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Abstract: The importance of zinc in biology has gained greater recognition in recent years due to its
essential contributions to the function of many endogenous enzymes. Disruption of zinc homeostasis
may be useful in treating pathological conditions, such as Alzheimer’s, and for antiviral purposes.
Despite the growth of knowledge and increased interest in zinc, little is known about the structure
and function of zinc ionophores. In this study we analyse the Cambridge Structural Database and
solution complexation studies found in the literature to identify key functional groups which may
confer zinc ionophorism. Pharmaceuticals, nutraceuticals and amino acids with these functionalities
were selected to enable us to explore the translatability of ionophoric activity from in vitro assays to
cellular systems. We find that although certain species may complex to zinc in the solid and solution
states, and may carry ions across simple membrane systems, this does not necessarily translate into
ionophoric activity. We propose that the CSD can help refine key functionalities but that ionophoric
activity must be confirmed in cellular systems.

Keywords: zinc; ionophore; drug repurposing; CSD analysis; ionophorism

1. Introduction

The complexation of pharmaceuticals with metals is one strategy to improve the
therapeutic and physicochemical properties of selected pharmaceuticals. Many products
available on the market are produced using this method: Pepto-bismol® (salicylic acid
and bismuth), Polaprezinc® (carnosine and zinc) and Zyneryt® (erythromycin and zinc
acetate). Despite this, it is unclear whether the metals involved in complexation have
favorable properties in their own right or the therapeutic activity is conferred through
synergy. Reformulation of drugs as metal ion complexes could lead to new, cost-effective
therapeutic opportunities (as the safety characteristics for repurposed pharmaceuticals are
well established relative to novel compounds)—a consideration that is gaining increased
importance as the cost of drug development is expected to exceed $3 bn if it continues to
follow recent trends [1].

Zinc is the only metal that is found in all six classes of enzymes established by the
International Union of Biochemistry [2]. It is no surprise to find that most endogenous
zinc is bound and not freely available [2]—in fact, free zinc is highly toxic, and in the brain
extracellular concentrations are as low as 10 nM [3]. One study reported that although
the antiviral properties of zinc have been identified in vitro, the concentrations employed
are often orders of magnitude larger than those encountered in vivo and that this would
be expected to result in cellular toxicity [4]. Zinc toxicity is thought to contribute to
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the pathophysiology of conditions such as Alzheimer’s, and the success of strategies
which attempt to restore homeostasis by chelating zinc (thereby reducing intracellular
concentrations) has led to an emerging role for zinc-based therapeutics [3,5]. Frederickson
et al. highlight that “weakly or moderately bound zinc complexes may be useful in altering zinc
homeostasis in the cell” [3,5].

When faced with a pathogenic challenge, human cells fight for supplies of trace
elements, such as zinc and iron, which are essential for cellular growth and development [6].
In bacteria, the transport of ions across the lipophilic bacterial membrane is a particular
challenge and they have evolved to synthesise and release a variety of metabolites which—
when isolated—reveal a remarkable specificity for certain ions [7]. Researchers soon
manipulated this mechanism to deliver antimicrobials, and work in this area has resulted
in the first FDA approved ionophore drug cefiderocol in 2019 (approved by the EU in April
2020). Indeed, it is possible that many antibiotics possess some ionophoric activity.

It is thought that ionophores function by neutralising the charge of ions through
the formation of complexes. These neutral complexes, in addition to the lipophilicity of
the ionophore, can enable the transport of ions across a cell membrane corresponding to
a concentration and electrochemical gradient [8]. Therefore, a compound must possess
certain properties to enable ionophorism: (1) an ability to complex to the ion of interest,
(2) a certain degree of lipophilicity to transport the ion across membranes and, for the
purposes of therapeutics, (3) these effects should be replicated in complex living systems,
such as cells.

Synthetic ionophores have their origins in the work of Pedersen [9] and since his
receipt of the Nobel prize, the field of synthetic complexing agents has rapidly expanded;
modern species find utility for their anticancer properties [10] and trace metal detection [11].
Despite this expansion of knowledge and the growing interest in zinc [2,3,12], little is
known about the structure and function of potential ionophoric compounds [7]. This is
apparent as much of the zinc ionophore literature explores the activity of well-known zinc
ionophores (e.g., clioquinol, quercetin, pyrithione, PBT2 and 8-hydroxyquinoline) [13–17].
Inspiration can be taken from other fields where Puerta et al. systematically developed a
range of bioinspired zinc chelators as matrix metalloprotease inhibitors [18] and Vaden
et al. produced a zinc selective anticancer ionophore inspired by naamidine A [19]. Once
found, zinc ionophores can be tested with a variety of established in vitro models. Zinc
ion transport can be screened with liposomal models employing membrane permeable
fluorescent probes which are sensitive for zinc (FluoZin-3) and in vitro toxicity and trans-
port studies can determine if these effects translate to cells within a non-toxic range using a
relevant cell model, such as A549 epithelial lung cells.

Screening of ionophores to transport ions across membranes will be assessed in model
membranes using liposomes prepared by extrusion of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine. Liposomal systems are classic membrane mimetics; these systems are
impermeable to ions [20] but can be loaded with ion sensitive fluorescent probes, such as
FluoZin-3 (a zinc sensitive probe), which can detect zinc ions as they are transported across
the cell membrane [21]. Pressman noted that ionophores will obey the Nernst equation [8]
and, as such, the liposomal model may underestimate ionophoric effects, particularly in
the cases of symport or antiport ionophoric mechanisms, as the ions needed to maintain
equilibrium may not be present or indeed may be spent (i.e., transported to the other side
of the membrane). For example, clioquinol can also transport protons, which can help
sustain the electrochemical environment within the cell, enabling further transport [8].

As cellular systems are often more complex, successful candidates will be screened
again using a range of cell lines representing therapeutically relevant tissue types to validate
the simpler model. A549 lung epithelial cells will be employed as we envision that one use
for zinc ionophores is topical delivery to the lung for antiviral purposes. This is particularly
pertinent, as sub-micromolar concentrations of free zinc are known to have significant
toxicity [4].
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Despite growing interest in zinc ionophores, as evidenced by recent clinical trials
(NCT04371406, NCT04334512, NCT04335084 and NCT04377646), a design approach for this
ion for pharmaceuticals is scarce in the literature. Structural property relationships can be
established with the Cambridge Structural Database (CSD), allowing us to probe the solid
state. The CSD has been used previously to analyse a variety of zinc complexes [22–25],
and from this (and our own analysis) we will select a number of compounds that represent
key functional groups that enable complexation with zinc. We will then probe their
ionophoric activity using in vitro models commonly used in the literature. These hits will
then be investigated in a therapeutically relevant cell model (A549 lung epithelial cells) to
understand their translatability. In the field of ionophorism, this step is often overlooked
in favour of mechanistic studies dedicated to the discovery of new probes and sensors.

