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Abstract: In order to improve the benefit–risk ratio of pharmacokinetic (PK) research in the early
development of new drugs, in silico and in vitro methods were constructed and improved. Models
of intrinsic clearance rate (CLint) were constructed based on the quantitative structure–activity
relationship (QSAR) of 7882 collected compounds. Moreover, a novel in vitro metabolic method,
the Bio-PK dynamic metabolic system, was constructed and combined with a physiology-based
pharmacokinetic model (PBPK) model to predict the metabolism and the drug–drug interaction
(DDI) of azidothymidine (AZT) and fluconazole (FCZ) mediated by the phase II metabolic enzyme
UDP-glycosyltransferase (UGT) in humans. Compared with the QSAR models reported previously,
the goodness of fit of our CLint model was slightly improved (determination coefficient (R2) = 0.58 vs.
0.25–0.45). Meanwhile, compared with the predicted clearance of 61.96 L/h (fold error: 2.95–3.13)
using CLint (8 µL/min/mg) from traditional microsomal experiment, the predicted clearance using
CLint (25 µL/min/mg) from Bio-PK system was increased to 143.26 L/h (fold error: 1.27–1.36). The
predicted Cmax and AUC (the area under the concentration–time curve) ratio were 1.32 and 1.84 (fold
error: 1.36 and 1.05) in a DDI study with an inhibition coefficient (Ki) of 13.97 µM from the Bio-PK
system. The results indicate that the Bio-PK system more truly reflects the dynamic metabolism
and DDI of AZT and FCZ in the body. In summary, the novel in silico and in vitro method may
provide new ideas for the optimization of drug metabolism and DDI research methods in early
drug development.

Keywords: QSAR; metabolic system; clearance; PBPK model; azidothymidine; drug interaction

1. Introduction

The pharmacokinetic (PK) properties of a therapeutic agent play an important role in
drug discovery and development [1]. Good in vitro activity cannot be extrapolated to good
in vivo efficacy unless a drug candidate possesses sufficient bioavailability and desirable
duration of action. Similarly, the toxicity of the drug in the body is related to its excessive
concentration in vivo or specific accumulation in the tissues. As reported, about 40% of
candidate compounds were eliminated due to unsatisfactory clinical PK properties in the
development of new drugs in the 1980s [2]. In recent years, PK profiling has been routinely
implemented in pharmaceutical industries as early as the preclinical optimization process
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of candidate compounds. More and more attention has been paid to the research and
exploration of the PK properties of compounds during the development of new drugs [3,4].

Currently, a number of in vitro methods describing the ADME (absorption, distribu-
tion, metabolism and excretion) property of novel drugs have been developed to achieve
high-throughput screening in the early drug development process [5]. Traditional in vitro
methods for metabolism study include microsomal experiments, liver cell models, recom-
binase experiments, liver S9 (post-mitochondrial supernatant) models, cytosol experiments
and liver slice models [6–9]. These in vitro metabolism experiments can be used for
metabolic stability high-throughput screening and prediction of metabolic clearance (CL)
and DDI in the early development of new drugs, thereby facilitating the structural optimiza-
tion of compounds. However, traditional in vitro metabolic experiments still have some
limitations, such as the lack of microenvironment and the inability to truly simulate the
3D environment in the body [10], which may lead to an underestimation of metabolic CL.
For example, a lot of attempts were made to improve the traditional in vitro metabolism
experiment, but few reflected the true extent of the glucuronidation of the classic UGT2B7
substrate AZT in vivo [11–19].

Meanwhile, our previous work was focused on trying to improve the microsomal in-
cubation testing [20,21]. A microsome-hydrogel encapsulation system was developed, and
a dynamic perfusion device was introduced to form a Bio-PK dynamic system, simulating
the dynamic metabolism and 3D environment in the body [22]. The microsome-hydrogel
encapsulation system avoids the direct contact between the microsomes and the drugs in
the traditional microsome experiment, thereby prolonging the co-incubation time of the
drug and the microsomes [23]. A new research tool of “drug–metabolism–toxicity” system
was constructed based on the microsome-hydrogel encapsulation system, and it was suc-
cessfully applied to the early screening of antitumor candidate compounds and the study
of antitumor effect of baicalein after metabolism [20,23,24]. Moreover, the in vivo–in vitro
correlation of Bio-PK dynamic system was verified through CYP probe substrates, and it
was found that compared with traditional microsome incubation testing, the fitting results
of the PBPK model combined with the Bio-PK dynamic metabolism system were closer
to the true disposal situation of drugs in vivo [21,25]. However, the applicability of the
Bio-PK dynamic system in other metabolic pathways (such as phase II metabolism) and
the DDI study still need to be further explored.

In addition to in vitro methods, in silico methods have also been developed in re-
cent years, such as the construction of models based on QSAR to predict the biological
activities of candidate compounds, for rapid preliminary screening in the process of drug
development [26,27]. Since the 1990s, with the rapid development of bioinformatics and
computer technology, more and more in silico approaches have been applied during the
various processes of new drug development, including target prediction, ADME screening,
structural design and structural optimization [28–31]. However, due to limited data records
and resources, deep learning was difficult to implement and few global QSAR models were
built, which impeded the extensive popularization and application of these models [32].
For example, Pirovano et al. built QSAR models using a linear model for metabolic CL pre-
diction based on no more than 250 compounds (hepatocytes: 118 compounds, microsomes:
115 compounds) [33].

