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Abstract: Orodispersible films (ODFs) are an attractive delivery system for a myriad of clinical
applications and possess both large economical and clinical rewards. However, the manufacturing
of ODFs does not adhere to contemporary paradigms of personalised, on-demand medicine, nor
sustainable manufacturing. To address these shortcomings, both three-dimensional (3D) printing and
machine learning (ML) were employed to provide on-demand manufacturing and quality control
checks of ODFs. Direct ink writing (DIW) was able to fabricate complex ODF shapes, with thicknesses
of less than 100 µm. ML algorithms were explored to classify the ODFs according to their active
ingredient, by using their near-infrared (NIR) spectrums. A supervised model of linear discriminant
analysis was found to provide 100% accuracy in classifying ODFs. A subsequent partial least square
algorithm was applied to verify the dose, where a coefficient of determination of 0.96, 0.99 and 0.98
was obtained for ODFs of paracetamol, caffeine, and theophylline, respectively. Therefore, it was
concluded that the combination of 3D printing, NIR and ML can result in a rapid production and
verification of ODFs. Additionally, a machine vision tool was used to automate the in vitro testing.
These collective digital technologies demonstrate the potential to automate the ODF workflow.

Keywords: artificial intelligence; industry 4.0; additive manufacturing; thin film manufacture;
personalized pharmaceuticals; semi-solid extrusion (SSE); computer vision; drug-loaded systems;
digital pharmaceutics & digital medicine; mobile 3D printing drug products

1. Introduction

Orodispersible films (ODFs) are an attractive delivery system, with clinically desirable
features including high patient acceptability, requires no special administration instruc-
tions, and high drug loading [1,2]. For patients that have difficulty in swallowing, such as
paediatric, geriatric and psychiatric patients, ODFs provide low risk of choking in compari-
son to conventional dosage forms [3]. Understandably, the market size is expected to reach
USD 15.9 billion by the end of 2024, highlighting their economical and clinical rewards [4].

Despite the aforementioned benefits, both research and manufacturing of ODFs can
be improved to enhance both clinical and manufacturing outcomes. For one, ODFs are
batch manufactured, neglecting the current clinical paradigm of personalised medicines [5].
Conventional manufacturing methods of ODFs include solvent casting and film casting,
where a bulk sheet of film is made and subsequently cut into the desired shapes. This post-
fabrication process lacks sustainability for three reasons: (i) it requires a post-processing
stage of cutting the films into size; (ii) materials are subsequently discarded, resulting
in material wastage; and (iii) as the films are made in one bulk, more time is needed
for drying. Hence, conventional casting techniques are time consuming processes and
produce unnecessary material waste, which also makes them undesirable for clinical
settings. Fortunately, these limitations can be addressed by three-dimensional (3D) printing.
Three-dimensional printing is an emerging fabrication technology that has been recently
demonstrated to produce bespoke, complex delivery systems with digital precision [6–12].
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For ODFs, 3D printing can produce personalised dosage and only print the desired shape,
resulting in faster drying times, no material wastage and considerably reduced manual
labour in the post-fabrication stage [13–19]. Moreover, 3D printing is also an attractive
candidate for on-demand medicine manufacturing, owing to their compact, versatile, and
user-friendly attributes [20–24].

While 3D printing is more promising and autonomous than conventional ODF fabrica-
tion methods, there are several bottlenecks that need to be addressed before the technology
is transferred to clinical settings. Despite its superior autonomy, there remains a trial-and-
error approach to making delivery systems via 3D printing, which can be time-consuming.
In addition, the prospect of transferring 3D printing into clinics can be improved by the
introduction of real time release (RTR) testing. RTR testing is the ability to evaluate and
ensure the quality of in-process and/or final product based on process data [25]—one
example would be the combination of vibrational spectroscopy (e.g., near infrared (NIR)
spectroscopy) and chemometrics as an alternative for conventional quality control [26,27].
NIR spectroscopy is a fast, non-destructive, operator-friendly, and portable method that
could facilitate the identification of drugs and quantification of dose in dosage forms and
can be integrated at the point of dispensing. Trenfield et al., (2020) demonstrated the
potential of NIR spectroscopy as a non-destructive quality control method where they used
a point-and-shoot approach to quantify the amount of paracetamol in printlets [28]. The
final piece of the puzzle is the interpretation of the NIR spectra which is not something that
would be feasible in clinical settings due to time constraints and lack of NIR spectroscopy
expertise. Machine learning (ML) may provide the answer to this final barrier.