2. Materials and Methods

Hydroxychloroquine sulfate (HCQ) was received as a gift from Associate Professor
Lidia Tajiber (Trinity College Dublin), Clioquinol was purchased from Tokyo Chemical
Industries (Oxford, UK) and cholesterol and zinc chloride were purchased from Fluo-
roChem (Glossop, UK). The extrusion kit and materials required to create FluoZin-3 loaded
liposomes, such as membrane supports, 0.2 µm polycarbonate membrane filters, FluoZin-3
(membrane impermeable) and 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC),
were purchased from Avanti Polar lipids (Birmingham, AL, USA). All other solvents, Ac-
tive Pharmaceutical Ingredients (APIs) and materials were purchased from Sigma-Aldrich
(Darmstadt, Germany) at the highest grade available.

2.1. Cambridge Structural Database

The Cambridge Structural Database was searched using ConQuest (v5.40, August
2021) and the retrieved entries were subsequently analysed with Mercury. Structures
containing zinc were selected based on the following criteria: contact inter/intra-molecular
bonding (separated by 1–3 bonds 0.5–4 Å), R-factor < 0.05, non-disordered, no errors, single
crystal structures and organometallic.

2.2. Synthesis of FluoZin-3 Loaded Liposomes

Liposomes were synthesised according to a previously reported procedure [21,26],
where 250 mg (3.289 × 10−4 moles) 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)
and 1.4125 mg (3.65× 10−6 moles) cholesterol were dissolved in 8 mL chloroform and 4 mL
of this solution was aliquoted into a 25 mL Round Bottom Flask (RBF). The solvent was
then removed by rotary evaporation to obtain a thin film. Then, 0.5 mL DMSO containing
590.3 µM of FluoZin-3 was mixed with 3.5 mL PBS buffer (0.01 M PBS, at pH 7.4) and added
to the RBF containing the lipid film and subsequently vortexed for 15 min. The solution
was subjected to 15 freeze-thaw cycles and subsequently passed through a Sephadex G100
column (previously swelled for 24 h with PBS) to remove any unencapsulated FluoZin-3
from the solution.

This liposomal solution was then extruded 25 times through a 0.2 µm polycarbonate
membrane using an Avanti extrusion kit and then stored in a screwcap glass vial covered
with tinfoil and kept in the fridge (2–8 ◦C) until use.

2.3. Liposomal Penetration Assay

Stock solutions of liposomes, Active Pharmaceutical Ingredients (APIs) and zinc
chloride were prepared and allotted and made up to 2.5 mL in PBS buffer (0.01 M PBS,
at pH 7.4) to create a final solution containing 52 µM lipid to 0.1 mM of API (1 mM was
used in the case of HCQ, aciclovir, 8-hydroxyquinoline, zinc gluconate, all imidazoles and
tryptophan) and 0.1 mM zinc. Fluorescence was determined using a quartz cuvette in a
Varian Eclipse fluorospectrometer exciting and emitting at 494 nm and 519 nm; slits were
set to 5 nm (determined empirically). During the experiment the fluorescence measurement
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was started for some minutes to obtain a baseline. Then zinc was added, followed by API
and the fluorescence intensity was recorded.

2.4. Cell Culture Conditions

Tissue culture was performed with aseptic techniques [27,28]. Exponentially growing
type II lung epithelial cells (A549 ATCC® CCL-185) were cultivated at 37 ◦C under 5% CO2,
in 1:1 DMEM:F-12 medium (Sigma-Aldrich, Darmstadt, Germany, D8437) supplemented
with 10% foetal bovine serum (FBS, Gibco, Darmstadt, Germany, 10270-106) according
to ATCC® recommendations. Cells were passaged approximately every 3–4 days, to
prevent cells from reaching confluence. Subculture was carried out by first washing the
cell monolayers with phosphate buffered saline (PBS), followed by incubation with TrypLE
Trypsin-EDTA (0.05%, Gibco, 25300-062) at 37 ◦C as above. Cell number and viability were
determined by staining with trypan blue and counting with a haemocytometer.

2.5. Cell Toxicity Assay

A549 cells were plated at a density of 1 × 102 cells per well (for 7 days) and at
1.4 × 102 cells per well (3 days). After allowing 24 h for attachment, agents were aliquoted
to the wells to reach final concentrations of 10, 5, 2.5, 1.25 and 0.625 µM (1, 0.5, 0.25, 0.125,
0.625 µM for pyrithione) and incubated for 3 and 7 days. Cell viability was assessed by
incubating with Alamar Blue HS (Invitrogen A50101). After incubation, 20 µL of Alamar
Blue (final concentration 10% v/v) was added to each well and the plates were further
incubated for 2 h. Fluorescence intensity was recorded with excitation at 530 nm and
emission at 590 nm. These conditions were determined empirically, and this procedure
was repeated to generate three biological repeats with a minimum of 6 technical repeats in
each set.

2.6. Fluorescence Imaging

A549 cells were plated in a 24-well plate at a density of 3× 104 per well. After allowing
24 h for attachment, the APIs were added to the wells to give a final concentration of 2.5
or 300 µM (0.125 and 15 µM for pyrithione); some wells were spiked with 10 µM zinc
and further incubated for 24 h. The wells were then washed with PBS and stained with
FluoZin-3 AM (Invitrogen F24195) and Pluronic-24 (final concentration of FluoZin-3 AM
was 1 µM). Nuclei were counterstained with NucBlue Live (Invitrogen R37605) and further
incubated for 1 h. The cells there washed again with PBS and 250 µL serum free media
(DMEM:F12) was added to each well before imaging. Cells were imaged using a Nikon TiE
equipped with Photometrics Coolsnap HQ2 camera (Tucson, AZ, USA) and controlled by
Metamorph (San Jose, CA, USA). These methods have been described previously [29].