In order to improve the efficiency of the early screening of new drugs and to increase
the benefit–risk ratio of drug research and development, we first tried to build global
QSAR models of CLint using a variety of computer learning methods based on a large
number of collected CLint records (8195). At the same time, the Bio-PK equipment was
further improved by installing a dialysis syringe pump device to facilitate the real-time
quantitative detection of compounds in the hydrogel. In addition, the improved Bio-PK
system was first applied to predict the metabolism and DDI of AZT and FCZ mediated by
the UGT enzyme in humans.
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2. Materials and Methods
2.1. Construction of CLint QSAR Model
2.1.1. Data Collection and Processing

In all, 8195 CLint records were collected from the literature (2000–2018) and databases
such as ChEMBL http://www.ebi.ac.uk/chembl/, accessed on 17 October 2019) and
DrugBank (http://redpoll.pharmacy.ualberta.ca/drugbank/, accessed on 17 October 2019)
to form the initial data set [27,34–37]. The unit of CLint was unified as “µL/min/mg”.
The data were processed as follows. If the collected CLint was a range value, its average
value was calculated as the input value. The repeated records were carefully checked and
removed according to the molecular name, structure code and characteristics of the drug,
and a more reliable CLint value was retained.

2.1.2. QSAR Model Construction

First, the compound code set was converted into a structure set in sdf format through
Open Babel (v.2.4.1) [38]. Second, a descriptor set containing 855 descriptors was con-
structed based on the compound structure set using the software PaDEL-Descriptor
(v.2.21) [39]. Moreover, in order to further simplify the QSAR model, the descriptors
were selected according to the relevance and importance of the features to the CLint. The
60 best features were selected using mutual information for the following model construc-
tion. Moreover, some excessive CLint values were excluded and CLint records in the range
of 0.01–1000 µL/min/mg were selected. Finally, a data set including 7882 CLint records
was established (see Supplementary Table S1).

The data set was divided into a training set and a test set according to a ratio of
8:2. A novel concept of classification regression model was proposed during the model
construction: the training set was further divided into three groups depending on the
CLint values and the range of each group was 0–10, 10–100, and 100–1000 µL/min/mg.
First, a hierarchical classification model was built to predict which group the compound
belonged to using a boosting tree (BT) algorithm [40]. Then, classification regression
models were constructed to predict CLint for compounds in each group using four machine
learning techniques such as random forest (RF), adaptive boosting (ADA), xgboost (XG)
and lightgbm (LGB) [41–44]. Moreover, average predicted values of the four models were
calculated to build an average classification consensus model [45,46].

2.1.3. QSAR Model Evaluation

A fivefold cross-validation was applied to calibrate the training set. Four parameters
such as R2, correlation coefficient (r), mean absolute error (MAE) and root mean square
error (RMSE) were calculated to evaluate the comprehensive performance of the models.
R2 and r represent the goodness of fit. MAE and RMSE are used to evaluate the prediction
errors. The lower the values of MAE and RMSE, and the closer R2 and r are to 1, the better
the comprehensive performance of the model. The calculation formulae are as follows:

R2 = 1− ∑i(xi − yi)
2

∑i (xi − x)2 (1)

r = ∑N
1 (xi − x)(yi − y)√

∑N
1 (xi − x)2 ∑N

1 (yi − y)2
(2)

MAE =
∑N

1 |xi − yi|
N

(3)

RMSE =

√
∑N

1 (xi − yi)
2

N
(4)

http://www.ebi.ac.uk/chembl/
http://redpoll.pharmacy.ualberta.ca/drugbank/
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where xi and yi are the observation concentration and the prediction concentration, respec-
tively; x and y are the average of the observation and prediction values, respectively; N is
the number of data points.

2.2. Bio-PK Metabolic System
2.2.1. Standards and Reagents

Uridine 5′-diphosphoglucuronic acid trisodium salt (UDPGA Na), Tris buffer (PH = 7.5)
and human liver microsomes (HLM) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). AZT, FCZ, azidothymidine-glucuronide (AZTG), PBS buffer and potassium hydrox-
ide were purchased from Melone Pharmaceutical Co., Ltd. (Dalian, China). Alamethicin,
bovine serum albumin (BSA) and magnesium chloride were purchased from J&K Scientific
Ltd. (Beijing, China). Perchloric acid (HCLO4) was purchased from the hazardous com-
pound platform of Fudan University. Distilled and deionized water was purified from Milli-
Q water system (Millipore, Molsheim, France). Other reagents were of analytical grade.

2.2.2. Preparation of Human Liver Microsome-Hydrogel (HLM-Gel) System

The synthesis of microsomal hydrogel was as previously described [20,21]. Due to
the thermosensitive property of the hydrogel, HLM-Gel was prepared by immersing the
hydrogel in the HLM solution at 4 ◦C.

2.2.3. HPLC Analysis Method

The HPLC analysis was performed on an Agilent 1260 infinity (G7117C, Agilent, 5301
Stevens Greek Blvd., Santa Clara, CA, USA) coupled to a UV/Vis detector. The detection
wavelength was 267 nm. A ZORBAX Eclipse XDB-C18 column (2.1 × 150 mm; 5 µm)
(Agilent, Santa Clara, CA, USA) was used for separation with a flow rate at 1 mL/min,
and the injection volume was set to 10 µL. The column temperature was kept at 25 ◦C.
The mobile phases comprised (A) 0.2% acetic acid in 100% water and (B) acetonitrile.
Elution was carried out by the gradient method as follows: 5% B kept for 2.0 min, followed
by a linear increase to 20% B during 1.5 min and maintained at 20% B for 2.0 min, then
linearly decreased to 5% B in 0.5 min and maintained for 1 min. The intra-day precision
and accuracy were assessed by testing the QC (quality control) samples (AZT: 15, 400 and
1500 µM; AZTG: 1.5, 25 and 150 µM; FCZ: 75, 1500 and 8000 µM) each day, and the inter-day
precision and accuracy were estimated by analyzing the QC samples over three consecutive
days. Five samples were determined in each concentration level. The requirements were as
follows: the coefficient of variation (CV%) should not exceed 15%, and the relative error
(RE%) should be within 85–115%.