ML is a subset of Artificial Intelligence (AI) that builds predictive or decision-making
models using historical data and improves upon these models through experience [29–32].
Like 3DP, ML is impacting several sectors [33–35], such as outperforming clinicians in
diagnosis in the medical sector [36] and streamlining the drug to market process in the phar-
maceutical sector [37,38]. However, the concurrent use of ML in 3DP of pharmaceuticals is
a largely untapped resource as a decision-making tool in formulation development. While
recent research has investigated the use of ML to address the trial-and-error approach of
3D printing [39,40], the RTR workflow remains underexplored.

The present study demonstrates the successful integration of both 3D printing and
ML to automate the ODF fabrication workflow. To rapidly produce personalised ODF
shapes, 3D printing was employed. Thereafter, the ODF prints were verified for both drug
and dose using a combination of NIR and ML. The model drugs selected for this study
were paracetamol, caffeine, and theophylline. The latter two are structurally similar, and
hence were used to ‘stress test’ the ML models. Lastly, an additional digital technology,
machine vision (MV), was also employed to analyse the in vitro disintegration of films.
MV is also a subset of AI that captures visual information via a camera and converts it into
digital information to be processed. The study discusses the potential of all three digital
technologies to automate the research workflow and help facilitate the transition of 3D
printing into clinical settings.

2. Materials and Methods
2.1. Materials

Blanose Carboxymethyl Cellulose Type 7HF-PH (725 kDa) was provided by Ashland
(Wilmington, DE, USA). Acetaminophen (paracetamol) powder (A5000-1KG), caffeine
powder (W222402-1KG-K), theophylline powder (T1633-1KG), and Patent Blue V sodium
salt for microscopy (21605-25G) were purchased from Sigma Aldrich (Gillingham, UK).

2.2. Methods
2.2.1. Feedstock Formulation

CMC feedstock formulations were prepared by adding the required amount of CMC
slowly to 100 mL of deionised water in a beaker while stirring with a spatula at room
temperature. The dispersion was left to stir for an hour on a hotplate stirrer with a magnetic
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stirrer rod to allow complete dissolution of the polymer and to allow dispersal of air bubbles.
All mixing was performed at ambient temperature. For oral cavity model (OCM) analysis,
formulations were dyed to visualise film dissolution by adding approximately 3 mL of 0.2%
w/v Patent Blue to 100 mL of formulation. For NIR and ML analysis, CMC formulations
were loaded with API (paracetamol or caffeine or theophylline) by adding the required
amount of API to deionised water and allowing complete dissolution of the drug and then
adding the required amount of polymer. Amount of API to achieve a certain % w/w film
was calculated by assuming all water would be removed by the drying process, as shown
in Table 1.

Table 1. Formulae for drug-loaded feedstock formulations.

Feedstock Formulation Water
(mL)

API
(g)

CMC
(g)

5% w/w Paracetamol 100 0.13 2.5
10% w/w Paracetamol 100 0.28 2.5
20% w/w Paracetamol 100 0.625 2.5

5% w/w Caffeine 100 0.13 2.5
10% w/w Caffeine 100 0.28 2.5
20% w/w Caffeine 100 0.625 2.5

5% w/w Theophylline 100 0.13 2.5
10% w/w Theophylline 100 0.28 2.5
20% w/w Theophylline 100 0.625 2.5

2.2.2. 3D Printing Process

Onshape (Onshape Inc., Boston, MA, USA) was used to design the films used in this
study. Figure 1 shows examples of each film design and image after printing, whereas
representative images of drug-loaded films can be found in Figure S1. Designs were
exported as stereolithography (.stl) files to the BioX Printer (Cellink, Gothenburg, Sweden),
a direct-ink writing 3D printer, using a USB drive. Scotch Blue Trim and Baseboard’s
Painter’s Tape #2093EL was applied to the petri dish prior to printing. Table 2 shows
optimised printing parameters which were selected based on initial 3D printing process
development.

Table 2. Optimised printing parameters used in this study.