3. Results
3.1. Identification of Zinc Chelators with CSD Analysis

The Cambridge Structural Database was mined to identify the common functional
groups in the solid state. Preliminary searches found that at least one nitrogen, oxygen and
sulphur containing functionality is involved in the vast majority of complexes with zinc
(Figure 1). Of the total number of zinc structures (n = 14,966), 11,870 contained zinc bound
to nitrogen, where almost all of the nitrogen–zinc compounds are bound to ternary nitrogen
groups (11,181/11,870; 94%). Further analysis revealed a large diversity of nitrogen contain-
ing binding groups with the largest portions containing pyridines (n = 5702/11,870; 48%)
and imidazoles (n = 1515 /11,870; 13%). The CSD contained 10,283 structures with zinc
bound to oxygen; 2952 of these structures (29%) contained water and 5792 contained car-
boxylate functionalities (56%). Hydroxyl groups account for the majority of zinc binding to
oxygen (n = 6247/10,283; 61%), and phenol functionalities make up a significant fraction
of this group (n = 1548). Of the sulphur compounds bound with zinc (n = 1049), primary
sulphur groups accounted for the vast majority of structures identified (n = 1024/1049;
98%). This data has been summarised in Figure 1.
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This analysis helped identify a range of compounds containing nitrogen, oxygen or
sulphur functionalities (Figure 2). In the literature, many of these compounds have hypoth-
esised synergy with zinc, such as levamisole [30], quercetin [31], hydroxychloroquine [17]
and clioquinol [32], or are currently formulated with zinc for therapeutic purposes, such
as erythromycin (Zyneryt®), carnosine (Polaprezinc®), pyrithione (Head & Shoulders®

shampoo) and ascorbic acid (e.g., Beeline® Vitamin C + Zinc).
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3.2. Liposomal Penetration Behaviour of Selected Compounds
3.2.1. Quinolines

A liposomal ionophorism model with the zinc sensor FluoZin-3 provides direct ev-
idence of these chemical species to transport zinc. Figure 3 reveals that CQL and 8-HQ
exhibit ionophoric activity at 0.1 and 1 mM respectively and HCQ possesses no activity
even in the presence of excess zinc (1 mM). The potency of CQL with respect to 8-HQ may
be explained by the greater partition coefficient of CQL or indeed by the presence of the
chlorine electron withdrawing groups on CQL.
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3.2.2. Flavonoids

Figure 4 suggests that quercetin is a more potent zinc ionophore than naringenin,
requiring concentrations of 0.1 and 1 mM respectively to produce the responses shown.
This has been confirmed previously in liposomal assays prepared via a different method-
ology where quercetin again demonstrated significantly greater ionophoric activity than
naringenin [21,31]. The lack of a hydroxyl group on naringenin may confer weaker affinity
for zinc and may explain this difference in effect.
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3.2.3. Polyols

Liposomal assays (Figure 5) reveal that ascorbic acid demonstrates ionophoric effects
at 0.1 mM concentrations whilst zinc gluconate requires 1 mM concentrations to induce
weak ionophoric activity. Erythromycin does not exhibit ionophoric activity up to 1 mM
of zinc and erythromycin. Erythromycin is applied as a complex with zinc acetate in
a mixture of diisopropyl sebacate and ethanol directly onto the site of action. As such,
the complex may be expected to exist in this solvent system when applied to the skin
and this environment may enable ionophorism. These conditions cannot be replicated in
liposomal models.
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3.2.4. Amino Acids

With the exception of carnosine, liposomal studies (Figure 6) suggest that all amino
acids are capable of demonstrating at least some ionophoric activity. Cysteine and histidine
required 0.1 mM, but proline, methionine and tryptophan required 1 mM to elicit a response.
For sulphur containing amino acids, these results are unsurprising as cysteine is the only
structure with a primary sulphur (previous CSD analysis illustrated that this accounted for
98% of complexes in the solid state), whereas carnosine proves an exception to the idea
that imidazole groups should confer ionophoric activity. A degree of aromaticity, which
may increase the basic characteristics of the nitrogen on the five-membered ring appears
to be important for zinc transport, and is illustrated by contrasting ionophorism between
proline, tryptophan and histidine.
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3.2.5. Imidazoles

The ionophoric activity of selected imidazoles is demonstrated in Figure 7. Aciclovir
and mebendazole illustrate weak ionophoric activity in the presence of 1 mM API and
there is an absence of activity for levamisole and caffeine. Perhaps the proximity of an
additional H-bond donor to the chelating imidazole nitrogen in mebendazole and aciclovir
confers increased complexation strength and provides enough stability to carry ions across
the lipophilic membrane.

3.2.6. Miscellaneous

Pyrithione elicits a response expected of a strong ionophore in liposomal studies
(Figure 8) at 0.1 mM; these effects have been described previously [33–36].

Table 1 provides a concise summary of the results obtained from experimental data
and literature values, along with important physicochemical properties. This highlights
that clioquinol, quercetin, cysteine, histidine and pyrithione are the most potent zinc
ionophores in liposomal assays, but only pyrithione, clioquinol and hydroxychloroquine
affected intracellular zinc concentrations in cellulo.
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Levamisole d 2.22 I ✓ [48] ✓ [48] - - 
Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 
Cysteine e −2.80 I CURLUW ✓ [51] ✓  
Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 
Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 
Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Figure 8. Fluorescence intensity of liposomal FluoZin-3 in PBS (0.1 M, pH = 7.4) before and after the
addition of zinc and pyrithione.
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Table 1. Summary of physicochemical and experimental data grouped by chemical functionality.

Drug Log P7.4
a BCS Solid-State

Complex b
Solution
Complex Liposomal Ionophorism

0.1 mM 1 mM

Quinolines
8-hydroxyquinoline d 1.82 I AYOCUN
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e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[37] -

Pharmaceutics 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 

Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Clioquinol d 3.03 II NABMAF
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concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 
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says. 