2.2.4. Microsomal Incubation Assay

An incubation mixture containing 40 mM MgCl2, 250 µg/mL alamethicin and Tris
buffer was kept in ice for 30 min with HLM or HLM-Gel to activate the microsomes. The
total volume of the incubation system was 300 µL. Then, 20% BSA and AZT were added to
the activated microsomes in a 37 ◦C shaking water bath for 5 min. After pre-incubation,
UDPGA (5 mM) was added in the incubation mixture to start the reaction. Next, 75%
HCLO4 was added to terminate the reaction. After vortexing, the reaction solution was
centrifuged (13,300 r/min × 10 min) and the supernatant was transferred to the Eppendorf
tube. KOH (4 M) was added to adjust the pH. After centrifugation at the same speed for
5 min, the supernatant was aspirated for HPLC analysis. Moreover, in order to investigate
the influence of incubation time, the reaction was terminated by adding 75% HCLO4 at
30 min, 1 h, 2 h, 4 h, 8 h, 12 h, 24 h and 48 h, respectively. According the incubation results,
the incubation time was set to 1 and 8 h for HLM and HLM-Gel, respectively, and the final
concentration of AZT in the microsomal metabolic reaction was set to 50, 100, 250, 400, 600,
800, 1000 and 2000 µM.
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2.2.5. Bio-PK Metabolic System Construction

The novel Bio-PK metabolic system was composed of a peristaltic pump, a dialy-
sis pump, an incubation chamber, a thermostatic metal bath and a recirculation pipeline
(Figure 1). The incubation system was added in the incubation chamber, in which the
metabolic incubation process took place. The peristaltic pump enabled the incubation
system to achieve dynamic circulation. Microdialysis technology using the dialysis pump
was conducive to the quantitative sampling of drug concentration in the HLM-Gel. A ther-
mostatic metal bath kept the incubation mixture at 37 ◦C. Recirculation piping connected
the various components.
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2.2.6. Metabolism of AZT in the Bio-PK Metabolic System

The metabolism of AZT in the Bio-PK system at final concentrations of 500, 1000 and
2500 µM was investigated, respectively. The concentration of the reagents in the incubation
system was the same as that in the “Microsomal Incubation Assay”, while the capacity was
magnified. The total volume of the Bio-PK incubation system and HLM-Gel was 2000 and
200 µL, respectively. After the Bio-PK metabolic system construction, the perfusion rate
was set to 1.6 µL/min, and the peristaltic pump was turned on at speed of 10 mL/min.
The circulating reaction solution and dialysate were collected at 0, 0.5, 1, 1.5, 2, 3, 4, 6 and
8 h, respectively. The circulating solution sample and the dialysate were taken for HPLC
analysis after pretreatment.

According to the amount change of the substrate AZT and the metabolite AZTG
over time in the circulating system and the hydrogel, a mathematical model was estab-
lished by MATLAB (MathWorks, Inc., Natick, MA, USA) to obtain CLint via fitting the
metabolism and cyclic dynamic processes of the compounds in the system. The mathemat-
ical formulae are shown below. The determinations of microdialysis recovery, diffusion
coefficient and free fraction (f u) are introduced in Supplementary Table S2, Figure S1 and
Table S3, respectively.

dCm(t)Vm

dt
= D

(
Cg(t)− fmCm(t)

)
+ (1− γ)QCm(t− τ1)− γQCu(t)−QCm(t)
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dCg(t)Vg
dt = −D

(
Cg(t)− fmCm(t)

)
+ γQCm(t− τ1)− CLgCg(t)− γQCu(t− τ2)

Cu(t) = Cg(t + τ2)− CLgCg(t + τ2)τ2/Vg

AMTB(t)
dt

= CLgCg(t)

Vm and Vg are the volume of circulating fluid and hydrogel, respectively; Cm, Cg and
Cu are the concentration of the substrate in the circulating fluid, the concentration of the
substrate in the hydrogel and the concentration of the substrate flowing out of the hydrogel,
respectively; AMTB is the amount of metabolites produced; Q is the flow rate of circulating
perfusion; D is the diffusion coefficient; fm is the free fraction; CLg is the clearance rate of
the substrate in the hydrogel; γ is the part of the substrate passing through the hydrogel
from the port of the pipeline; τ1 and τ2 are the time taken for the circulation of the substrate
and the time the substrate has passed in the hydrogel, respectively.

2.2.7. Interaction of AZT and FCZ in the Bio-PK Metabolic System

Based on the establishment of AZT metabolism in the Bio-PK system, the inhibitor
FCZ was added in the Bio-PK system to investigate the interaction of AZT and FCZ. The
inhibitory effect of FCZ at three concentration levels of 500, 1000 and 2500 µM on AZT
(500 µM) was investigated, respectively, in the Bio-PK system. The incubation method was
the same as that in the “Metabolism of AZT in the Bio-PK Metabolic System”.

Similarly, according to the amount change of AZT, AZTG and FCZ over time in the
circulating system and the hydrogel, a mathematical model was established by MATLAB
to obtain Ki by fitting the metabolism, inhibition and cyclic dynamic processes of the
compounds in the system. The mathematical formulae are as shown below:

dCm(t)Vm

dt
= D

(
Cg(t)− fmCm(t)

)
+ (1− γ)QCm(t− τ1)− γQCu(t)−QCm(t)

dCg(t)Vg
dt = −D

(
Cg(t)− fmCm(t)

)
+ γQCm(t− τ1)−

CLg
1+Cig(t)/Ki Cg(t)− γQCu(t− τ2)

Cu(t) = Cg(t + τ2)−
CLg

1 + Cig(t)/Ki
Cg(t + τ2)τ2/Vg

AMTB(t)
dt

=
CLg

1 + Cig(t)/Ki
Cg(t)

dCim(t)Vm

dt
= Di

(
Cig(t)− fmCim(t)

)
+ (1− γi)QCim(t− τ1)− γiQCiu(t)−QCim(t)

dCig(t)Vg

dt
= −Di

(
Cig(t)− fmCim(t)

)
+ γiQCim(t− τ1)− CLigCig(t)− γQCiu(t− τ2)

Ciu(t) = Cig(t + τ2)− CLigCig(t + τ2)τ2/Vg

Aim(0)− Aim(t)− Aig(t)
dt

= CLigCig(t).