Parameters

Needle gauge (Needle diameter) 22G (0.410 mm)
Compressed air pressure 100 kPa

Printing speed 20 mm/s
Infill pattern Grid infill
Infill density 25%

Feedstock formulations were loaded into syringes then needle and compressed air line
was attached to the syringe. Automatic bed levelling and calibration were performed to
ensure uniform printing between batches. Once printed, films dried overnight at ambient
conditions and then transferred to desiccator overnight to facilitate final drying. Thickness
of films were measured on several locations on the films using a thickness gauge (Mercer
Ltd., Manchester, UK). For OCM samples, 2.5 w/v% CMC were printed with a blue dye.
For NIR and ML analysis, drug-loaded feedstocks from Table 1 were printed using the
parameters in Table 2.
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Figure 1. Examples of CAD designs of shapes (square, strip, circle, star, heart) used in this study (top) and examples of 3DP
printed ODFs corresponding to the CAD designs (bottom) (Ruler markings in centimetres).

2.2.3. Rheology

Rheology profiles of the feedstock formulations were gathered via rotational rheometry
using a Bohlin Gemini HR Nano (Malvern Instruments, Malvern, UK) equipped with a
4◦/40 Cone, with a gap of 150 µm. Samples were subjected to 25 different shear rates
ascending logarithmically from 0.005 to 100 s−1 at 20 ◦C.

2.2.4. Oral Cavity Model (OCM) Disintegration Testing

The OCM facilitates physiologically relevant disintegration testing by simulating the
swallowing processes observed in the human mouth and was developed using information
from various images of the human buccal cavity and other data [41]. Swallowing, and thus
disintegration, is achieved through cyclic compression cycles of a silicone tongue against
an acrylic ceiling, with simulated salivary fluid (SSF) introduced into the OCM from the
anterior to posterior direction at a rate of 1.5 mL/min using a syringe driver [42].

The disintegration time was analysed using an MV algorithm. ODFs were placed in
the middle of the tongue surface before starting the compression sequence. A mobile phone
(Apple iPhone X, Apple Inc., Cupertino, CA, USA) was positioned on top of the acrylic
plate with the camera facing down recording at 30 frames per second (fps). A single frame
was extracted from the video between the compression and decompression phases and an
area was calculated by identifying the perimeter of the ODF using MATLAB (MathWorks,
Natick, MA, USA). For each ODF sample type tested mean and standard deviation of areas
were calculated using built-in MATLAB functions (n = 3).

2.2.5. Petri Dish Method Disintegration

ODF samples were placed in 90 mm petri dishes, which were positioned between
springs of a water bath with shaker functionality (37 ◦C, 70 shakes/min). An amount of
2.5 mL of SSF was added directly onto samples in each petri dish. Disintegration times
were recorded via stopwatch, and the point of disintegration established via operator
observations (point at which structural integrity was lost). For each ODF type, n = 3
samples were tested.
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2.2.6. Near-Infrared Spectroscopy Analysis

The near infrared spectra were collected using a MPA Bruker FT-NIR spectropho-
tometer (Bruker, Global). Pure CMC, paracetamol, caffeine, and theophylline powder
were used and were measured as references; n = 6 of each drug-loaded ODF type were
scanned at a resolution of 1 cm−1 over a range of 12,000–4000 cm−1 for 64 scans, using a
polytetrafluoroethylene (PTFE) backer.

2.2.7. High-Performance Liquid Chromatography Analysis

High-performance liquid chromatography (HPLC; Agilent 1260 Infinity II, Agilent
Technologies, Santa Clara, CA, USA) was used to verify drug dose. Calibration curve was
generated covering the concentration range of the films, 0.01 to 2.5 mg/mL. The HPLC
parameters for analysis of each drug varied and are enumerated in Table 3. An initial stock
solution was prepared for each drug by pouring the drug into a 250 mL volumetric flask
with the designated solution (Table 3). The stock solution was stirred using a magnetic
stirrer until the powder completely dissolved. Working solutions were formed from the
stock solution in 20 mL volumetric vials and diluted using the designated solution. For
each solution, 50–60 µL was extracted using a syringe equipped with a 0.22 µm PTFE filter
and subsequently poured into HPLC vials. The working solutions were used to generate
the calibration curve. For analysing the drug-loaded films, the same protocol was followed.
First, the weight of each film was recorded. Then, the films were placed in a 5 mL flask
and subsequently mixed with the designated solution until complete film disintegration.
Thereafter, the films were filtered and analysed via the HPLC.

Table 3. HPLC parameters.

