mucoadhesive polymers can improve the
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contact time with the mucosa, delay the loss of the formulation, enhance the bioavailability,
prolong the effect, cause fewer side-effects and increase patient compliance [30,31].

Drug release of vaginal formulations can differ on the test method, the test medium
type and amount, the agitation, and the temperature. Most research groups use 60 rpm,
37 °C, and vaginal fluid simulant (recipe by Owen and Katz). Since none of the major
international pharmacopeias mentions dissolution/drug testing for vaginal rings, thus
compendial dissolution methods do not exist [32].

The biocompatibility properties of the printed samples were measured by a prolonged
MTT cytotoxicity test. MTT assay is a broadly used, rapid colorimetric method to mea-
sure the in vitro cytotoxicity of certain compounds, and in this case, even the dissolved
xenobiotic can be detected [33]. Several assays may be used, such as MTT assay, LDH test,
real-time cell electronic sensing assay (RT-CES), etc., but the ISO standard describes all
parameters adequately for the MTT test [34].

The evaluation of antimicrobial effectiveness using reference bacteria strains, fungi
strains, or strains obtained from clinical samples has been performed for decades [35]. In
the case of metronidazole the antimicrobial efficacy was tested against E. coli because this
pathogen can cause bacterial vaginosis as a Gram-negative, anaerobic bacteria [21].

Our aim was to manufacture a vaginal ring as a carrier system by FDM 3D printing and
then easily fill these pre-printed samples with the jellified API’s (vaginal gels) depending
on the patient’s need. This article focuses on avoiding the loss and decomposition of API
through the printing process and manufacturing a drug delivery system, which can be
directly printed at the bedside or in the pharmacy. Thus, the preparation is more easily
and rapidly accessible for the patients need, which result in increased patient adherence.

2. Materials and Methods
2.1. Materials
2.1.1. Used Polymer Filaments

For the 3D printing process, polylactic acid (PLA), PLA Gypsum, and PLA Foam
were purchased from Philament Kft. (Miskolc, Hungary). Thermoplastic polyurethane
(TPU) 80A LF was purchased by Ultrafuse FFF (Emmen, The Netherlands). The filament
diameters were 1.75 mm. The properties of the commercially available PLA and TPU
filaments are compared in Table 1, and the properties of the 3D-printed filaments are
provided in Table 2 below. The data were provided by Philament Kft and Ultrafuse FFF.

Table 1. Properties of the commercially available filaments.

Properties Method PLA PLA Gypsum PLA Foam TPU
Specific gravity (g/ cm?) D792 1.24 1.25 1.00 1.2

Heat distortion temperature at 0.45 MPa (°C) D790 55 55 55 106
Glass Trans. temperature (°C) D3418 55-60 55-60 55-60 150-230
Tensile strength (MPa) 1SO 527 60 54 53 No break
Tensile modulus (MPa) 1SO 527 3800 3200 6040 No break
Notched Izod impact (kJ /m?) 1SO 180 16 14 12 No break

Table 2. Properties of the 3D-printed filaments.

Properties Method PLA PLA Gypsum PLA Foam TPU
Tensile strength (MPa) ISO 527 31.6 25.0 20.0 No break
Tensile modulus (GPa) 1SO 527 1.8 1.4 51 No break

Notched Izod impact (k] / m?) 1SO 180 2.6 29 2.2 No break
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2.1.2. Jellifying Agents

Carbopol 934 was a gift from Lubrizol GmbH (Ritterhude, Germany). Medium
molecular weight chitosan (CAS:9012-76-4) was purchased from Sigma Aldrich Co. (Merck
Kft., Budapest, Hungary). Hydroxyl ethyl cellulose (CARN:9004-62-0) was purchased from
Molar Chemicals Kft (Halasztelek, Hungary). Agar-agar was purchased from Discovery
Bliss Kft. (Csomor, Hungary).

2.1.3. Model API's

Chloramphenicol and metronidazole were purchased from Molar Chemicals Kft.
(Halasztelek, Hungary).

2.2. Methods
2.2.1. Design of the Drug Reservoirs and Printing of the Samples

The digital models of the samples were designed using SolidWorks (Dessault Systemes,
Vélizy-Villacoublay, France), which is a modeling computer-aided design and engineering
software. Exporting the digital design into a stl (standard tessellation language) file makes
it directly printable on the 3D printer [29].

The shape was based on the commercially available vaginal ring—NuvaRing®, but
the edges were chamfered because it was more beneficial for the 3D printing process. Each
sample was 5 mm tall and printed in two different diameters (39.19 and 41.19 mm) to
provide the perfect fitting. In our article, we referred to these two diameters as lower
and upper parts. All the other geometric and additional properties of the samples were
determined in the slicing software [36]. Printing parameter adjustment was a critical
process, which will affect the mechanical properties of the samples [37]. In our research,
the used extrusion width was 0.400 mm, the layer height 0.100 mm, vertical shell 5 loops,
top/bottom shell concentric, 10/10 shell.