Cim and Cig represent the concentration of the inhibitor in the circulating fluid and hydrogel,
respectively; Ciu, the concentration of the inhibitor flowing out of the hydrogel; Aim and
Aig, the amount of the inhibitor in the circulating fluid and in the hydrogel; Di, the diffusion
coefficient of the inhibitor; CLig, the clearance rate of the inhibitor in the hydrogel; γi, the
part of the inhibitor that passes through the hydrogel from the port of the pipeline; the
others are the same as those in metabolism of AZT in the Bio-PK metabolic system.

2.2.8. PBPK Model Construction

PBPK models were constructed with physical chemistry and ADME parameters, using
Simcyp (Simcyp Version 16, Sheffield, UK). Healthy humans were chosen as simulation
objects. The physiological conditions and parameters we applied were the default pa-
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rameters of the healthy humans in the software of Simcyp. The input CLint and Ki were
obtained from the experiments described above. The other features parameterized in PBPK
models were collected from the literature and databases and tabulated in Supplementary
Table S4. First, the AZT metabolic model was constructed, and the simulated PK results
of AZT in humans after a single oral administration of 200 mg were evaluated. Secondly,
the PBPK model of FCZ was further constructed. And then, the FCZ model was verified
and optimized through the PK data of FCZ in human following oral administration at 50,
100, 150 and 200 mg reported from literature. Finally, in order to simulate the DDI process
between AZT and FCZ in the human body, the FCZ model was integrated into the AZT
metabolic model by introducing Ki.

In order to verify the prediction accuracy of PBPK models, predicted PK parameters
(AUC, peak plasma concentration (Cmax) and time to reach Cmax (Tmax)) were compared
with the observed ones, and fold error was calculated to measure the deviation. The fold
error is the ratio between the predicted PK parameters and the corresponding observed
one. It is currently believed that the simulation is acceptable if the fold error is less than the
threshold of 2. The equations for calculating fold error are shown below.

fold error = Observed parameter
Predicted parameter ; if observed > predicted

fold error = Predicted parameter
Observed parameter ; if predicted > observed

3. Results
3.1. QSAR Model of CLint

The data distribution of CLint was analyzed and the results are shown in Figure 2.
The predicted results of the models are shown in Table 1. The results showed that, com-
pared with other models, the overall performance of the consensus model was better
with lower MAE and RMSE (MAE: 33.52 vs. 32.95–37.28 µL/min/mg, RMSE: 83.59 vs.
84.28–88.70 µL/min/mg) and larger R2 and r (R2: 0.50 vs. 0.44–0.50, r: 0.71 vs. 0.68–0.71).
The comparison between the observed CLint and the predicted CLint is shown in Supple-
mentary Figure S2.
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Table 1. Performance of classification regression models of CLint.

Data Metric RF ADA XG LGB Consensus
(Average)

5-CV

MAE
(µL/min/mg) 35.48 32.87 35.31 36.27 33.32

RMSE
(µL/min/mg) 77.41 83.92 77.08 76.58 75.88

R2 0.56 0.48 0.56 0.57 0.58
r 0.75 0.71 0.75 0.76 0.76

Test

MAE
(µL/min/mg) 35.16 32.95 35.84 37.28 33.52

RMSE
(µL/min/mg) 84.28 88.70 84.66 86.72 83.59

R2 0.50 0.44 0.49 0.47 0.50
r 0.71 0.68 0.70 0.69 0.71

3.2. HPLC Method Validation

A representative chromatogram of the LLOQ (the lower limit of quantification) sample,
obtained via spiking AZT, AZTG and FCZ in microsomes, is shown in Figure 3. The
retention times of AZT, AZTG and FCZ were 4.37, 3.83 and 5.15 min, respectively. The
calibration curves were plotted as the response versus the analyte concentration. The
calibration curves of eight points were found to be linear over the concentration range
of 10–2000 µM of AZT, 1–200 µM of AZTG and 50–10,000 µM of FCZ in Table 2. The
correlation coefficients were greater than 0.99 for all curves. For within- and between-day
precisions, CV% values calculated for all the tested levels (n = 5) did not exceed 15%. For
within- and between-day accuracies, the value of RE% ranged from 85% to 115%. The
results indicate that this method performs with adequate reliability and reproducibility
within the analytical range.
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Table 2. Method validation parameters of AZT, AZTG and FCZ.

Parameters AZT AZTG FCZ

Linearity equation
(n = 8 points) y = 5.1548x + 21.2189 y = 5.2534x + 3.3663 y = 0.1899x + 4.5826

Correlation coefficient 0.999 1 1
LLOQ (µM) 10 1 50

Intra-day precision
(%) * (n = 5) 5 ± 2 7.3 ± 1.5 5.6 ± 1.3

Inter-day precision
(%) * (n = 5) 9.5 ± 3.6 6.8 ± 2.6 3.9 ± 1.9

Intra-day accuracy
(%) * (n = 5) 104 ± 2 98 ± 1 100.8 ± 2.5

Inter-day accuracy
(%) * (n = 5) 104 ± 1 99.5 ± 2.2 100.6 ± 0.1

* Mean ± SD.