Parameters Paracetamol Caffeine Theophylline

Mobile phase composition
A: Distilled Water A: Orthophosphoric Acid A: Distilled Water

B: Methanol B: Acetonitrile B: Acetonitrile
C: Ethanol

Mobile Phase ratio 85:15 80:20 60:10:30
Flow rate (mL/min) 1 1 1

Injection volume (µL) 20 10 1
Detection wavelength (nm) 247 272 272

Column Luna C18
(250 × 4.6 mm; 5 µm)

Luna C18
(250 × 4.6 mm; 5 µm)

Luna C18
(250 × 4.6 mm; 5 µm)

Column temperature (◦C) 40 40 40
Retention time (mins) 8.8 13.0 13.3

2.2.8. Machine Learning

ML models were developed using Python (version 3.9, Wilmington, DE, USA) to
identify the drug and dose of API in the ODFs, using the scikit-learn package (version
0.17.1). Unsupervised learning using Principal component analysis (PCA) on the raw data
was attempted to see if ML could inherently recognise the differences between groups
without labelling. Subsequently, supervised learning using linear discriminant analysis
(LDA) was applied to the data. LDA is a supervised alternative of PCA using labelled data
which tries to maximise the distance between groups. For LDA, the data were first pre-
processed to reduce signal noise using Savitzky-Golay filter (parameters: derivative = 0;
window size = 21; and polynomial = 1st order), and then the model was trained using a
training:testing split of 70:30 to see if the model could identify unseen data. The regression
analysis was performed using partial least squares (PLS). A training:testing split of 75:25
was used, where a lower testing size was used to account for the smaller sample size used
for regression analysis.
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3. Results and Discussion
3.1. 3D Printing Method Development

The present study sought to leverage digital technologies to automate, and in essence,
simplify the ODF fabrication pipeline. CMC was chosen as the model polymer due to
its pharmaceutical relevance. Several concentrations ranging from 1 to 2.5 w/v% CMC
were printed. The ideal concentration for printing was 2.5 w/v%, which was found to
both extrude and maintain print integrity post-extrusion. In contrast, 1 w/v% was found
to extrude but subsequently spread, resulting in a distorted print shape. Rheological
analysis (Figure 2) revealed that increasing the CMC concentration from 1 to 2.5 w/v%
increased the Newtonian plateau by two orders of magnitude, from 100 to 102 Pa.s, which
is in agreement with previous work [43]. Moreover, all formulations demonstrated shear-
thinning properties, which is desirable in 3D printing [44,45]. Thus, it was deduced that
the structural integrity of 2.5 w/v% was due to its higher viscosity values at low shear rates.

Figure 2. Rheology profiles of various concentrations of CMC feedstocks.

Further incorporation of materials, such as a dye for disintegration analysis or API,
revealed minor increases in rheological properties to the selected CMC concentration. A
dye was required for visualising the disintegration of films during OCM and MV analysis.
The effects of the dye were negligible on the rheological profile, most likely due to the
small amount of dye incorporated into the feedstocks, as illustrated in Figure 3A. The
incorporation of APIs into 2.5 w/v% CMC concentration had minor effect on the viscosity
(Figure 3B–D). The Newtonian plateau at low shear rates was found to remain in the order
of 102 Pa.s.

Based on these findings, formulations containing 2.5 w/v% CMC were used for subse-
quent analyses. The design and printing parameters were then optimised, where varying
the infill density (ID) was found to affect the thickness of films. Strip designs resulted in
film thicknesses of 73.34 ± 0, 95.56 ± 10.72 and 131.12 ± 9.63 µm, with ID of 25%, 40%
and 50%, respectively. Thus, increasing the ID increased the film thickness. Strips with
ID of 10% or below, and 50% or above were explored but these produced films with poor
resolution. Hence, it was concluded that the ideal ID were 25% and 40%.
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Figure 3. Rheological profiles of both (A) dye-loaded and (B–D) API-loaded 2.5 w/v% CMC solutions.