Hydroxychloroquine d 0.33 I - - - -
Polyols

Ascorbic acid e −5.00 I
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[38]
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[39]
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Erythromycin d 0.99 III BOPRON10
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[40] - -
Zinc gluconate e - I
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[41]
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[41] -
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activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Flavonoids
Naringenin e 2.70 II
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[42]
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[43] -

Pharmaceutics 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 

Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Quercetin e 1 II/IV ASEROI
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ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[44]
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Imidazoles
Aciclovir d −1.03 IV HOPBUJ
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[45] -

Pharmaceutics 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 

Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Mebendazole d 3.25 II -
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Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
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activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

c [46] -
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Miscellaneous 
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Caffeine d −0.55 I RITLEO
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[47] -
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Levamisole d 2.22 I
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[48]
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[48] - -
Amino acids

Carnosine d −4.51 I
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[49]
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[50] - -
Cysteine e −2.80 I CURLUW
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[51]
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Histidine e −3.64 I MUYFEU
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[51]
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

Methionine e −2.19 I LMETZN01
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 

Cysteine e −2.80 I CURLUW ✓ [51] ✓  

Histidine e −3.64 I MUYFEU ✓ [51] ✓  

Methionine e −2.19 I LMETZN01 ✓ [52] - - 

Proline e −2.57 I HIBTOB01 ✓ [53] - - 

Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 

Miscellaneous 

Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  

Biopharmaceutics classification system (BCS). ✓ = positive result. a LogP at pH 7.4 calculated using 

ChemAxon. b CSD refcode provided where available. c Mebendazole derivatives. d Pharmaceutical. 
e Nutraceutical. A hyphen denotes when an experiment was performed but failed to demonstrate 

activity. 

3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[52] - -
Proline e −2.57 I HIBTOB01
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Drug Log P7.4 a BCS 
Solid-state 

Complex b 

Solution 

Complex 

Liposomal 

Ionophorism 

     0.1 mM 1 mM 

Quinolines 

8-hydroxyquinoline d 1.82 I AYOCUN ✓ [37] - ✓ 

Clioquinol d 3.03 II NABMAF ✓ ✓  

Hydroxychloroquine d 0.33 I - - - - 

Polyols 

Ascorbic acid e −5.00 I ✓ [38] ✓ [39] ✓  

Erythromycin d 0.99 III BOPRON10 ✓ [40] - - 

Zinc gluconate e - I ✓ [41] ✓ [41] - ✓ 

Flavonoids 

Naringenin e 2.70 II ✓ [42] ✓ [43] - ✓ 

Quercetin e 1 II/IV ASEROI ✓ [44] ✓  

Imidazoles 

Aciclovir d −1.03 IV HOPBUJ ✓ [45] - ✓ 

Mebendazole d 3.25 II - ✓c [46] - ✓ 

Caffeine d −0.55 I RITLEO ✓ [47] - ✓ 

Levamisole d 2.22 I ✓ [48] ✓ [48] - - 

Amino acids 

Carnosine d −4.51 I ✓ [49] ✓ [50] - - 
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Methionine e −2.19 I LMETZN01 ✓ [52] - - 
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Tryptophan e −1.09 I ✓ [54] ✓ [55] - ✓ 
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Pyrithione d −0.41 III OXPZND [56,57] ✓ [8] ✓  
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3.3. Cellular Ionophorism with Lead Compounds 

In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-

formed to determine the maximum concentrations of drugs that could be tolerated by 

A549 cells without a large impact on cell viability. It was found that at concentrations 

higher than 2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was signifi-

cantly reduced at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the 

concentrations of pyrithione and the other compounds to be used in the zinc uptake as-

says. 

[53] - -
Tryptophan e −1.09 I
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[54]
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In cellulo assays were performed using a lung epithelial line (A549) with the lead 

compounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were per-
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3.3. Cellular Ionophorism with Lead Compounds

In cellulo assays were performed using a lung epithelial line (A549) with the lead com-
pounds identified from the earlier analysis. Cell toxicity assays (Figure 9) were performed
to determine the maximum concentrations of drugs that could be tolerated by A549 cells
without a large impact on cell viability. It was found that at concentrations higher than
2.5 µM for clioquinol (and 0.125 µM for pyrithione), cell viability was significantly reduced
at both incubation times. Thus, 0.125 µM and 2.5 µM was selected as the concentrations of
pyrithione and the other compounds to be used in the zinc uptake assays.

Figures 10–14 illustrate results from cell transport studies. Initially we investigated
the ability of each compound to increase the intracellular concentration of free zinc in basal
media and subsequent experiments exposed the cells to excess levels of zinc and drug.
These two conditions allow us to mimic two drug delivery routes, systemic (relatively
lower concentrations) and topical (high excess concentrations).

Figure 10 illustrates that excess zinc does not disrupt the barrier function of the
membrane and cell morphology appears unaffected. These results serve as a reference
point for the other experiments.

Pyrithione (Figure 11) elicits a strong response from FluoZin-3 even at relatively
low concentrations (0.125 µM). The addition of zinc to a solution containing pyrithione
potentiates its toxicity, with a clear reduction in cell number. The rounded morphology of
the remaining cells, in addition to profuse FluoZin staining, strongly suggests cell death.
Increasing the concentration of pyrithione to 15 µM in the presence of additional zinc
results in similar levels of toxicity.
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brane and cell morphology appears unaffected. These results serve as a reference point 
for the other experiments. 
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Figure 9. Cell viability assay performed using Almar blue after A549 cells were incubated with drug
for 3 (left) and 7 (right) days.
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Figure 10. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and 
counterstained using NucBlue Live for nuclei (blue) after 24 h incubation with (a) basal media and 
(b) with an additional 10 µM zinc chloride added to the media. Magnification ×10. 

Pyrithione (Figure 11) elicits a strong response from FluoZin-3 even at relatively low 
concentrations (0.125 µM). The addition of zinc to a solution containing pyrithione poten-
tiates its toxicity, with a clear reduction in cell number. The rounded morphology of the 
remaining cells, in addition to profuse FluoZin staining, strongly suggests cell death. In-
creasing the concentration of pyrithione to 15 µM in the presence of additional zinc results 
in similar levels of toxicity. 

  

Figure 10. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and
counterstained using NucBlue Live for nuclei (blue) after 24 h incubation with (a) basal media and
(b) with an additional 10 µM zinc chloride added to the media. Magnification ×10.
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Figure 11. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and counterstained using Nu-
cBlue Live for nuclei (blue) after 24 h incubation with: (a) 0.125 µM pyrithione and basal zinc, (b) 0.125 µM pyrithione 
with an additional 10 µM zinc chloride added to the media and (c) 15 µM pyrithione with an additional 10 µM zinc 
chloride added to the media. Magnification ×10. 

With quinolones HCQ and CQL, 2.5 µM concentrations produce a strong fluorescent 
response from FluoZin-3 (Figure 12). Closer inspection of the images reveals that CQL has 
a more diffuse localisation of zinc whereas HCQ appears to localise zinc inside vesicular 
compartments, as described previously [13,58]. Interestingly, additional zinc and HCQ to 
concentration extremes does not cause quantitative changes to cell toxicities, unlike ‘true’ 
ionophores pyrithione and CQL. 