Batches of 4 drug delivery systems were printed on a Craftbot 3 3D Printer (CraftU-
nique Kft., Budapest. Hungary). The parameters of the 3D printing process are summarized
below (Table 3).

Table 3. Printing characteristics of the samples.

Filament Type PLA PLA Gypsum PLA Foam TPU
Filament Diameter (mm) 1.75 1.75 1.75 1.75
Extruder Nozzle Diameter (um) 400 400 400 400
Infill Percentage (%) 0 0 0 0
Extrusion Temperature (°C) 215 215 215 233
Bed Temperature (°C) 60 60 60 65
Layer Thickness (um) 100 100 100 100

2.2.2. Gel Formation and Sample Manufacturing

Four different formulations were prepared. The first formulation was prepared from
Carbopol 934 and a 1 w/w% solution was manufactured with distilled water at 500 rpm
shaking [21]. The second and third formulation was prepared by medium molecular
weight chitosan and hydroxyethyl cellulose (HEC). The second formulation consisted of
3 w/w% chitosan and 4 w/w% HEC and the third formulation of just 1 w/w% chitosan and
4 w/w% HEC with distilled water, 300 rpm shaking and manual mixing [14,30]. The last
formulation was designed by our research group and a 1 w/w% agar-agar solution was
prepared with distilled water and heating up to 100 °C.

The sample manufacturing was based on that the vaginal ring was pre-printed in the
3D printer to manufacture a lower and upper part separately. Then 5 g of chloramphenicol
or metronidazole was measured on an analytical balance MettlerToledo AX105 DeltaRange
(Colombus, OH, USA), and it was suspended in a mortal with 20 g of gel. Then, the
suspensions were put into a syringe. The lower part of the vaginal ring was tared on the
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analytical balance, and 1.5 g gel was filled by the syringe to every lower part. Finally, the
upper part was put and closed manually.

2.2.3. Weight Variation and Content Uniformity

Before the experiments, 10 samples from each formulation were individually weighed,
and the calculated average with standard deviation gave the weight variation. Then the
samples were opened for content uniformity determination. The samples were separately
immersed in 200 mL of simulated vaginal fluid and stirred for 60 min. The drug amount
was determined using UV spectrophotometry with ThemoScientific™ Multiskan™ GO
Microplate Spectrophotometer (Waltham, MA, USA) at a wavelength of 278 nm in case of
chloramphenicol and 319 nm in case of metronidazole based on the calibration curve [38].

2.2.4. Characterization
Thermogravimetric (TG) and Heatflow (DSC) Analysis

The thermogravimetric (TG) and heatflow (DSC) analysis of the samples were carried
out with a Mettler-Toledo TGA /DSC1 instrument (Mettler-Toledo GmbH, Urdorf, Switzer-
land). The solid-state samples were placed in a closed aluminum crucible at a volume
of 40 uL. The temperature range was 25-500 °C, and the heating rate was 10 °C/min. A
nitrogen atmosphere was used (cell gas: 50 mL/min, method gas: 70 mL/min). Evalua-
tion of the TG/DSC curves was performed with STAR® software (Mettler—Toledo GmbH,
Budapest, Hungary) [39].

Contact Angle

Contact angle measurements with the sessile drop method were performed on a DSA
30 Drop Shape Analyzer (Kriiss GmbH, Hamburg, Germany) at room temperature. Drops
of deionized water (5 pL) were deposited on the upper surface of the 3D printed vaginal
ring (before and after the dissolution test) by an automatic dosing system. The diameter
of the used needle was 0.5 mm. The contact angles were automatically calculated by
Young-Laplace equation fitting on the imaged drop shape. The average contact angles
were calculated from 16 drops measurements (n = 16) [21].

Microcomputed Tomography (MicroCT)

A SkyScan 1272 (Bruker, Kontich, Belgium) compact desktop microcomputed tomog-
raphy (microCT) system was used for the measurement. Scanning parameters were as
follows: image pixel size, 5 pm; matrix size, 2688 x 4032 (rows X columns); source volt-
age = 50 kV; source current = 200 pA; rotation step (deg) = 0.200. Flat field correction
and geometrical correction were used. After scanning, SkyScan NRecon software (version
2.0.4.2) was used to reconstruct cross-section images from tomography projection images.
Post-alignment, beam hardening correction, ring artifact correction, and smoothing were
conducted. The output formats were DICOM and BPM images. For 3D image visualization,
CTwox software (Bruker, Kontich, Belgium) was used [40].