3.2. ODF Disintegration Study

ODFs were assessed for their disintegration characteristics using the OCM. The data
analysis process was automated via an MV algorithm. Strips with ID of 25% were found to
disintegrate in under 180 s (Table 4) hence adhering to the Pharmacopeial requirement for
suitable oral delivery [46], with a mean disintegration time of 80 s (Figure 4A). Strips with
ID of 40% were less predictable when assessed using the OCM. These films remained intact
for the first 90 s, and consistently fell off the tongue thereafter whilst remaining intact. Thus,
it was difficult to ascertain whether ID of 40% would pass the European Pharmacopeial
requirement of 180 s (Figure 4B). It was concluded that polymeric solutions of 2.5 w/v%,
with 25% ID, was suitable for oral delivery, whereby films with good resolution were
obtained, and were able to disintegrate within the European Pharmacopeial requirements.
To further validate this observation, films of star and circle geometries were also examined
using the OCM. Once more, it was discovered that these films were able to adhere to the
European Pharmacopeial requirements (Figure 5). The thickness of star and circle shaped
films printed with an ID of 25% were measured as 63.34 ± 5.78 µm and 93.34 ± 5.78 µm,
respectively.
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Table 4. Extracted frames from videos showing ODF samples during disintegration in OCM (ID—
infill density).

Strip
(25% ID)

Strip
(40% ID)

Star
(25% ID)

Circle
(25% ID)

0 s
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  What is evident from both area-time profiles in Figures 4 and 5 is a temporary increase
in area compared to the area at t = 0 s. This increase reflects a temporary increase in blue
dye over the synthetic tongue, as the film is being disintegrated, and subsequently releasing
the blue dye. It is also evident that the temporary increase is followed by a catastrophic
drop in area, reflecting the rapid removeable of the blue dye.

A modified Petri dish disintegration study was performed to validate the results from
the OCM disintegration studies. The observed disintegration times of strip (154 ± 8 s), star
(131 ± 2 s), and circle (118 ± 4 s) geometries complied with Pharmacopeial requirements.
As expected, the disintegration times were longer than that observed with the OCM, as
the latter applied mechanical forces to accelerate disintegration (Figure 6). The modified
petri dish results share a similar trend to the OCM observation, whereby both the star- and
circle-shaped films presented with faster disintegration times. Further work is needed to
explain this observation.
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Figure 4. Mean top-down area-time profiles for (A) 25% and (B) 40% ID strip assessed in the OCM (n = 3).

Figure 5. Mean top-down area-time profiles for (A) star and (B) circle geometries with 25% ID, assessed in the OCM (n = 3).

The above results demonstrated that DIW is a suitable technology for ODF fabrication.
The ideal CMC solution was 2.5 w/v%, which was found to possess rheological properties
to achieve ODF structures with suitable resolutions. Figure 1 demonstrates different shapes
that can be generated with this CMC concentration. In addition, the layer height and
optimal ID were 3 mm and 25%, respectively, which, post-drying, resulted in films with
thickness below 100 µm. The film thicknesses reported herein are among the smallest
values for 3D printed ODFs, such as those fabricated by fused deposition modelling (FDM),
selective laser sintering and inkjet printing [28,47]. The advantage of DIW is that the process
itself is rapid, and compared to FDM, feedstock preparation is rapid and does not require
additional costly apparatus (i.e., hot-melt extruder). However, despite the aforementioned
benefits, and the added advantages of rapid production and seamlessly producing different
shapes, a limitation of DIW is the drying step. In this study, the films were left to dry
overnight. This limitation affects other film fabrication technologies, including both solvent
and film casting, but remains a subject of future work for the authors.
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Figure 6. Disintegration time of films, as performed by both the OCM and modified petri dish.

3.3. Drug and Dose Verification Using ML and NIR

A limitation of translating 3D printing to clinical settings that has been previously
highlighted is quality control of the drug product produced [28]. Ideally this process
should be accurate as well as automated. NIR spectroscopy is an industry-standard
analytical method for quality control. It provides rapid measurements and can differentiate
between different materials. However, the analytical process is performed manually.
An emerging technology capable of automating both drug and dose verification from
NIR spectroscopy is ML. There are several tasks that can be achieved by ML, of which
classification and regression are pertinent to this study. Classification tasks aim to classify
similar groups together by identifying patterns in the dataset, whereas regression tasks
aim to predict continuous variables. In the context of this study, a classification task was
first used to determine the predictive performance of ML to identify which ODF is being
analysed. To ‘stress test’ the ML model, two drugs with similar chemical structures were
purposefully selected (i.e., caffeine and theophylline). The similarity score of these drugs
was 0.95, according DrugBank. This was then followed by a regression task to quantify
the concentration of API in the film, as quantified by HPLC (Table S1, see Supplementary
Materials). The benefit of drug verification can be for either the operator or for internet
of things (IoT). For the operator, an ML pipeline that automatically identifies which drug
to perform the dose verification for will mitigate human error. For IoT applications, a
database of formulation parameters can be seamlessly recorded.

