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Abstract: Inflammation is a defense mechanism that protects the body from infections. However,
chronic inflammation causes damage to body tissues. Thus, controlling inflammation and investi-
gating anti-inflammatory mechanisms are keys to preventing and treating inflammatory diseases,
such as sepsis and rheumatoid arthritis. In continuation with our work related to the discovery
of bioactive natural products, a polyphenol, catechin-7,4′-O-digallate (CDG), was isolated from
Woodfordia uniflora, which has been used as a sedative and remedy for skin infections in the Dhofar
region of Oman. Thus far, no study has reported the anti-inflammatory compounds derived from
W. uniflora and the mechanisms underlying their action. To investigate the effects of CDG on the
regulation of inflammation, we measured the reduction in nitric oxide (NO) production following
CDG treatment in immortalized mouse Kupffer cells (ImKCs). CDG treatment inhibited NO produc-
tion through the downregulation of inducible nitric oxide synthase expression in lipopolysaccharide
(LPS)-stimulated ImKCs. The anti-inflammatory effects of CDG were mediated via the inhibition
of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, an important
inflammatory-response-associated signaling pathway. Moreover, CDG treatment has regulated the
expression of pro-inflammatory cytokines, such as IL-6 and IL-1β. These results suggested the
anti-inflammatory action of CDG in LPS-stimulated ImKCs.

Keywords: Woodfordia uniflora; polyphenol; macrophages; inflammation; NF-κB; Arid5a

1. Introduction

Inflammation is a biological response to tissue damage or infection, and the main
inflammatory mediators include immune cells, such as macrophages and neutrophils [1,2].
The purpose of inflammation is to suppress tissue damage and regenerate damaged cells.
However, chronic inflammation contributes to inflammatory diseases, such as inflammatory
bowel disease, sepsis, and rheumatoid arthritis [3–5]. Therefore, it is important to control
the inflammation levels for the maintenance of homeostasis in the body. Inflammatory
responses occur when immune cells in the body recognize infections and then activate
the inflammatory pathways, such as the nuclear factor kappa-light-chain-enhancer of
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activated B cells (NF-κB) pathway [6], and produce inflammatory mediators, such as
pro-inflammatory cytokines, nitric oxide (NO), and cyclooxygenase 2 (COX-2) [7,8].

NO is an important signaling molecule involved in various physiological activities,
such as immune action, vascular extension, and cell signaling [9]. It triggers a defen-
sive mechanism in the immune system and mediates the activation of various immune
cells. When macrophages are exposed to external stimuli, they secrete NO through the
activation of inducible nitric oxide synthase (iNOS) as a defensive response [10]. Recent
studies have found that excessive NO production can cause diseases such as Parkinson’s
disease and ischemic brain injury [11,12]. Therefore, the regulation of NO production
is important for maintaining human health [13,14]. Thus, there is a crucial need to dis-
cover novel regulators of NO production; natural products represent potential candidate
anti-inflammatory mediators.

In continuation of our work related to the discovery of bioactive products from diverse
natural sources [15–20], a liquid chromatography/mass spectrometry (LC/MS)-guided
chemical analysis of the extract of Woodfordia uniflora (W. uniflora), native plant species
of Oman, was performed to identify anti-inflammatory compounds. W. uniflora is a tall
slender shrub belonging to the family Lythraceae that is abundant throughout the Dho-
far region in Oman; the plant has been used locally as a sedative and remedy for skin
infection. In our recent study, the first phytochemical examination of W. uniflora was con-
ducted [21]; 19 polyphenols, including three new polyphenols, were successfully isolated
from the extract and its fractions. These compounds possess antifungal activity against
the human fungal pathogens Cryptococcus neoformans and Candida albicans; however, no
anti-inflammatory compounds derived from W. uniflora have been identified thus far, and
the mechanisms underlying their activity have not yet been elucidated. In the present
study, phytochemical analysis of the extract of W. uniflora led to the isolation of catechin-
7,4′-O-digallate (CDG) by LC/MS-guided chemical analysis, and the anti-inflammatory
effects of CDG and the mechanisms underlying its action were investigated. Further, we
describe the isolation and structural characterization of CDG and demonstrate its effects
on inflammatory mediators, such as NO and pro-inflammatory cytokines, and the inflam-
matory NF-κB signaling pathway in lipopolysaccharide (LPS)-stimulated immortalized
mouse Kupffer cells (ImKCs).