  

Figure 11. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and counterstained using
NucBlue Live for nuclei (blue) after 24 h incubation with: (a) 0.125 µM pyrithione and basal zinc, (b) 0.125 µM pyrithione
with an additional 10 µM zinc chloride added to the media and (c) 15 µM pyrithione with an additional 10 µM zinc chloride
added to the media. Magnification ×10.
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Figure 12. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and counterstained using Nu-
cBlue Live for nuclei (blue) after 24 h incubation with: (a) 2.5 µM clioquinol or HCQ and basal zinc, (b) 2.5 µM clioquinol 
or HCQ with an additional 10 µM zinc chloride added to the media and (c) 100 µM clioquinol or 300 µM HCQ with an 
additional 10 µM zinc chloride added to the media. Magnification ×10. 

Figure 13 illustrates that amino acids do not elicit increases of intracellular zinc in 
any of the conditions tested. This may reflect the utility of amino acids where absorption 
into the cell will result in their incorporation into proteins and peptides essential for cell 
growth; the fate of amino acids once entering cells has been described more completely in 
a number of reviews [59,60]. High concentrations of cysteine and histidine did induce cell 
toxicity through mechanisms which have been explored previously [61–64]. 

  

Figure 12. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and counterstained using
NucBlue Live for nuclei (blue) after 24 h incubation with: (a) 2.5 µM clioquinol or HCQ and basal zinc, (b) 2.5 µM clioquinol
or HCQ with an additional 10 µM zinc chloride added to the media and (c) 100 µM clioquinol or 300 µM HCQ with an
additional 10 µM zinc chloride added to the media. Magnification ×10.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 17 of 30 
 

 

 

 
Figure 13. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and counterstained using Nu-
cBlue Live for nuclei (blue) after 24 h incubation with: (a) 2.5 µM histidine or cysteine and basal zinc, (b) 2.5 µM histidine 
or cysteine and with an additional 10 µM zinc added to the media and (c) 300 µM histidine or cysteine with an additional 
10 µM zinc added to the media. Magnification ×10. 

In agreement with previous results in a HeLa cell line [21], quercetin illustrates weak 
ionophoric activity (Figure 14). At higher concentrations, toxicity is apparent; quercetin 
and other polyphenols have demonstrated these effects on other mammalian cell lines 
[65,66]. 

  

Figure 13. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and counterstained using
NucBlue Live for nuclei (blue) after 24 h incubation with: (a) 2.5 µM histidine or cysteine and basal zinc, (b) 2.5 µM histidine
or cysteine and with an additional 10 µM zinc added to the media and (c) 300 µM histidine or cysteine with an additional 10
µM zinc added to the media. Magnification ×10.
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Figure 14. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and counterstained using Nu-
cBlue Live for nuclei (blue) after 24 h incubation with: (a) 2.5 µM quercetin and basal zinc, (b) 2.5 µM quercetin with an 
additional 10 µM zinc chloride added to the media and (c) 100 µM quercetin with an additional 10 µM zinc chloride added 
to the media. Magnification ×10. 

4. Discussion 
4.1. Identification of Effective Zinc Chelators with CSD Analysis 

Interestingly, zinc–ligand distances in the CSD and those found in biology are strik-
ingly similar [67]. Ireland and Martin also highlighted that cysteine and histidine residues 
are predominantly present in the coordination sphere of zinc in biological peptides and 
proteins. Although there is a clear utilisation of sulphur in biology, the same frequency is 
not found in the CSD; this may be explained by the fact that sulphur-containing com-
pounds can be unpleasant to work with. Each compound group has been probed using 
the CSD to identify structural property relationships and binding modes in the solid state. 
This information could inform the development of more potent complexing agents which 
may possess ionophoric behavior in relation to zinc. 

4.2. Quinolines 
For medicinal chemists, quinoline is a common functionality that gained significant 

attention as a treatment for malaria [68]. In this disease state, the property of this group is 
to bind to hematin, inhibiting the formation of toxic 𝛽-hematin crystals deposited by the 
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Figure 14. Fluorescence images of A549 cells incubated stained with FluoZin-3 AM (green) and counterstained using
NucBlue Live for nuclei (blue) after 24 h incubation with: (a) 2.5 µM quercetin and basal zinc, (b) 2.5 µM quercetin with an
additional 10 µM zinc chloride added to the media and (c) 100 µM quercetin with an additional 10 µM zinc chloride added
to the media. Magnification ×10.

With quinolones HCQ and CQL, 2.5 µM concentrations produce a strong fluorescent
response from FluoZin-3 (Figure 12). Closer inspection of the images reveals that CQL has
a more diffuse localisation of zinc whereas HCQ appears to localise zinc inside vesicular
compartments, as described previously [13,58]. Interestingly, additional zinc and HCQ to
concentration extremes does not cause quantitative changes to cell toxicities, unlike ‘true’
ionophores pyrithione and CQL.

Figure 13 illustrates that amino acids do not elicit increases of intracellular zinc in
any of the conditions tested. This may reflect the utility of amino acids where absorption
into the cell will result in their incorporation into proteins and peptides essential for cell
growth; the fate of amino acids once entering cells has been described more completely in
a number of reviews [59,60]. High concentrations of cysteine and histidine did induce cell
toxicity through mechanisms which have been explored previously [61–64].

In agreement with previous results in a HeLa cell line [21], quercetin illustrates weak
ionophoric activity (Figure 14). At higher concentrations, toxicity is apparent; quercetin and
other polyphenols have demonstrated these effects on other mammalian cell lines [65,66].

4. Discussion
4.1. Identification of Effective Zinc Chelators with CSD Analysis

Interestingly, zinc–ligand distances in the CSD and those found in biology are strik-
ingly similar [67]. Ireland and Martin also highlighted that cysteine and histidine residues
are predominantly present in the coordination sphere of zinc in biological peptides and
proteins. Although there is a clear utilisation of sulphur in biology, the same frequency is
not found in the CSD; this may be explained by the fact that sulphur-containing compounds
can be unpleasant to work with. Each compound group has been probed using the CSD
to identify structural property relationships and binding modes in the solid state. This
information could inform the development of more potent complexing agents which may
possess ionophoric behavior in relation to zinc.