2.2.5. In Vitro Dissolution Test

The dissolution test was carried out using a modified USP Type II Erweka DT 800 dis-
solution apparatus (Langen, Germany) with an automatic sampling system, Ismatec IPC
High-Precision Multichannel Dispenser (Wertheim, Germany). As a dissolution medium,
200 mL of simulated vaginal fluid (pH 4.2) was used based on the recipe of Owen and
Katz [41]. The rotation speed was set to 60 rpm and the temperature to 37 °C. All samples
were fixed to the bottom by the top part of the basket used in the USP Type I apparatus.
This top part was found heavy enough to attach the sample to the bottom, but as it was
composed of two parts, the samples were not affected. Samples of 2 mL were collected at
0.083,0.25,0.5,1,2,4,6,8, 16, 24, 24.025, 24.5, 25, 26, 28, 30, 32, 40, 48 h using the autosam-
pler [32,42]. 10 uL of all samples at all measurement points were put in 96-well UV-Star®
microplates (Greiner Bio-One Kft., Mosonmagyarévar, Hungary) and were diluted with
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190 pL of SVE. The absorbance of the release drug was determined by UV spectropho-
tometry with Thermo Scientific™ Multiskan™ GO Microplate Spectrophotometer at a
wavelength of 278 nm in case of chloramphenicol and 319 nm in case of metronidazole.
Dissolution experiments were conducted with four replicates [43,44].

To compare the dissolution data of the different samples, similarity and difference
factors were calculated; as a model-independent approach, the difference—f1 factor and
similarity—f2 factor was calculated for each sample:

X1 (Rj—Tj)

- x 100,
2}1: 1Rj

=

where 7 is the number of samples and Rj and Tj are the percent dissolved of the reference
and the test products at time point j.

1 n P N2 —05
f2 = 50 x log (1+(n)2j_1w](R]—T])) x 100 p,

where wj is an optional weight factor.
For the determination of release kinetics, the dissolved API amount was fitted to
zero-order and first-order model equations:

Q = Qo + kot

Qr = Qo xe M,

where Q is the amount of drug released at time ¢, Qy is the initial amount of the drug, and
Q; is the amount of drug remaining at time t. kg and k; are the kinetic constants for the
zero-order and first-order models, respectively [40].

2.2.6. Biocompatibility Experiments
Cytotoxicity Experiments

1. Sterilization

The 3D-printed carrier systems were immersed in 70% (v/v) ethanol in a laminar air
flow (LAF) cabinet for 12 h, and were individually placed to sterile medical-grade paper
for drying to avoid the infection [43].

2. Cell Culture

The human Negroid cervix epithelioid carcinoma (HeLa) cell line was received from
the European Collection of Cell Cultures (ECACC, Salisbury, UK, catalog no. 93031013),
which is a well-established cell culture from ECACC, and the protocol is based on the
authors’ research. Cells were seeded in plastic cell culture flasks (Thermo Fisher Scientific
Inc., Budapest, Hungary) in DMEM medium supplemented with 3.7 g/L NaHCQO3, 10%
(v/v) heat-inactivated fetal bovine serum (FBS), 1% (v/v) nonessential amino acid solution,
1% (v/v) L-glutamine, 100 IU/mL penicillin and 100 pg/mL streptomycin at 37 °C in an
atmosphere of 5% CO;. For the cytotoxicity experiments, cells with 20 to 40 passages were
used. The cells were passaged every three or four days [45].

3. MITT Cell Viability Assay

Cells were seeded on flat-bottomed 96-well tissue culture plates at a density of 10* or
3 x 10* cells/well. After separate sterilization of the test samples, they were put in sterile
centrifuge tubes, immersed in 20 mL of DMEM medium, and stored in a cell incubator at
37 °C. The tests were performed on 4th, 8th, and 12th days, and the samples were stored
under the same conditions. The first step of the MTT assay was to remove the culture
media from the cells, and then the cells were treated with 200 uL of the test sample solution
and incubated for 30 min. After the incubation, the samples were removed, and the cells
were washed with 200 uL PBS solution/well. Then, the cells were incubated with 100 uL
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0.5 mg/mL MTT dye (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
dye) for at least 3 h. Finally, the formazan crystals were dissolved in acidic isopropanol
(isopropanol: 1.0 N hydrochloric acid = 25:1). The absorbance was measured at 570 nm
against a 690 nm reference with a FLUOstar OPTIMA Microplate Reader (BMG LABTECH,
Offenburg, Germany). Cell viability was expressed as the percentage of the untreated
control [46].

4. Microbiological Evaluation

Candida albicans SC5314 reference strain and Escherichia coli ATCC 25922 strain
were used in this study. Colonies were subcultured on Sabouraud dextrose agar and
Mueller-Hinton agar for C. albicans and E. coli, respectively. The growth of the individual
strains in coculture was evaluated to examine the effect of vaginal rings containing different
compounds. The tested samples were as follows: (a) empty vaginal ring; (b) metronidazole
containing vaginal ring; (c) 3 w/w% chitosan and 4 w/w% hydroxyethyl cellulose-containing
vaginal ring; (d) 3 w/w% chitosan and metronidazole containing vaginal ring.