2. Materials and Methods
2.1. Extraction and Isolation

Finely ground leaves (100 g) were extracted with 90% methanol (MeOH) and stirred
at room temperature. The resultant extracts were filtered through Whatman’s Grade 1
filter paper, and the collected filtrates were concentrated by using a rotary evaporator to
afford a crude extract (12.4 g). This crude extract was suspended in distilled water (700 mL)
and successively partitioned with the solvents ethyl acetate (EtOAc) and n-butanol (n-
BuOH), thus yielding the EtOAc-soluble (8.3 g) and n-BuOH-soluble (1.5 g) fractions. The
EtOAc-soluble fraction was further subjected to the Diaion HP-20 column in a gradient
solvent system consisting of MeOH and H2O (100% H2O, 50% MeOH, 100% MeOH)
to yield three subfractions W1 (2.0 g), W2 (2.5 g), and W3 (3.5 g). The W3 subfraction
(100% MeOH) (3.5 g) was applied to Sephadex LH-20 column chromatography to give
four successive fractions (W31-W34). The W34 subfraction (2.7 g) was then fractionated
by reversed-phase (RP)-silica column chromatography with 40% MeOH/H2O to afford
five subfractions (W341-W345). The W33 subfraction (352.5 mg) was separated using
preparative RP HPLC with MeOH/H2O (gradient solvent system of 10–80% MeOH/H2O)
to yield six subfractions (W331-W336). Finally, the subfraction W334 (92.3 mg) was purified
by the semi-preparative HPLC separation with 45% MeOH/H2O to isolated CDG (tR
12.8 min, 4.5 mg).
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2.2. Cell Culture

ImKCs (SCC119) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The
ImKCs were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Sigma-
Aldrich) containing 1% antibiotic-antimycotic (100×) (Thermo Fisher Scientific, Inc., Waltham,
MA, USA) and 10% Fetal Bovine Serum (FBS; Thermo Fisher Scientific, Inc.) in an incubator
at 37 ◦C under 5% CO2 conditions.

2.3. Cell Viability Assay

The ImKCs were seeded in a 96-well plate and pretreated with CDG (5, 10, 20, 40,
and 80 µM) for 24 h in a CO2 incubator at 37 ◦C. Cell viability was measured using the
EZ-Cytox cell viability assay kit (Daeil Lab., Seoul, Korea); the reagent was diluted (1:20)
with DMEM. All the supernatants were transferred to another 96-well plate. The EZ-Cytox
reagent was added to each well, followed by incubation in a CO2 incubatorat 37 ◦C for 1 h.
The absorbance of the samples in the plate was measured using a VersaMax microplate
reader (Molecular Devices, San Jose, CA, USA).

2.4. Nitric Oxide Assay

The ImKCs were seeded in a 96-well plate and incubated overnight in a CO2 incubator
at 37 ◦C. The cells were pretreated with CDG (5, 10, 20, and 40 µM) for 2 h. Further,
they were treated with LPS (1 µg/mL) for 24 h in a CO2 incubator. The supernatants
(100 µL) were then transferred into a new plate, followed by the addition of 100 µL of the
Griess reagent (1% sulfanilamide, 0.1% N-1-naphthylenediamine dihydrochloride, and
2.5% phosphoric acid). The absorbance of the samples in the plate was measured using a
microplate reader at 540 nm.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was used to measure the levels of pro-inflammatory cytokines produced by
the cells. The ImKCs were cultured in a 96-well plate and treated with CDG (5, 10, 20, and
40 µM) for 2 h. Then, the cells were treated with LPS (1 µg/mL) and incubated in a CO2
incubator at 37 ◦C for 24 h. After incubation, the supernatants (100 µL) were transferred to
another 96-well plate, and the level of each cytokine was measured using anti-interleukin-6
(IL-6), anti-interleukin-1β (IL-1β), and anti-tumour necrosis factor-α (TNF-α) antibodies
(BD Pharmingen, San Diego, CA, USA). Purified antibodies were added to an ELISA
plate, followed by incubation overnight in a refrigerator at 4 ◦C. Next, the antibodies were
washed with the wash buffer (phosphate-buffered saline (PBS) with 0.05% Tween 20) and
incubated with blocking solution (10% FBS in PBS) for 1 h at room temperature. After
1 h, the plate was rewashed with the wash buffer; then, the supernatant and standard
solution were added, allowed to react for 1 h, and then washed with the wash buffer. After
washing, the detection antibodies were added; the reaction was allowed to occur for 1 h.
Next, streptavidin-conjugated alkaline phosphatase (AKP; BD Pharmingen) was added
after washing; the reaction was allowed to occur for 30 min. After washing with a wash
buffer, 1 tablet of 4-nitrophenyl phosphate (Sigma-Aldrich) was added to the substrate
buffer (10% diethanolamine, 0.1% MgCl2·6H2O, 0.2% NaN3, pH 9.8); this solution was
then added to each well, and when a color change was seen in the reference well, stop
buffer (1 N NaOH) was added to stop the reaction. Finally, the absorbance of the samples
was measured at 405 nm using a microplate reader.