3.4. Classification of ODFs by API

Classification can be achieved by either supervised or unsupervised learning. Su-
pervised ML requires the output to be labelled, such that the machine learning technique
(MLT) knows the target it should predict. Unsupervised on the other hand allows the
MLT to classify the samples without needing pre-labelled data, essentially asking the MLT
to inherently detect patterns. The advantage of unsupervised learning is that it obviates
the need for a user to pre-label the data, which in a dataset consisting of a large number
of samples, can be time consuming. In this study, both supervised and unsupervised
classification were explored to determine the optimal model.

Principal component analysis (PCA) is a common unsupervised learner with multiple
applications in ML [48]. PCA was used to decompose the NIR spectra, consisting of 16,595
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dimensions, to 3 dimensions that can be visualised. The NIR spectra were grouped by
their API (i.e., paracetamol, caffeine, and theophylline) as well as the API-free films, which
are referred to as pristine. The results of decomposing the NIR spectra using PCA are
presented in Figure 7. PCA was able to approximate the different APIs into clusters to
some extent. For example, paracetamol spectra and caffeine spectra were found to cluster
to the right and left, respectively, in the three-dimensional space; thus, if a new ODF
spectrum fell within either of these clusters then there is a high degree of certainty that it
would contain the respective API. However, the clusters were found to overlap, and thus
a 100% accuracy could not be achieved. This would pose a challenge if PCA was paired
with a clustering algorithm which seeks to automatically detect clusters in datasets. To
illustrate this hypothesis, three unsupervised clustering algorithms were used: k-means,
density-based spatial clustering of applications with noise (DBSCAN) and hierarchical
clustering. Figure 8 illustrates a two-component PCA plot, as well as the results of the three
clustering algorithms. It can be observed that while all three clustering algorithms were
able to successfully cluster the lower-right cluster (i.e., paracetamol), an exact match to the
true clusters was not obtained for the other APIs.

Figure 7. PCA decomposition of the raw NIR spectra to three dimensions (PCA 1—1st principal
component 1; PCA 2—2nd principal component).

In addition to PCA, t-distributed stochastic neighbour embedding (t-sne) and kernel
PCA (kPCA) were also applied to the raw NIR spectra. One limitation with PCA is that
it is a linear transformer, and hence assumes that the data possess a linear relationship.
Both t-sne and kPCA are able to decompose the dataset using non-linear transformation.
However, a similar finding to PCA was revealed, in that an exact clustering was not
obtained (Figure 9). Therefore, it was concluded that PCA, t-sne and kPCA were unable to
classify the APIs.
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Figure 8. Two component PCA of the raw NIR spectra. PCA resulted in overlaps between clusters, which k-means, DBSCAN
and hierarchical clustering were unable to exactly replicate. k-means and hierarchical clustering inherently identified four
different clusters (clusters 0,1,2, and 3); however, they were not an exact match to the true values. DBSCAN was only able to
detect two clusters (0 and 1) (PCA 1—1st principal component 1; PCA 2—2nd principal component).

Figure 9. Non-linear transformation of the raw NIR spectra using T-sne and kPCA (kPCA1—1st principal component;
kPCA2—2nd principal component).

As unsupervised learning was unsuccessful, supervised learning was then employed.
A common supervised learner is linear discriminant analysis (LDA). This algorithm is
similar to PCA; however, with the use of a pre-labelled dataset, it seeks to maximise the
distance between the classes [49]. For this study, LDA was more effective in classifying the
spectra according to their API constituent. Analysing the raw spectra using LDA yielded
an improved separation between the different APIs (Figure 10) compared to the three
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unsupervised learners used. Unique clustering groups were observed for the paracetamol-
containing films, with a minor overlap between the caffeine- and theophylline-containing
films, as well as minor overlaps between the pristine and caffeine-containing films. A
simple pre-processing step using a Savitzky–Golay filter resulted in complete separation
between the different ODFs (Figure 10). Therefore, an ML pipeline of Savitzky-Golay
pre-processing of NIR with LDA was found to be the most efficient pipeline for this study.
To demonstrate the efficiency of this approach, the NIR dataset was split into 70:30, where
the 70% was used to develop a predictive model (i.e., the training set), and the other 30%
was used to evaluate the accuracy of the model (i.e., the testing set). A 100% prediction
accuracy was achieved using the pre-processed spectra, whereas the accuracy with using
the raw spectra was 88.9%. A confusion matrix of the result (Figure 11) revealed that two
pristine spectra were predicted as caffeine, which is understandable as both were found to
form clusters in similar data space.
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3.5. Regression for Quantifying API Dose