The final cell concentrations were adjusted to 2-5 x 10° cells/mL in RPMI-1640 broth
+ Mueller-Hinton broth (50:50 v/v%) both for C. albicans and E. coli, respectively. The total
broth volume was 20 mL in each flask. Flasks were incubated with agitation in darkness
at 35 °C. A total of 100 pL were removed at 0, 2, 4, 6, 8, 10, 12, and 24 h, serially diluted
10-fold in sterile physiological saline then plated onto either Sabouraud dextrose agar
supplemented with 8 mg/L metronidazole and Mueller-Hinton agar supplemented with
8 mg/L amphotericin B. Plates were incubated for 24 and 48 h at 35 °C for E. coli and
C. albicans, respectively.

2.2.7. Statistical Analysis

Data were analyzed using GraphPad Prism (version 7.0; GraphPad Software, Inc., San
Diego, CA, USA) and presented as means =+ standard deviation (SD). If it is not mentioned
in the method description, then the experiments were carried out in triplicate [46].

3. Results
3.1. Design of the Drug Reservoirs and Printing of the Samples

In our experiments, four different polymers, polylactic acid (PLA), PLA Gypsum PLA
Foam, and thermoplastic polyurethane (TPU) were used for the 3D printing. The sample
thickness was 5 mm, and the diameter was 39.39 and 41.39 (Figure 1). At the beginning
of our research, we started our experiments on different PLA filaments but based on our
performed experiments, none of them proved to be flexible enough for the requirement
of a vaginal ring. Based on our results, TPU showed adequate texture properties, which
were confirmed by the manufacturer as well. Then the printing parameters were deter-
mined. In the case of the TPU the 32nd printing parameter adjustment was acceptable for
the manufacturing.

Figure 1. Image of the printed samples.
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3.2. Gel Formation and Sample Manufacturing

The 1st formulation with Carbopol 934 was found inappropriate for our experiments
because the gel was too watery in the applied w/w% and was not soluble in the simulated
vaginal fluid. The 2nd formulation with 3 w/w% chitosan was consistent and homogenous.
The 3rd formulation was more watery than 2nd formulation, but both formulations could
be dissolved in SVE. The 4th formulation was a semisolid gel after cooling.

The API's were suspended with the gels and manually filled into the pre-printed
vaginal rings. The samples fitting was adequate (Figure 2).

Figure 2. Image of the manufactured samples.

3.3. Weight Variation and Content Uniformity

The measured weight and the content uniformity results can be seen in Table 4. The
samples’ average weight (g) was similar in all cases. The samples were filled with 1.5 g
API containing jellified agent.

Table 4. The samples” average weight (g) with standard deviation (SD) and the average content uniformity (g) results with
SD in case of the three different formulations containing chloramphenicol and metronidazole.

Weight Content Uniformity
Sample

Average (g) +SD Average (g) +SD
2nd formulation 2.83 0.42 1.51 0.20
3rd formulation Chloramphenicol 2.82 0.38 1.49 0.14
4th formulation 2.86 0.24 1.52 0.23
2nd formulation 2.81 0.41 1.52 0.01
3rd formulation Metronidazole 2.84 0.12 1.48 0.25
4th formulation 2.84 0.36 1.50 0.11

3.4. Characterization
3.4.1. Thermogravimetric (TG) and Heatflow (DSC) Analysis

The TG curve of the TPU filament (Figure 3(l.a)) and empty vaginal ring (Figure 3(L.b))
showed thermal stability until 300-320 °C, and no kind of difference could be seen until
370 °C, thus, the used polymer is stable at the applied printing temperature. The decompo-
sition was around 39% until 400 °C and 89% until 500 °C. In the case of the DSC curves,
neither a characteristic endothermic peak nor an exothermic peak could be determined.
In the case of the TPU filament, there was a flattened endothermic peak at 352 °C when
the decomposition started (Figure 3(Il.a)). In the case of the empty vaginal ring, the de-
composition started after 348 °C, and a flattened exothermic peak could be determined
(Figure 3(ILb)).
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Figure 3. Thermogravimetric (I) and heatflow (II) analysis of the TPU filament (a) and the empty vaginal ring (b). Thermal
behavior was analyzed between 25 °C and 500 °C.