3.3. Incubation Time of HLM-Gel System

The metabolism of AZT within 48 h after the microsomes encapsulated in the hydrogel
is shown in Figure 4. The results indicated that there was a delay in metabolism after
the microsomes were encapsulated in the hydrogel. The amount of the produced AZTG
basically reached equilibrium within 48 h in the traditional HLM experiment, while it still
showed a slight upward trend in the HLM-Gel experiment. This indicates that it takes a
certain period of time for the drugs to diffuse into the hydrogel, before they contact with
the microsomes to undergo the metabolic reaction in the HLM-Gel system. Moreover,
the microsomes encapsulated by the hydrogel may retain their activity for a longer time.
Therefore, the incubation time of the HLM-Gel experiment should be prolonged compared
with that of the traditional HLM experiments. As shown in Figure 4, the formation of
AZTG increased linearly within 0.5–8 h in a traditional HLM experiment, while it increased
linearly within 24 h in the HLM-Gel experiment. The reaction times of HLM experiments
and HLM-Gel incubation experiments were set to 1 and 8 h, respectively.
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3.4. Metabolism via HLM and HLM-Gel

The kinetic profiles of the formation of AZTG via HLM and HLM-Gel followed
Michaelis–Menten kinetics as shown in Figure 5. The Vmax, Km and CLint are listed in
Table 3. The results showed that the in vitro metabolic parameters obtained by the tradi-
tional HLM experiment were within the range of the parameters reported in the literature
(8.1, which is within 0.38–12.81 µL/min/mg protein, see Supplementary Table S5), indi-
cating that the HLM incubation system and the experimental operations were reasonable.
Compared with the HLM experiment, the CLint value obtained through the HLM-Gel
experiment dropped by nearly four times (8.1 vs. 1.52 µL/min/mg protein). Therefore, it is
considered unreasonable to directly fit the kinetic data from the HLM-Gel experiment using
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the traditional Michaelis–Menten equations to obtain CLint, without considering the influ-
ence of diffusion. This was also consistent with the results of the previous studies [20,21].
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Table 3. In vitro metabolism parameters from HLM and HLM-Gel.

Experimentation Km (µM) Vmax (pmol/min/mg
Microsomal Protein)

CLint (µL/min/mg
Protein)

HLM 536 4287 8.1
HLM-Gel 686 1045 1.52

3.5. Bio-PK Metabolic System

The metabolism of AZT in the Bio-PK system at three concentration levels (500 µM,
1 mM and 2.5 mM) was investigated, and the CLg was fitted using the MATLAB math-
ematical model. The fitting curves are shown in Figures 6–8. The CLg was divided by
the protein concentration of the microsomes to obtain the CLint values, which were 29,
25 and 21 µL/min/mg at 500 µM, 1 mM and 2.5 mM, respectively. The average value
was calculated (25 µL/min/mg) and applied as the input value in the PBPK models. In
addition, the non-metabolic loss rate of AZT in the system was also estimated based on
changes in the amount of AZT and AZTG over time. The results are shown in Table 4. The
recovery rates were above 85%, indicating that the non-metabolic loss of AZT in the Bio-PK
system was acceptable and reliable.

Table 4. Recovery rates of AZT in Bio-PK system.

Time (min) 500 µM 1000 µM 2500 µM

30 100.07% 101.32% 103.26%
60 99.78% 98.09% 100.84%
90 99.14% 97.39% 98.16%

120 98.02% 96.38% 94.81%
180 97.64% 96.52% 94.66%
240 96.49% 96.85% 92.90%
360 95.57% 97.98% 93.24%
480 97.15% 98.73% 92.48%
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3.6. Interaction Study of AZT and FCZ

The inhibitory effects of FCZ at three concentrations (500 µM, 1 mM and 2 mM) on the
metabolism of AZT (500 µM) were studied in the Bio-PK system. The inhibition was fitted
by MATLAB via mathematical modeling, and the fitting results are shown in Figures 9–11.
The simulated Ki values were 13.54, 16.9 and 11.46 µM at the FCZ concentration of 500 µM,
1 mM and 2 mM, respectively, and the average value (13.97 µM) was calculated as the
input value of the PBPK model. Similarly, the non-metabolic loss rates of AZT and FCZ in
the system were estimated based on the changes in the amount of AZT, AZTG and FCZ
over time. The results are shown in Table 5. The recovery ranged from 89.99% to 105.58%,
indicating that the system was reliable.

Table 5. Recovery rates of AZT and FCZ in Bio-PK system.

Time
(min)

AZT FCZ
500-1 500-2 500-3 500 1000 2000

30 101.61% 105.58% 101.46% 96.37% 98.05% 100.35%
60 100.8% 103.56% 101.36% 96.38% 97.5% 100.17%
90 99.54% 99.63% 99.97% 94.02% 95.38% 97%
120 97.32% 98.21% 98% 91.84% 94.69% 95.74%
180 96.35% 95.80% 95.26% 89.99% 93.82% 91.51%
240 95.01% 93.92% 93.51% 91.42% 94.87% 94.38%
360 94.28% 93.92% 93.1% 91.43% 92.85% 92.37%
480 94.82% 92.74% 92.86% 93.48% 94.96% 91.79%



Pharmaceutics 2021, 13, 1734 13 of 22

Pharmaceutics 2021, 13, x FOR PEER REVIEW 12 of 22 
 

 

Table 4. Recovery rates of AZT in Bio-PK system. 

Time (min) 500 μM 1000 μM 2500 μM 
30 100.07% 101.32% 103.26% 
60 99.78% 98.09% 100.84% 
90 99.14% 97.39% 98.16% 

120 98.02% 96.38% 94.81% 
180 97.64% 96.52% 94.66% 
240 96.49% 96.85% 92.90% 
360 95.57% 97.98% 93.24% 
480 97.15% 98.73% 92.48% 

3.6. Interaction Study of AZT and FCZ 
The inhibitory effects of FCZ at three concentrations (500 µM, 1 mM and 2 mM) on 

the metabolism of AZT (500 µM) were studied in the Bio-PK system. The inhibition was 
fitted by MATLAB via mathematical modeling, and the fitting results are shown in Fig-
ures 9–11. The simulated Ki values were 13.54, 16.9 and 11.46 µM at the FCZ concentration 
of 500 µM, 1 mM and 2 mM, respectively, and the average value (13.97 µM) was calculated 
as the input value of the PBPK model. Similarly, the non-metabolic loss rates of AZT and 
FCZ in the system were estimated based on the changes in the amount of AZT, AZTG and 
FCZ over time. The results are shown in Table 5. The recovery ranged from 89.99% to 
105.58%, indicating that the system was reliable. 