2.6. RNA Extraction and cDNA Synthesis

The ImKCs were seeded in a 12-well plate and incubated overnight in a CO2 incubator.
The cells were pre-treated with CDG (5, 10, 20, and 40 µM) for 2 h and were then activated
by LPS (1 µg/mL) treatment for 3 h. The RNA was extracted from the ImKCs using a Trizol
kit (Bio Science Technology, Daegu, Korea). The cDNA synthesis (conversion of RNA into
cDNA by reverse-transcription) was performed using the iScript™ cDNA Synthesis Kit
(Bio-Rad Laboratories, Hercules, CA, USA).
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2.7. Quantitative Polymerase Chain Reaction (qPCR)

The cDNA obtained through reverse transcription was mixed with TOPreal™ qPCR
2× PreMIX (SYBR-Green, Enzynomics, Daejeon, Korea), according to the manual provided
by the manufacturer. The PCR analysis was performed following the manufacturer’s
protocol using CFX Connect Real-Time PCR Detection System (Bio-Rad Laboratories; pre-
denaturation at 95 ◦C for 15 min, 38 cycles of denaturation at 95 ◦C for 10 s, annealing
at 60 ◦C for 15 s, and extension at 72 ◦C for 30 s). The primers used for quantifying the
target genes, including those encoding iNOS, IL-6, IL-1β, TNF-α, which are inflammatory
mediators; β-actin; and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Bionics,
Seoul, Korea), which was used as the housekeeping gene, are shown in Table S1.

2.8. Western Blotting

The cells were cultured in a 12-well plate and incubated overnight in an incubator at
37 ◦C and treated with CDG for 2 h. After 2 h, cells were stimulated with LPS treatment for
3 min [phospho (p)-inhibitor of κB (IκB)α and IκBα] or 24 h (iNOS). The cells were washed
with cold PBS and lysed in RIPA buffer (10 mM NaF, 100× protease inhibitor cocktail,
1 mM Na3VO4); the cell lysates were then transferred into microcentrifuge tubes. The
cell pellets and the supernatants were separated by centrifugation, and the supernatants
were used in the subsequent experiments. The prepared protein samples’ concentrations
were measured at 595 nm using Bio-Rad Protein Assay Kit (Bio-Rad Laboratories). Bovine
serum albumin (BSA) was used for the construction of the standard curve. The lysates
were boiled in sample buffer at 100 ◦C for 5 min after mixing. The prepared samples were
subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred
onto nitrocellulose membranes (XOGENE, Englewood, NJ, USA). Non-fat dry milk (5%,
LPS Solution, Daejeon, Korea) in Tris-buffered saline-Tween 20 (TBS-T) was used as the
blocking agent for each membrane. Then the membranes were incubated with the primary
antibodies overnight at 4 ◦C in a refrigerator. Further, each membrane was incubated for
1 h with the secondary antibodies (Cell Signaling Technology, Danvers, MA, USA). The
intensities of the protein bands on the membranes were visualized and analyzed using the
AI680 system (GE Healthcare, Chicago, IL, USA), along with an electrochemiluminescence
(ECL) solution.