The thermogravimetric and heatflow analysis of the chloramphenicol and metronida-
zole could be seen in Figure 4. The curves proved that chloramphenicol was stable until
210 °C and metronidazole until 220 °C. In the case of chloramphenicol the decomposition
was around 56% until 500 °C, and metronidazole’s was around 84% until 500 °C (Figure 4I).
The DSC curve showed an endothermic peak at 159 °C in the case of the chloramphenicol,
which is the melting point and not followed by a mass decrease until 210 °C (Figure 4(IL.a)).
On the DSC curve of the metronidazole, an endothermic peak at 170 °C could be character-
ized without a mass decrease. A characteristic exothermic peak was determined at 288 °C,
which was followed by decomposition (Figure 4(IL.b)).

In Figure 5, the three jellifying agents: chitosan (a), hydroxyethyl cellulose (b), and
agar-agar (c) thermogravimetric and heatflow analysis could be seen. In the case of the
chitosan, an extended endothermic peak was realized, and an 8% decomposition was
detected until 180 °C. Based on our experiments, this was due to the evaporation of
the surface absorbed moisture. The decomposition took place in one step right after
the exothermic peak at 306 °C (Figure 5(Il.a)). Hydroxyethyl cellulose showed a 5%
decomposition until 180 °C, which was the evaporation of the absorbed water as well. The
flattened exothermic peak was around 351 °C. The decomposition was around 79% until
500 °C (Figure 5(11.b)). Agar-agar was stable until 260 °C, when a flattened exothermic
peak started. The decomposition was around 74% until 500 °C. Agar-agar showed a 13%
decomposition until 180 °C, which was the consequence of the evaporation.

3.4.2. Contact Angle

The contact angle values are given in Figure 6. The contact angle values were measured
on the surface of the printed vaginal ring samples before and after the dissolution test. The
two different samples had different contact angle values: before the dissolution test 82.48
and after the dissolution test 75.84. The results were statistically analyzed, and a significant
difference **** was found (p < 0.0001).
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Figure 4. Thermogravimetric (I) and heatflow (II) analysis of the chloramphenicol (a) and the metronidazole (b). Thermal
behavior was analyzed between 25 °C and 500 °C.
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Figure 5. Thermogravimetric (I) and heatflow (II) analysis of the chitosan (a), hydroxyethyl cellulose (b) and agar-agar (c).
Thermal behavior was analyzed between 25 °C and 500 °C.
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1101
100+

Contact Angle (°)

Sample before dissolution test Sample after dissolution test

Figure 6. Contact angle values of the printed TPU samples before the dissolution test and the filled
samples after the dissolution test. Data are expressed as means & SD. Experiments were performed
sixteen times, n = 16.

3.4.3. Microcomputed Tomography (MicroCT)

The samples were examined by microcomputed tomography (microCT) before and
after the dissolution test to determine their morphology. Figure 7 represents the printed
sample (a) and the examined sample after the dissolution test (b). The localization of the
remaining gel could be clearly seen after the dissolution test.

Figure 7. Reconstructed microCT image from a vertical cut of the printed sample (a) and examined sample after the

dissolution test (b). Image pixel size is 5 um.

Figure 8 represents the upper surface of the printed sample (a) and examined sample
after the dissolution test (b). On the surface of the dissolved sample, no kind of change or
alteration was detected.
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Figure 8. Reconstructed microCT image from the upper surface of the printed sample (a) and examined sample after the
dissolution test (b). Image pixel size is 5 um.

3.5. In Vitro Dissolution Test

The dissolution profiles of the samples were determined by a modified USP type II
in vitro dissolution apparatus to determine the dissolution profiles. The dissolved API
amount (%) at every sampling time and the standard deviation (£SD) results can be found
in Appendix A, but the dissolved API amount (%) at 2 h, 8 h, and 48 h can be found in
Table 5. At 2 h, the dissolved API amount varied from 0% to 39.89% and at 8 h from 0% to
52.31%, respectively. The dissolution from the chloramphenicol 4th formulation did not
start in the first 8 h. At 48 h, we found that the dissolved API amount varied between 2.14%
and 47.98% depending on the API and the jellifying agent type.

Table 5. The dissolved API amount (%) results at 2 h, 8 h, and 48 h can be found in the table and the other sampling time
results in Appendix A, with the standard deviation results.

2h 8h 48 h
Sample Dissolved API Dissolved API Dissolved API
Amount (%) +SD Amount (%) +SD Amount (%) +SD
2nd formulation 4.79 1.36 9.76 1.70 15.86 5.10
Chloramphenicol ~ 3rd formulation 5.89 3.77 14.93 5.42 18.57 2.51
4th formulation 0.00 0.00 0.00 0.00 2.14 0.92
2nd formulation 8.76 1.74 16.31 2.79 34.12 7.97
Metronidazole 3rd formulation 39.89 8.87 52.31 6.64 47.98 7.42
4th formulation 4.47 0.72 10.11 3.33 29.67 6.50

The dissolved APl amount (%) was plotted against the time (h) for the chloramphenicol
(Figure 9) and metronidazole samples (Figure 10). The results are means £ SD, n = 4.