 
Figure 9. The simulated amount–time curve of AZT and FCZ in circulating mixture (A), hydrogel (B) and the simulated 
amount–time curve of AZTG (C) produced in the system at 500 µM of AZT and FCZ. Dots (n = 3): experimental data from 
the Bio-PK system. 

Figure 9. The simulated amount–time curve of AZT and FCZ in circulating mixture (A), hydrogel (B) and the simulated
amount–time curve of AZTG (C) produced in the system at 500 µM of AZT and FCZ. Dots (n = 3): experimental data from
the Bio-PK system.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 10. The simulated amount–time curve of AZT and FCZ in circulating mixture (A), hydrogel (B) and the simulated 
amount–time curve of AZTG (C) produced in the system at 500 µM of AZT and 1 mM of FCZ. Dots (n = 3): experimental 
data from the Bio-PK system. 

 
Figure 11. The simulated amount–time curve of AZT and FCZ in circulating mixture (A), hydrogel (B) and the simulated 
amount–time curve of AZTG (C) produced in the system at 500 µM of AZT and 2 mM of FCZ. Dots (n = 3): experimental 
data from the Bio-PK system. 

Figure 10. The simulated amount–time curve of AZT and FCZ in circulating mixture (A), hydrogel (B) and the simulated
amount–time curve of AZTG (C) produced in the system at 500 µM of AZT and 1 mM of FCZ. Dots (n = 3): experimental
data from the Bio-PK system.
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3.7. Prediction of PK and Interaction Results from PBPK Models

PBPK models were constructed in healthy humans after a single administration of AZT
and FCZ, and the prediction accuracy of the PBPK models is shown in Tables 6 and 7. The
comparison between the predicted plasma concentration–time curves of AZT and FCZ and
the corresponding observed plasma concentration points are illustrated in Figures 12 and 13.
The PBPK model parameterized with the largest reported CLint value (12.8 µL/min/mg)
obtained from the traditional microsomal incubation experiment was constructed, and the
predicted PK parameters (AUC, Cmax, Tmax and CL) were 2570.08 µg·h/L, 1163.65 µg/L,
0.63 h and 84.33 L/h, respectively. The fold errors of AUC and CL were more than
2, indicating the underestimation of the clearance of the traditional microsomal testing.
However, for the PBPK model using the average CLint (25 µL/min/mg) obtained from
the Bio-system, the predicted CL was increased to 143.26 L/h and the predicted AUC was
decreased to 1529.21 µg·h/L. Meanwhile, the fold errors of the predicted PK parameters of
the PBPK model combined with the Bio-PK system were all within 2.
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Table 6. Prediction results of AZT PBPK model.

AZT (200 mg) AUC
(µg·h/L) Cmax (µg/L) Tmax (h) CL (L/h)

Observed [47,48]
1020 ± 390 1042 ± 632 0.8 ± 0.3 194 ± 53
1078 ± 257 1093 ± 679 0.6 ± 0.2 183 ± 53

Traditional
incubation

Predicted 1 [12] 2570.08 1163.65 0.63 84.33 ± 36.88
Fold
error

2.52 1.12 1.26 2.30
2.38 1.06 1.10 2.17

Predicted 2 3501 1374.73 0.65 61.96 ± 25.23
Fold
error

3.43 1.32 1.24 3.13
3.25 1.26 1.13 2.95

Bio-system
Predicted 1529.21 833.94 0.6 143.26 ± 67.98

Fold
error

1.5 1.25 1.33 1.36
1.42 1.31 1.04 1.27

Predicted 1 using the max reported CLint of 12.8 µL/min/mg, predicted 2 using our experimental CLint of 8.0 µL/min/mg.

Table 7. Prediction results of FCZ PBPK model.

FCZ AUC (µg·h/L) Cmax (µg/L) Tmax (h)

Observation 1 [49] (50 mg) 39,810 ± 6460 930 ± 130 2.5
Prediction 1

(50 mg) 45,424.77 1010.38 2.41

Fold error 1.14 1.09 1.04
Observation 2 [50] (100 mg) 99,300 2080 2

Prediction 2
(100 mg) 90,849.33 2020.77 2.41

Fold error 1.09 1.03 1.21
Observation 3 [49] (150 mg) 114,150 ± 19,730 2690 ± 430 2.5

Prediction 3
(150 mg) 136,273.8 3031.14 2.41

Fold error 1.19 1.13 1.04
Observation 4 [51] (200 mg) 207,000 ± 55,700 3580 ± 140 3.2 ± 0.8

Prediction 4
(200 mg) 181,698.11 4041.49 2.41

Fold error 1.14 1.13 1.32
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Figure 13. Comparison of the observed plasma concentration–time data with the simulated plasma
concentration–time profile of FCZ PBPK model at different doses: prediction 1 at 50 mg, prediction 2
at 100 mg, prediction 3 at 150 mg, prediction 4 at 200 mg.

As shown in Table 7, the fold errors predicted by the FCZ PBPK models at different
doses were all less than 2, and the measured FCZ plasma concentration points were
close to the predicted PK curve (Figure 13), indicating the reliability of FCZ modeling.
The PBPK model of FCZ was further merged into the AZT model by introducing the Ki,
obtained from the Bio-PK system, to predict the effect of co-administration of FCZ on the
PK of AZT in healthy people. The prediction results are shown in Table 8 and Figure 14.
The predicted AUC, Cmax and Tmax were 2809.52 µg·h/L, 1101.02 µg/L and 0.60 h, and
the corresponding predicted PK parameter ratios were 1.84, 1.32 and 1.00, respectively.
Meanwhile, the fold errors were all within 2. Moreover, as shown in Figure 14, the predicted
PK parameter ratios of the PBPK model parametrized with the Bio-PK system were closer
to the observed ratios than those of the PBPK model constructed using Ki (145 µM) [12]
from traditional microsomal testing, especially AUC ratio and Cmax ratio (fold error: 1.05
vs. 1.75, 1.36 vs. 1.73), indicating better simulation accuracy of AZT and FCZ interaction
using Bio-PK system.