Following the successful clustering of films according to their API constituent, a
regression model was developed to predict the API dose for each class. Partial least squares
(PLS) was employed in this study. PLS is a common supervised learner suited for NIR
owing to its ability to handle datasets where the number of dimensions are far greater
than the sample size [50,51]. Applying PLS to the aforementioned ML pipeline, it was able
to achieve an R2 value of above 0.99 for each of the classes. Each API class included the
spectra of pristine as 0 w/w% API content. To test the accuracy of PLS, the dataset was split
into training and testing, using a 75:25 split, which resulted in a predicted R2 of above 0.96
for each of the API class. Splitting the data into training and testing allows for the latter
to essentially behave as ‘blind data’, which provides a more robust evaluation of the ML
model (Figure 12).

Figure 12. Comparing the predicted to the actual drug concentration on the test dataset for each API.
The results are of the pre-processed NIR-ML data using partial least squares.

3.6. Realising the Benefits of Digital Technologies

The study began by considering the tools needed to further enhance ODF develop-
ment, with the aim of making the manufacturing process suitable for personalisation and
on-demand production. It transpired that digital technologies possessed the tools needed
to deliver this goal [52]. At the research setting, 3D printing, MV and ML were found to
perform tasks whilst minimising human supervision. The former allowed multiple films
to be produced once the process was started, whereas contemporary fabrication methods
require each film to be manually cut. Similarly, MV was able to determine the disintegration
times of films, which currently is performed through constant observation by the researcher.
Lastly, ML was able to interpret NIR spectra, replacing the need for human interpretation of
the individual peaks. It is also worth remarking that 3D printing and MV provided digital
precision in the order of micrometres and milliseconds, respectively. ML on the other hand
was found to rapidly complete the drug and dose verification task. The predictions made
with the proposed ML pipeline took 0.091 s for LDA to be trained, and less than 0.001 s to
classify one NIR spectrum. For PLS, the training and prediction per sample were 0.015 and
0.001 s, respectively. Moreover, in clinical settings, 3D printing and ML will ensure tasks
can be replicated whilst diminishing the need for onsite expert supervision, which in turn
will reduce expenses. The current work revealed that unsupervised algorithms were not
100% accurate in differentiating between the different APIs, particularly between caffeine
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and theophylline. Consequently, there will be a need for an expert to label the NIR spectra
for training, which can be done offsite. Society, including both the pharmaceutics and
healthcare sectors, is currently moving towards the next industrial revolution, Industry 4.0,
where all three digital technologies are implicated therein [52]. The present study provides
a strong validation for the use of digital technologies, showcasing their potential for an
automated and reliable ODF workflow.

4. Conclusions

The present study confirmed that DIW was able to produce ODFs of bespoke shapes
and with suitable disintegrating times. The ideal CMC concentration and infill were 2.5%
w/w and 25%, respectively, which resulted in ODFs disintegrating far within the Euro-
pean Pharmacopeia specified 3 min. Three different API-containing films were fabricated
(paracetamol, caffeine, and theophylline), where for each API category three varying con-
centrations of between 0–20% w/w were prepared. In addition, a robust ML pipeline was
proposed for verifying both the drug and dose of ODFs. Both unsupervised and supervised
learning were evaluated for drug verification, where it was discovered that supervised
learning outperformed three different unsupervised learners. LDA was able to achieve
drug verification accuracies of 88.9% and 100% with raw and pre-processed NIR spectra,
respectively. Dose verification for all three API ODFs categories yielded high accuracies,
with r2 values above 0.96. The study also revealed that the proposed ML pipeline was
computationally undemanding, and suitable for scale-up with prediction times of 0.001 s
per sample. Therefore, NIR spectroscopy and ML were confirmed to be suitable technolo-
gies for rapid drug and dose verification. Future work will concentrate in minimising the
drying step of ODFs prepared by DIW.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122187/s1, Figure S1: Representative low, medium and high-concentration
drug-loaded film, Table S1: API concentration as determined by HPLC.
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