Pairwise comparison results of the different samples dissolution profiles can be found
in Appendix B: f1 value of the difference factor calculation and f2 value of the similarity
value calculation. The interpretation was based on the FDA guideline. We found that all of
our sample dissolution profile was considered non-similar. Based on this comparison, all
samples had different dissolution curves.

Drug release data were fitted to zero-order and first-order models (Table 6). Determi-
nation coefficients were used to determine the best fit. The metronidazole 2nd formulation
sample fitted to the first-order model, which confirmed the linear curve shape (Figure 10).
The calculations revealed that other samples could not be fitted to these models if we
compared the results from 0-48 h. In the case of metronidazole 4th formulation, the results
were the same, thus, we decided not to interpret a conclusion from it. The dissolved API
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amounts were fitted to the same kinetic models, but separately between 0-8 h and 8-24 h.
From the chloramphenicol 4th formulation, the API was not dissolved in the first 8 h, thus,
the kinetic determination is inadequate, but all other samples fitted to the first-order kinetic
model. In the 848 h interval the chloramphenicol 4th formulation and metronidazole 2nd
formulation can be fitted to first-order kinetic model.

1001 g
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Figure 9. Dissolved API amount (%) versus time (h) for samples jellified with chloramphenicol; mean + SD, n = 4.
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Figure 10. Dissolved API amount (%) versus time (h) for samples jellified with metronidazole; mean + SD, n = 4.

Table 6. The kinetic analysis of the dissolved samples. Drug release data were fitted to zero-order and first-order kinetic
models for 0-48 h, 0-8 h, and 8-48 h.

Zero-Order First-Order Zero-Order First-Order Zero-Order First-Order

Sample Kinetics Kinetics Kinetics Kinetics Kinetics Kinetics
0-48h 0-48h 0-8h 0-8h 8-48h 8-48h
2nd formulation 0.808 0.806 0.922 0.925 0.177 0.176
Chloramphenicol 3rd formulation 0.730 0.726 0.967 0.971 0.215 0.214
4th formulation 0.765 0.763 0.000 0.000 0.870 0.871
2nd formulation 0.921 0.944 0.891 0.978 0.902 0.910
Metronidazole 3rd formulation 0.410 0.361 0.796 0.818 0.635 0.632

4th formulation 0.896 0.896 0.950 0.973 0.465 0.473
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Cell viability (%)

3.6. Biocompatibility Experiments
3.6.1. Cytotoxicity Experiments

A prolonged cell viability test was performed to gain information about the cytocom-
patibility of the 3D printed vaginal rings. The samples were incubated in the cell culture
medium for 4, 8, and 12 days, and the monolayer formed by HelLa cells was treated with
this medium to determine if any kind of xenobiotic was dissolved from the sample. This
method differed from the original MTT assay because the cell viability was expressed as
the percentage of negative or untreated control (DMME medium, Co-) in harmonization
with the ISO standard. As a positive control (Co+), Triton-X 100 (10% w/v) solubilizing
agent was used, which had significant differences from the two other examined samples.
Based on the ISO 10993-5:2009(E) standard, if the relative cell viability was higher than
70% in comparison with the control group (100%), the materials could be considered
non-cytotoxic [47]. According to this regulation, the printed vaginal ring sample could be
qualified as cytocompatible (Figure 11).

120-
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i
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Figure 11. The prolonged cytotoxicity of the 3D printed sample byTPU. MTT cell viability tests were performed on days 4,

8, and 12. Cell viability was expressed as the percentage of untreated control (Co—). As a positive control (Co+), Triton X

100 (10% w/v) was used. Data were expressed as means of four independent experiments + SD.

3.6.2. Microbiological Evaluation

E. coli cell count showed a significant decrease in the presence of three tested rings.
It is noteworthy that the ring containing chitosan with metronidazole in combinations
produced a bactericidal effect at 24 h. While the metronidazole alone produced only a
static effect after 24 h (Figure 12). In case of C. albicans the ring containing chitosan with
metronidazole exerted a weak fungistatic effect between 2 and 6 h. However, the observed
cell counts between 8 and 24 h were similar compared to untreated control cells (Figure 13).
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Figure 12. The logarithmical colony-forming unit (CFU)/mL in case of E. coli versus time (h) where (a) empty vaginal ring;
(b) metronidazole containing vaginal ring; (c) 3 w/w% chitosan and 4 w/w% hydroxyethyl cellulose-containing vaginal ring;
(d) 3 w/w% chitosan and metronidazole containing vaginal ring.
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Figure 13. The logarithmical colony-forming unit (CFU)/mL in case of C. albicans versus time (h) where (a) empty vaginal
ring; (b) metronidazole containing vaginal ring; (c) 3 w/w% chitosan and 4 w/w% hydroxyethyl cellulose containing vaginal
ring; (d) 3 w/w% chitosan and metronidazole containing vaginal ring.