Table 8. Prediction results of PBPK model of AZT in the presence of FCZ.

Parameters AUC (µg·h/L) Cmax (µg/L) Tmax (h)

AZT alone 1020 ± 390 1042 ± 632 0.8 ± 0.3
AZT + FCZ 1965 ± 838 1864 ± 958 0.8 ± 0.3

Ratio 1.93 1.79 0.94
Predicted (AZT alone) 2570.08 1163.65 0.63

Fold error 2.52 1.12 1.26
Predicted(AZT + FCZ) 2812.57 1203.61 0.63

Fold error 1.43 1.55 1.19
Ratio 1.09 1.03 1

Fold error 1.76 1.73 1.06
Predicted(AZT alone) 1529.21 833.94 0.6

Fold error 1.5 1.25 1.33
Predicted (AZT + FCZ) 2809.52 1101.02 0.6

Fold error 1.43 1.69 1.25
Ratio 1.84 1.32 1

Fold error 1.05 1.36 1.06
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4. Discussion

As shown in Figure 2, the distribution of CLint was extremely uneven. Most com-
pounds were distributed in the lower CLint range (<50 µL/min/mg). The higher the CLint
value, the lower the number of compounds was. Meanwhile, the extreme bias of the data
distribution would lead to deviations in the model prediction results. We proposed the
concept of a classification regression model, trying to balance the distribution in each group
and hoping to reduce the prediction error caused by this data distribution bias. In addition,
since the standard error (RMSE) or MAE was not as sensitive to large variations of data
as r or R2, attaching importance to the standard error (RMSE) or MAE was more suitable
when evaluating the models [52]. The results showed (Table 1) that, due to the wide range
of the CLint values (0.01–1000 µL/min/mg), both MAE and RMSE were relatively large
(MAE: 32.95–37.28 µL/min/mg, RMSE: 83.59–88.7 µL/min/mg). Interestingly, ranking
QSAR models according to RMSE and MAE gave the same result as ranking them over
r or R2, i.e., the overall performance of the consensus model was better, which may be
caused by the more even distribution of data from the classification regression models.
Moreover, compared with previous models reported in the literature, for example, the
CLint QSAR model constructed by Ekins [53] with an R2 of 0.34, and the model constructed
by Aliagas et al. [34] with an R2 of 0.25–0.45, the goodness of fit of our CLint model was
slightly improved (R2 = 0.58). While as shown in Figure S2, there were significantly more
prediction points in the area below the correlation line than in the area above it, especially
in the larger CLint range (>400 µL/min/mg), indicating that the impact of the uneven
distribution of CLint on the prediction accuracy still existed. Therefore, it is believed that
the extreme lower value skewed distribution and wide range of the CLint are the main
reasons for the prediction error of the models. Moreover, although we had collected as
much data as possible, deep learning was still difficult to implement. This limitation has
plagued the construction of models for almost all biological activity features. These all pose
challenges for future model optimization. In the follow-up research, it may be possible to
further refine the data processing including data noise reduction and the group dividing.

Therefore, in vitro metabolism experiments are still indispensable in the preclinical PK
research of new drugs. Microsomes are subcellular components prepared by differential
centrifugation in organs such as the liver, intestines and kidneys. They are a part of the
endoplasmic reticulum of organelles, which express a variety of proteins. Moreover, liver
microsomes include complete phase I metabolic enzymes. It can reflect drug metabolism in
humans. Currently, many microsomal metabolism models have been widely used in drug
in vitro PK studies [11–19]. However, although the microsome experiment greatly simpli-
fies the metabolism experiment, microsomes still possess some limitations and deficiencies,
such as the lack of microenvironment, the inability to truly simulate the 3D environment in
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the body, the non-continuous incubation time and the static incubation method. Due to
some drawbacks of the in vitro experiments, the CLint of many compounds, such as AZT,
was underestimated [10]. It was reported that many adjustments and improvements had
been made to the traditional in vitro metabolism experiments of AZT, such as adjusting
the composition of the buffer solution, changing pH, adding BSA and so on, to increase
the predicted CLint value (Table S5). As shown in Table 6, the maximum value of the
CLint value from the traditional microsomal incubation metabolism experiments reported
in the literature was parametrized for PBPK modeling, while the prediction results still
underestimated the metabolism of AZT in vivo with fold errors of CL and AUC both
greater than 2.

In order to more truly reflect the dynamic metabolic process of compounds in the body,
a circulation device, the Bio-PK metabolic system, simulating the microfluidic environment
in the body was proposed in our lab [20,21,23]. The Bio-PK system improved the limitations
of HLM to a certain extent. The microsomes were encapsulated by hydrogel, the incubation
took place in a 3D-EP tube, the co-incubation time was extended and a circulation device
was introduced to simulate the dynamic circulation in the body. In this study, the Bio-
PK equipment was further improved based on previous research results and a dialysis
syringe pump device was added to the original equipment to facilitate real-time drug
detection. The feasibility of the improved Bio-PK system for use in analyzing the UGT
metabolic pathway of AZT and the interaction of AZT and FCZ was explored. However,
the simulated quantity–time curves in Figures 6, 7 and 8C did not completely match the
experimental values. The simulated metabolism results of AZT in the Bio-PK system within
200 min were consistent with the experimental values, while the predicted production of
AZTG within 200–500 min was higher than the experimental data. Similarly, it was found
that at a concentration of 2.5 mM, the final amount of metabolites produced in the “Bio-PK”
system did not increase significantly compared to the 1 mM concentration of AZT. It is
believed that this may be because AZT has completed diffusion and entered the HLM-Gel
to reach a stable concentration at 200 min, the microsomal metabolism of AZT in the Bio-PK
system may be saturated at 200–500 min, leading to the smaller experimental data. At
the same time, the hydrogel may affect the penetration and activation of alamethicin in
the microsomes, which can cause a low number of activated microsomes and metabolic
saturation. Similarly, the experimental amount of AZTG produced within 200 min was
larger than the predicted value (Figures 9, 10 and 11C), this may also be because the
inhibitor FCZ needed to diffuse into the hydrogel to play an inhibitory role. After the
diffusion of FCZ into the hydrogel to reach a stable concentration, the simulated values
were in good agreement with the experimental data within 200–500 min.

