

Supplementary Materials: Nanoencapsulation of Pomegranate Extract to Increase Stability and Potential Dermatological Protection

Lucía Yepes-Molina, Jose A. Hernández and Micaela Carvajal

Figure S1. Transmission electronic microscopy image of CI-vesicles.

Table S1. Antioxidant activity (μ M TE) of pomegranate extract (PG-E), free or encapsulated in CI-vesicles after released with methanol and chloroform.

© O	
Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.	Antioxidant activity (µM TE)
This article is an open access article distributed under the terms and	
conditions of the Creative Commons Attribution (CC BY) license	
(http://creativecommons.org/licenses/by/4.0/).	
PG-E, free	5830.25 ± 169.00
CI-vesicles with PG-E released with methanol	5786.29 ± 148.00
CI-vesicles with PG-E released with chloroform	5645.38 ± 331.45

TE: Trolox Equivalents. Data are means \pm SE (n = 3).

Pharmaceutics **2021**, 13, 271

Figure S2. TBARS (nM/mg protein) determined in HaCaT cells exposed to UV radiation after treatment for 24 h with cauliflower inflorescence vesicles (CI-vesicles) with pomegranate extract (PG-E) (0.01%). Data are means \pm SE (n = 6).