4.2. Quinolines

For medicinal chemists, quinoline is a common functionality that gained significant
attention as a treatment for malaria [68]. In this disease state, the property of this group
is to bind to hematin, inhibiting the formation of toxic β-hematin crystals deposited by
the parasite [69]. The ability to chelate iron is conferred by the quinoline group, which
also facilitates its localisation within the acidic lysosomal compartment [13,70–73]. These
characteristics, along with promising experimental data from more modern quinolines,
such as clioquinol [14] and PBT2 [15,16] (and its derivatives), which increase intracellular
zinc levels, have led to much speculation about the zinc-binding activity of classic quinoline
agents, such as chloroquine and hydroxychloroquine [17].
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Clioquinol (CQL) and 8-hydroxyquinoline form complexes with zinc in a 2:1 ratio
(CSD refcodes: NABMAF and AYOCUN, Figure 15) where zinc is chelated between two
inverted hydroxyquinoline molecules.
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zinc (purple). Other elements are coloured as follows: carbon (grey), oxygen (red), nitrogen (blue),
hydrogen (off-white), chlorine (green) and iodine (purple).

Although zinc hydroxychloroquine complexes cannot be identified in the CSD, com-
plexes between zinc and structural analogues (CSD refcode: AFIGAA) highlight the impor-
tance of the quinoline group for complexation with zinc. Further, chloroquine zinc com-
plexes have been described in the literature where zinc is bound to the pyridine moiety [74]
or to the secondary nitrogen [75]. Solid-state analysis highlights that the ancillary function-
ality may be important for the activity of complexation. As such, 8-hydroxychloroquine
(8-HQ) and CQL might be expected to bind to zinc whereas hydroxychloroquine (HCQ)—
without nearby donating groups on the quinoline ring—is less likely. Solid state analysis is
supported by the literature reporting that complexation to zinc has been observed in 8-HQ
and CQL [37] and has not been observed in HCQ. This suggests that, in general, quinoline
rings chelate most effectively when they possess these additional donating groups and
explains the lack of ionophorism in liposomal systems with HCQ. This also suggests that
the detection (with FluoZin-3) of increased intracellular zinc caused by HCQ may not be
through ionophoric mechanisms, but this will need to be explored further.

4.3. Flavonoids

Flavonoids are found ubiquitously in plants where they are thought to play an impor-
tant role primarily as antioxidants [76]. The metal complexes of their glycoside derivatives
produce the wide colour palette seen in flowering plants [77,78]. Their presence in a variety
of foods has been linked with a wide variety of nutritional and therapeutic benefits and they
have been the subject of numerous reviews [76,79,80]. There are just 18 flavonoid–metal
complexes on the CSD and in every complex zinc is bound between the carbonyl and
hydroxyl groups on the B ring, even in the presence of competing catechol functionalities
(CSD refcodes: ASEROI, ZUJTIJ and ZUJGUI, Figure 16).

Zinc binds to a variety of polyphenols in solution, and, once bound, zinc does not
bind again to a different site on the same molecule [81]. The zinc complexation affinity
of quercetin over other polyphenols has also been explored in an in depth NMR study
by Primikyri et al. using another polyphenol analogue (lucetin); the authors further state
that, in addition to the 1:1 complexation expected [82], they also found that zinc binds
preferentially between the carbonyl and hydroxyl group on the B ring of quercetin. This has
been described previously for a structurally similar flavonoid, myrecetin [81]. These results
may provide an explanation for the contrasting activity between quercetin and naringenin,
whereby the lack of a hydroxyl moiety on naringenin decreases its complexation strength
with zinc and ultimately its ability to transport zinc across membranes.
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as erythriol [87]. In the CSD, a search of common sugars (mannitol, sorbitol, xylitol, 
erythriol, glycerol and glucose) returned just two structures of sugars with zinc: erythriol 
and glycerol (CSD refcodes: DADMEB and QQQAZD01, respectively). In these structures, 
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uting two hydroxyl sites to form a 2:1 complex. A wider search revealed that in molecules 
such as tartaric acid zinc will bind to one hydroxyl and one carboxylate moiety on each 
molecule, even in the presence of appropriately situated hydroxyl groups (CSD refcodes: 
EBAVEI, AQOHEU, FADJAX, ETUTUJ, MUYPUU and YEYKIX; Figure 17). 

Figure 16. Solid-state complex of morin-5′-sulfonic acid (ZUJTIJ) and quercetin (ASEROI) with
zinc (purple). Other elements are coloured as follows: carbon (grey), oxygen (red), nitrogen (blue),
hydrogen (off-white), chlorine (green) and sulphur (yellow).

4.4. Polyols

Sugars are perhaps the most well-known polyols and their ability to complex with
metals has been known for many years [83]; indeed, this effect has been exploited to
increase the bioavailability of metals from the diet [84]. Carbohydrates have a long history
in this space and their complexation with a variety of metals in solution (including zinc)
has been reviewed extensively [85,86]. Work by Lim and colleagues has sought to synergise
this increased bioavailability with the antimicrobial activity of specific polyols, such as
erythriol [87]. In the CSD, a search of common sugars (mannitol, sorbitol, xylitol, erythriol,
glycerol and glucose) returned just two structures of sugars with zinc: erythriol and glycerol
(CSD refcodes: DADMEB and QQQAZD01, respectively). In these structures, one zinc
molecule is bound by the hydroxyl groups of two sugar molecules, each contributing two
hydroxyl sites to form a 2:1 complex. A wider search revealed that in molecules such as
tartaric acid zinc will bind to one hydroxyl and one carboxylate moiety on each molecule,
even in the presence of appropriately situated hydroxyl groups (CSD refcodes: EBAVEI,
AQOHEU, FADJAX, ETUTUJ, MUYPUU and YEYKIX; Figure 17).
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Figure 17. Solid-state complex of 1,3,4,5-tetrahydroxycyclohexanecarboxylic acid (EBAVEI) and
tartaric acid (MUYPUU) with zinc (purple). Other elements are coloured as follows: carbon (grey),
oxygen (red) and hydrogen (off-white).

In erythromycin acetate (CSD refcode BOPRON10) zinc binds to the desosamine
ring in spite of the presence of many hydroxyl groups on the lactone ring. Erythromycin
zinc acetate (Zyneryt®) is a pharmaceutical product for the treatment of acne, and one
author noted that “The undoubted efficacy of topically applied Zineryt® lotion in the treatment
of acne cannot at present be explained by a single hypothesis. However, it is significant that this
erythromycin-zinc complex promotes the penetration of zinc into the pilosebaceous units” [88].