As shown in Figures 6–8, AZT in the circulation fluid first diffused into the hydrogel
and then was metabolized by the microsomes coated in the hydrogel, that is, the amount
of AZT in the circulation fluid rapidly dropped to reach equilibrium and then reduced
through metabolism. After metabolism, the remaining AZT and the produced AZTG
diffused from the hydrogel into the circulating fluid and circulated in the system through
the peristaltic pump. Compared with traditional microsome testing, AZT circulated to
reach a stable concentration during the incubation process in the Bio-PK system, so as
to realize the continuous supply of AZT to the microsomes. Moreover, in this study,
CLg was defined as how much volume of hydrogel (µL) containing AZT was completely
metabolically eliminated within a unit time (per minute). Since the concentration of AZT
in the hydrogel were stable and constant after diffusion, the change in the amount of AZT
in the Bio-PK system per minute was constant; that is, AZT was metabolized linearly in
the hydrogel (Figures 6, 7 and 8C). Meanwhile, the results indicated that the CL value
predicted by the PBPK model, parameterized with the CLint from the Bio-PK system, was
close to the actual CL value in vivo with a fold error less than 2 (Table 6). Moreover, the
fold errors of other PK parameters were all less than 2, and the observed concentration
points were close to the predicted plasma concentration–time curve (Figure 12), indicating
the rationality of the construction of the PBPK model.
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Since FCZ is rarely metabolized by microsomes, the amount change of FCZ over time
in the hydrogel is mainly affected by diffusion [49]. Similarly, AZT and FCZ circulated
between the HLM-Gel and circulation fluid through diffusion and peristaltic pumps, thus,
increasing the co-incubation time of AZT, FCZ with microsomes (Figures 9–11). Therefore,
compared with the traditional microsome testing, the Bio-PK system is more suitable for
the exploration of slow metabolism and time-dependent DDI in theory. Meanwhile, the
results showed that compared with the traditional microsomal incubation testing, the
predicted AUC ratio and Cmax ratio of the PBPK model, parametrized with Ki from the
Bio-PK system were increased and closer to the in vivo level (Table 8). The fold errors of
the PK parameters were less than 2, indicating the rationality of the PBPK modeling. These
results all indicate that the Bio-PK system solves the limitations of traditional microsomal
incubation metabolism to a certain extent and may provide a new method and idea for the
optimization of in vitro metabolism and DDI methods.

However, the application of the Bio-PK metabolic system is still currently limited
to drugs that are mainly metabolized in the liver. For drugs that are mainly eliminated
via the metabolism in the gastrointestinal tract and other tissues, the system needs to be
further optimized and verified. Similarly, for compounds with complex drug elimination
characteristics, such as transporter-mediated excretion, the application of Bio-PK metabolic
system and PBPK model needs to be further studied.

5. Conclusions

In summary, we established an HPLC method for the simultaneous determination of
AZT, AZTG and FCZ, and the HPLC method was successfully applied to the DDI study
between AZT and FCZ. It was validated that the HPLC method met the requirements of
biological sample analysis and the analytical range of the compounds in DDI study were all
within the linear range of the method. Moreover, QSAR models of CLint were successfully
constructed based on 7882 records collected from different literature and databases. The
fitting correlation was slightly improved compared with that of previous models. However,
due to the complexity of the metabolic pathways in the body, the extreme imbalance
and extensiveness of the CLint distribution, the prediction accuracy of the CLint model
still needs to be further improved. In addition, we further tried to optimize the in vitro
metabolism testing and constructed the Bio-PK dynamic metabolism system. The Bio-PK
system was combined with the PBPK models and successfully applied to the metabolism
and DDI studies of AZT, a substrate of the UGT enzyme, in an attempt to solve the issue of
the underestimation of metabolism that would occur in traditional microsomal incubation
experiments. Compared with traditional HLM experiments, the fold error of PK parameters
predicted by the Bio-PK system combined with the PBPK model was significantly reduced
to less than 2, which was closer to the real situation in vivo. In the DDI study, the AUC ratio
and Cmax ratio predicted by the Bio-PK system combined with the PBPK model increased,
and the fold error was less than 2, which was closer to the ratio in vivo. These results
all show that the Bio-PK system solves the limitations of traditional HLM experiment to
a certain extent and may provide new methods and ideas for the optimization of drug
metabolism and DDI study in vitro.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13101734/s1, Figure S1: Diffusion of AZT (A) and FCZ (B) in Bio-PK metabolic
system, Figure S2: Comparison of the observed CLint with predicted CLint of the classification
regression models, blue line: correlation line, Table S1: The experimental and prediction data of
7882 CLint records collected from the literature (2000–2018) and databases. Table S2: Microdialysis
recovery of AZT, AZTG and FCZ, Table S3: The f u of AZT and FCZ in the HLM-Gel system, Table S4:
Parameters for AZT and FCZ PBPK modeling, Table S5: In vitro metabolism parameters of AZT
reported from literature.
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