4. Discussion

In our study, vaginal rings were manufactured with 3D printing from commercially
available polymer filaments. Then, the vaginal ring samples as carrier systems were
filled with jellified chloramphenicol or metronidazole. The reason for these investigations
were to certify the applicability of FDM printing in the field of personalized medication
manufacturing. The APIs can be delivered at the right dose locally in the vagina, which
provide an excellent response [48,49].

3D printing significantly speeds up the design cycle, both in development and in
industrial manufacturing [29]. One of the newest articles published in 2021 was about the
manufacturing of a 3D printed vaginal ring from thermoplastic polyurethane filled with
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clotrimazole to treat vulvovaginal candidiasis. Even though the two research groups had
the same ideas but with different manufacturing processes and API, Tiboni et al. used hot-
melt extrusion for the manufacturing of the clotrimazole containing filament [50]. Based
on another research, the endothermic peak of the clotrimazole on the DSC curve was at
145.6 °C but without decomposition until 160 °C [51].

In our previous article, we already bothered with the problem of the required high
printing temperature and how difficult it can be to fill the samples with the API [29]. One
study showed that the APIs” weight loss was around 5% after the FDM printing, but in the
pharmaceutical industry, only a maximum of 1% API deviation could be accepted [52]. Our
research group developed an easy method to fill the samples with the API. Furthermore,
the amount and stability of the API were not affected. As it is a pre-printed carrier system,
API can be directly applied in the desired amount to the immediately printed drug delivery
system, and the patient can start the application earlier with the hope of a better outcome.

The thermogravimetric and heatflow analysis of the TPU filament and empty vaginal
ring showed thermal stability until 300-320 °C, thus the used polymer is stable at the ap-
plied printing temperature. The TGA curves proved that chloramphenicol was stable until
210 °C and metronidazole until 220 °C. The three jellifying agents: chitosan, hydroxyethyl
cellulose, and agar-agar were stable on the printing temperatures. These results are in
agreement with the scientific data [53,54]. Based on these results, these API’s should not be
mixed with the TPU polymer because the applied printing temperature was 233 °C. Our
method was adequate because the API’s were added after the vaginal ring was pre-printed.

Contact angle results showed that the printed sample and the sample after dissolution
test had different wettability properties and after the dissolution test in simulated vaginal
fluid, the sample was more hydrophilic than before the test. Based on the results, our
samples can be identified as moderate with wettability properties, which can affect the
samples’ mucoadhesion properties in the vagina [55].

Based on the dissolution profiles, the dissolved API amount varied from 0% to 52.31%
at 8 h. The dissolution from the chloramphenicol 4th formulation did not start in the first
8 h. The dissolved API amount was higher from the metronidazole-containing samples
than the chloramphenicol-containing samples. If we compare the jellifying agents, the
3 w/w% chitosan showed the highest dissolution amount and agar-agar the less within 48 h.

Based on the microCT results, the jellified API was just partly dissolved from the
vaginal ring, which is in correlation with our dissolution test results. On the surface of the
dissolved sample, no kind of change or alteration was detected.

The dissolution from drug delivery systems depends on various physical and chemical
properties, which results in difficulties at describing proper mathematical models [56],
thus, our samples were examined with first-order and zero-order kinetics at different
time intervals [57,58]. All of our samples could be fitted to first-order kinetics model
independently from the used API or auxiliary material [59].

The in vitro cytotoxicity profile of the samples was determined with a long-term
MTT assay. The method was harmonized with the ISO 10993 standard but with a shorter
incubation period [60]. The sterile samples were stored in DMEM medium at 37 °C and the
potentially dissolved xenobiotics were measured by MTT assay on days 4, 8, and 12. The
in vitro cytotoxicity method as a compulsory test can be the first filter through the determi-
nation of biocompatibility and can be a good predictor of the in vivo results [29,61]. Based
on the prolonged MTT assay on the HeLa cell line, results were in accordance with the ISO
10993:5 standard, and the printed vaginal ring samples can be considered cytocompatible.

The microbiological evaluation is part of the biocompatibility determination, and with
the results of the MTT assay can give us a good prediction about the in vivo data. We
determined the effect against E. coli and C. albicans as reference isolates [62]. E. coli cell
count showed a significant decrease in the presence of all three tested rings. The vaginal
ring that contains chitosan with chloramphenicol in combinations produced a bactericidal
effect at 24 h. While the chloramphenicol alone produced only a static effect after 24 h.
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Thus, we can state that the previously well-described effect of chitosan can help to suppress
bacterial vaginosis [63,64].