Ascorbic acid is known to form chelates with iron to improve its absorption [89,90].
This work has been extended to include other ions, such as zinc [39,91], where it is com-
monly seen as an adjuvant in zinc products for colds and flus. Although no crystal structure
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is known, combined experimental and computational analysis suggests a 2:1 complex sta-
bilised by two hydroxyl groups on the lactone rings of one ascorbic acid and with the
lactone carbonyl and one free hydroxyl group on another ascorbic acid species in the pres-
ence of two water molecules (i.e., a hexacoordinate) to form a 2:1 complex [39,91]. In the
CSD there are several ascorbate salts with metals (calcium, CAASCO; sodium, NAASCB;
lithium, PAJNOD; and thallium, TLASCB; Figure 18). Due to the conformational flexibil-
ity of polyols and the wide variety of metal–ion complexes, it is difficult to identify key
structural features that could be modulated to improve ionophoric behaviour. However,
their high water solubility (and the high water solubility of their corresponding metal com-
plexes [89,90]) may reduce their capacity to transport ions across the non-polar membrane
environment.
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Figure 18. Solid-state complex of ascorbic acid and calcium (CAASCO04) and sodium (NAASCB01).
Other elements are coloured as follows: carbon (grey), oxygen (red), hydrogen (off-white), calcium
(aquamarine) and sodium (purple).

4.5. Amino Acids

The wide variety of chemical diversity illustrated by amino acids make them the
perfect candidates to investigate structural property relationships. They are particularly
interesting candidates in this context as their function in biological systems can involve
metal complexation, which is an essential prerequisite to enable the function of many
key enzymes and proteins, e.g., matrix metalloproteases or zinc-fingers. CSD analysis
revealed a total of 131 zinc amino acid complexes; almost all (n = 129; 98%) involved the
carboxylate group. The two exceptions were zinc complexes with cysteine and histidine
(CSD refcodes CURLUW and HISZNP01, respectively). Previous analysis of zinc binding
sites in biological systems [67] has identified cysteine and histidine as the predominant
amino acid residues involved in the majority of biological zinc complexes. The CSD analysis
also revealed two distinct binding motifs (i) where zinc binds to a single carboxyl group
on each amino acid in a chain-like fashion (n = 90; 69%) or (ii) binds with one carbonyl
and the adjacent amino group on the same amino acid (n = 40; 31%); some structures have
both motifs (CSD refcodes: GALSER, INOYAL, IVOVEU, JEMWIG and ZNGLUD01), and
Figure 19 illustrates this in zinc–histidine polymorphs. All of the amino acids selected are
capable of forming zinc complexes in the solution and solid states and some are widely
available as commercial products, e.g., PolapreZinc® (zinc–carnosine) and OptiZinc® (zinc–
methionine). These results confirm the importance of imidazole groups and terminal
sulphur groups for the complexation of zinc and that the CSD can reveal alternate binding
modes, particularly where competing functional groups are present on the same molecule.
The affinity of histidine and cysteine for metal ions such as zinc comes as no surprise
considering their biological function in zinc-finger proteins and metallothioneins.
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plexation with the catalytic haem group contained within the enzyme [94], which may 
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functionality is essential to enabling the binding of metal ions in the catalytic sites of met-
alloproteases and structural proteins [95]. 
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zimidazoles account for a small fraction of this total (n = 282; 19%) and structural ana-
logues, such as triazoles, have a total of 496 complexes with zinc. Aciclovir is capable of 
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Figure 19. Zinc–histidine crystalline polymorphs obtained from the CSD. Other elements are coloured
as follows: carbon (grey), oxygen (red), nitrogen (blue), hydrogen (off-white) and chlorine (green).

4.6. Imidazoles

In pharmaceuticals, the imidazole functionality is best known for its presence in the
azole class of antifungal agents derived from triarimol [92]. Their mechanism is based on
the inhibition of catalytic enzymes which enable the biosynthesis of ergosterol (essential
to the integrity of the fungal cell wall) [93]. The mechanism of inhibition is through
complexation with the catalytic haem group contained within the enzyme [94], which may
prevent oxygen and peroxide activation by haem enzymes [94]. In biology, the imidazole
functionality is essential to enabling the binding of metal ions in the catalytic sites of
metalloproteases and structural proteins [95].

Structural analysis (CSD) reveals a total of 1515 zinc complexes with imidazoles.
Benzimidazoles account for a small fraction of this total (n = 282; 19%) and structural
analogues, such as triazoles, have a total of 496 complexes with zinc. Aciclovir is capable of
forming solid-state complexes with zinc through its imidazole functionality, and structural
derivatives (i.e., guanosine; CSD refcodes: DAZTIH and WEWKEO) illustrate zinc binding
at the same position. There are five structures in the CSD which have caffeine chelating
to zinc (CSD refcodes: RITKUD, RITLEO, PUMRUL, LOYHAL and KASNUO), again
demonstrating the affinity of zinc to the imidazole nitrogen (Figure 20). A zinc complex
with levamisole is known, and although there are no X-ray structures with zinc deposited
to the CSD, there are structures with platinum and nickel (CSD refcodes: LALGAG and
JAXNUS, respectively), where the nitrogen of the fused imidazole ring is involved in
complexation. Previous structural studies of the zinc levamisole complex suggested a
similar binding mode [48]. Benzimidazole and its derivatives are known to complex with a
wide variety of metals [96–98], with many structures deposited to the CSD, and in each
case the imidazole nitrogen is responsible for binding. Our results confirm the utility of the
imidazole group (a common functionality in pharmaceuticals) to chelate to zinc. The CSD
reveals that zinc can bind to either nitrogen on the imidazole ring and that this chelation
motif persists throughout a variety of functionalized imidazole compounds. This may
explain why almost all of the imidazoles tested had some degree of ionophoric behaviour
(although weak).
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Figure 20. Solid-state complex of benzimidazole (AKUGES) and aciclovir (HOPBUJ) with zinc. Other
elements are coloured as follows: carbon (grey), oxygen (red), nitrogen (blue), hydrogen (off-white)
and chlorine (green).

4.7. Pyrithione

Thirteen solid state complexes with zinc and pyrithione (and its analogues) have been
deposited to the CSD where zinc binds between the oxygen of the amine oxide group and
the thiol of two pyrithione molecules in a trans geometry. Three exceptions are noted in the
same publication (CSD refcodes: XAMNIL, XAMNOR and XAMNUX; Figure 21), in which
the authors employ the use of a disulfide bridge to disrupt the formation of the pyrithione
dimer which chelates zinc [99]. In aqueous solution, evidence suggests that pyrithione
forms a 1:1 complex [100]. Pyrithione is perhaps the oldest and most well-established
medicinal zinc ionophore. While the exact mechanism is still being understood [33–36],
pyrithione is known as an extremely potent agent [101], particularly when formulated as
its zinc salt [36]. Pyrithione is a well characterized ionophoric agent and ultimately serves
as a positive control for the experimental procedures. The CSD suggests that whenever
sulphur is free, zinc will bind between it and the amine oxide group.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 25 of 30 
 

 

 
Figure 21. Solid-state complex of pyrithione (OXPZND) and 2,2′-dithiobis(pyridine N-oxide) 
(XAMNIL) with zinc. Other elements are coloured as follows: carbon (grey), oxygen (red), nitrogen 
(blue), hydrogen (off-white), chlorine (green) and sulphur (yellow). 

In this work, we identify terminal sulphur, imidazole, polyphenol and hydroxyquin-
olines as important functional groups which form complexes with zinc in the solid state 
and in solution. Many of these groups are found in species of biological importance (e.g., 
zinc-finger proteins and metallothioneins). We also find similarities between biological 
and synthetic zinc complexes and a lack of synthetic compounds utilizing sulphur func-
tionalities to complex zinc. Our CSD analysis alongside the positive liposomal assays sug-
gests that sulphur-containing functionalities may be relatively underexplored within the 
context of zinc complexation and ionophorism. This activity could be augmented with 
additional donating groups, such as those seen in pyrithione or in the quinolines. It is 
important to note, however, that complexation in the solid state does not necessarily trans-
late to solution and, further, complexation in the latter states will not always confer iono-
phoric properties. 

Interestingly, we find that although HCQ can increase intracellular zinc concentra-
tions, the exact mechanism is unclear, as there is no activity in liposomal assays. This be-
haviour was also seen with erythromycin [88] and may be due to a lack of sufficient coun-
terions in solution or to the fact that transport is limited by cell potential. Another hypoth-
esis is that erythromycin and HCQ alter intracellular zinc dynamics through interactions 
at protein targets (e.g., storage peptides, such as zinc-fingers). On the other hand, amino 
acids (particularly histidine and cysteine) demonstrate strong ionophorism in liposomes 
that is not translated to cellular assays. We plan to investigate this anomalous behaviour 
in further studies. More complex assays, particularly for the weaker ionophores in the 
imidazole class, may be necessary to highlight the clinical value of potential drug–zinc 
formulations. This is due to the difficulties associated with replicating the environment in 
vitro without causing significant toxicity prior to determining intracellular zinc concen-
trations. Examples include aciclovir and zinc formulations in the treatment of herpes sim-
plex and Zyneryt® (erythromycin zinc acetate) for acne. 

5. Conclusions 
Ultimately, we highlight the importance of in cellulo assays to confirm ionophoric 

activity. Although liposomal assays are important as a screening tool, they have limita-
tions, e.g., they may underestimate ionophorism where another counter-ion is important 
to the ionophoric mechanism or overestimate ionophorism where efflux pumps and other 
biological species can neutralize the accumulation of ions intracellularly. Cellular systems 
have greater complexity and allow researchers to identify these false positives and false 
negatives. Future research into ionophoric compounds could explore biomimetic 3D cages 
which may have the added advantages of increased selectivity and specificity for zinc. 
Indeed, it has been identified that ionophores that form 3D cages are more effective com-
pared to smaller, planar molecules [8]. 

Figure 21. Solid-state complex of pyrithione (OXPZND) and 2,2′-dithiobis(pyridine N-oxide) (XAM-
NIL) with zinc. Other elements are coloured as follows: carbon (grey), oxygen (red), nitrogen (blue),
hydrogen (off-white), chlorine (green) and sulphur (yellow).

In this work, we identify terminal sulphur, imidazole, polyphenol and hydroxyquino-
lines as important functional groups which form complexes with zinc in the solid state
and in solution. Many of these groups are found in species of biological importance (e.g.,
zinc-finger proteins and metallothioneins). We also find similarities between biological and
synthetic zinc complexes and a lack of synthetic compounds utilizing sulphur functionali-
ties to complex zinc. Our CSD analysis alongside the positive liposomal assays suggests
that sulphur-containing functionalities may be relatively underexplored within the context
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of zinc complexation and ionophorism. This activity could be augmented with additional
donating groups, such as those seen in pyrithione or in the quinolines. It is important to
note, however, that complexation in the solid state does not necessarily translate to solution
and, further, complexation in the latter states will not always confer ionophoric properties.

Interestingly, we find that although HCQ can increase intracellular zinc concentrations,
the exact mechanism is unclear, as there is no activity in liposomal assays. This behaviour
was also seen with erythromycin [88] and may be due to a lack of sufficient counterions
in solution or to the fact that transport is limited by cell potential. Another hypothesis
is that erythromycin and HCQ alter intracellular zinc dynamics through interactions at
protein targets (e.g., storage peptides, such as zinc-fingers). On the other hand, amino acids
(particularly histidine and cysteine) demonstrate strong ionophorism in liposomes that is
not translated to cellular assays. We plan to investigate this anomalous behaviour in further
studies. More complex assays, particularly for the weaker ionophores in the imidazole
class, may be necessary to highlight the clinical value of potential drug–zinc formulations.
This is due to the difficulties associated with replicating the environment in vitro without
causing significant toxicity prior to determining intracellular zinc concentrations. Examples
include aciclovir and zinc formulations in the treatment of herpes simplex and Zyneryt®

(erythromycin zinc acetate) for acne.

5. Conclusions

Ultimately, we highlight the importance of in cellulo assays to confirm ionophoric
activity. Although liposomal assays are important as a screening tool, they have limitations,
e.g., they may underestimate ionophorism where another counter-ion is important to
the ionophoric mechanism or overestimate ionophorism where efflux pumps and other
biological species can neutralize the accumulation of ions intracellularly. Cellular systems
have greater complexity and allow researchers to identify these false positives and false
negatives. Future research into ionophoric compounds could explore biomimetic 3D
cages which may have the added advantages of increased selectivity and specificity for
zinc. Indeed, it has been identified that ionophores that form 3D cages are more effective
compared to smaller, planar molecules [8].

It is still unclear what the implications of increased intracellular zinc are for physiology
or pathophysiology. Further, the lack of specificity and sensitivity of small molecule
ionophores may result in the transport of other ions and this could make it more difficult
to elucidate precise transport mechanisms, as evidenced with the much-explored zinc
ionophore pyrithione [33–36].
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