In conclusion, vaginal rings from thermoplastic polyurethane were successfully 3D
printed by FDM technology. The pre-printed samples were filled with chloramphenicol
or metronidazole and jellified with chitosan/HEC or agar-agar. The special experimental
arrangement ensures that all kinds of API can be utilized during printing without heat
damage or API loss, confirmed by TGA results. Based on the dissolution curves, the
used API and jellifying agent can modify the dissolved API amount. Based on the MTT
assay results, TPU polymer can be considered cytocompatible. The microbiological evalu-
ation confirmed that metronidazole and chitosan have a synergistic effect against E. coli.
Based on the overall project, TPU polymer filled with metronidazole was suggested for
further investigations.
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Appendix A
Chloramphenicol Metronidazole
Sample
2nd Formulation 3rd Formulation 4th Formulation 2nd Formulation 3rd Formulation 4th Formulation
Sampling Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved

Time () APL%) 50 APt TP aprewm TSP apten TSP apiew TSP apren) 5P
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.083 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.05 0.09 0.67 0.66
0.25 0.36 0.49 0.50 0.74 0.00 0.00 3.63 0.75 3.70 2.16 2.57 1.07
0.5 1.77 1.01 0.76 0.84 0.00 0.00 498 1.10 9.48 3.07 1.99 0.33

1 3.36 1.01 3.31 4.15 0.00 0.00 6.42 1.00 20.20 5.90 3.18 0.47

2 4.79 1.36 5.89 3.77 0.00 0.00 8.76 1.74 39.89 8.87 447 0.72

4 7.21 1.23 9.75 4.33 0.00 0.00 11.63 2.02 50.64 5.32 6.25 1.82

6 9.01 0.75 12.81 5.71 0.00 0.00 14.24 224 51.68 5.37 8.18 2.65

8 9.76 1.70 1493 542 0.00 0.00 16.31 2.79 52.31 6.64 10.11 3.33

16 13.44 0.92 15.32 3.83 0.16 0.32 18.08 2.69 51.15 7.16 11.54 3.55

24 14.11 4.15 18.60 2.85 0.43 0.58 21.40 3.35 49.99 7.66 20.92 7.86
24.083 17.45 1.54 18.10 4.02 0.35 0.41 21.33 3.93 50.91 5.04 21.19 8.52
24.25 17.15 2.44 18.10 3.13 0.53 0.52 20.79 4.44 51.63 6.43 20.98 7.80
245 17.36 2.02 18.22 1.77 0.61 0.54 2242 4.15 50.42 6.49 21.90 7.66
26 16.31 2.03 19.17 3.06 0.53 0.57 22.34 5.01 49.63 6.55 2251 7.98

28 17.69 242 18.08 4.19 0.98 0.79 25.71 443 49.73 6.56 23.98 8.26

30 17.49 1.86 18.91 3.59 1.40 0.95 28.65 6.32 48.55 6.87 2413 10.07

32 17.94 2.96 19.06 3.20 1.52 0.68 29.34 7.08 47.61 5.57 25.57 9.22

40 19.03 3.60 18.04 2.14 1.96 0.64 32.15 7.38 48.05 7.92 27.16 9.51

48 15.86 5.10 18.57 251 2.14 0.92 34.12 797 47.98 7.42 29.67 6.50
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Appendix B
Pairwise Comparison of Dissolution Profiles

Sample 1 vs. Sample 2 f1 2 (%)
Chloramphenicol 2nd formulation Chloramphenicol 3rd formulation 13.32 76.07
Chloramphenicol 2nd formulation Chloramphenicol 4th formulation 2156.98 39.86
Chloramphenicol 2nd formulation Metronidazole 2nd formulation 35.74 50.57
Chloramphenicol 2nd formulation Metronidazole 3rd formulation 71.56 19.96
Chloramphenicol 2nd formulation Metronidazole 4th formulation 24.55 61.43
Chloramphenicol 3rd formulation Chloramphenicol 4th formulation 2434.11 37.36
Chloramphenicol 3rd formulation Metronidazole 2nd formulation 27.84 53.95
Chloramphenicol 3rd formulation Metronidazole 3rd formulation 68.07 21.20
Chloramphenicol 3rd formulation Metronidazole 4th formulation 24.88 63.33
Chloramphenicol 4th formulation Metronidazole 2nd formulation 97.15 30.20
Chloramphenicol 4th formulation Metronidazole 3rd formulation 98.74 13.00
Chloramphenicol 4th formulation Metronidazole 4th formulation 96.53 33.80
Metronidazole 2nd formulation Metronidazole 3rd formulation 55.75 24.62
Metronidazole 2nd formulation Metronidazole 4th formulation 22.79 62.45
Metronidazole 3rd formulation Metronidazole 4th formulation 176.28 21.99
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