2.9. Immunofluorescence Technique

Immunofluorescence was used to confirm the translocation of NF-κB p65, which leads
to activation of the NF-κB pathway, and AT-rich interaction domain 5A (Arid5a), which
post-transcriptionally regulates the stability of IL-6 mRNA. The ImKCs were cultured in
a 12-well plate with a coverslip attached and pre-treated with CDG for 2 h. Next, cells
were stimulated with LPS treatment for 2 h (p65) or 3 h (Arid5a). After LPS treatment,
all the supernatants were removed. The cells were washed with PBS and fixed using 4%
paraformaldehyde solution in PBS (Tech & Innovation, Chuncheon, Korea) on the coverslip
at room temperature for 15 min. After fixation, the cells were washed with PBS and were
permeabilized using 0.3% Triton X-100 (Sigma-Aldrich) on the coverslip for 10 min at room
temperature and then washed with PBS. After permeabilization, blocking was performed
at room temperature for 1 h using 1% BSA in PBS; then, the cells were washed with PBS.
Thereafter, the samples were treated with dilute solutions of the primary antibodies at
room temperature for 1 h, washed with PBS, and then reacted with diluted solutions of the
secondary antibodies in the dark for 40 min. Finally, the samples were washed with PBS.
The coverslips were fixed onto slide glasses using a mounting solution, and fluorescent
images were captured using a Lionheart FX microscope (Biotek, Winooski, VT, USA).

2.10. Statistical Analysis

The data are expressed as the mean ± standard deviation. All experiments were
performed in triplicate, with each being repeated three times. One-way ANOVA and
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Dunnett’s multiple comparison test were used to test the statistical significance of the
results. The experimental results were considered statistically significant at p < 0.05.

3. Results and Discussions
3.1. Isolation and Identification of Catechin-7,4′-O-Digallate from W. uniflora

The crude extract of W. uniflora leaves was partitioned using the solvents EtOAc
and n-BuOH for fractionation to obtain EtOAc- and n-BuOH-soluble fractions. Based
on the LC/MS analysis of the two fractions, further phytochemical investigation of the
EtOAc-soluble fraction was carried out, by successive column chromatography including
silica gel, RP-C18 silica, and Sephadex LH-20, as well as preparative and semi-preparative
HPLC; this procedure resulted in the isolation of a polyphenol. Its structural elucidation
was performed; the compound was confirmed to be CDG (Figure 1a) by comparing the
NMR spectral data and optical rotation values with those reported earlier [22] and by
LC/MS analysis.
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Figure 1. Effect of CDG on cell viability. (a) Chemical structure of CDG. (b) The immortalized mouse Kupffer cells
(ImKCs)cells were treated with CDG (5, 10, 20, 40, and 80 µM) for 24 h. Cell viability rates were compared with the CDG-
untreated control group. The cell viability rates are shown via a bar graph. Data are represented as the mean ± standard
deviation. ** p < 0.01 relative to the CDG-untreated control group. CDG, catechin-7,4′-O-digallate; ImKC, immortalized
mouse Kupffer cells.

Polyphenols have been shown to have a wide range of biological activities such
as antioxidant and anticancer effects, as well as anti-inflammatory effects [23–27]. A
polyphenol extracted from green tea, known as epigallocatechin gallate, is a famous anti-
inflammatory and antioxidant compound [28]. Moreover, quercetin, which is abundant in
fruits, vegetables, and leaves, has already been used to treat inflammation. Considering
the anti-inflammatory potential of polyphenols, the discovery of a new polyphenol and
the measurement of its anti-inflammatory effects is promising for the development of new
anti-inflammatory drugs. Therefore, we evaluated the anti-inflammatory properties of a
new polyphenol, CDG, and its regulatory mechanism of action in macrophages.

3.2. Inhibition of NO Production and iNOS Expression by CDG in LPS-Stimulated ImKCs

The cytotoxicity test was performed to confirm the anti-inflammatory effects of CDG
at non-cytotoxic concentrations. The ImKCs were treated with CDG for 2 h, followed
by LPS treatment for 24 h. CDG was non-cytotoxic at concentrations up to 40 µM and
cytotoxic at 80 µM. Hence, we used CDG at concentrations of up to 40 µM in this study
(Figure 1b). NO is a signaling molecule that plays a key role in inflammatory responses.
Overproduction of NO induces inflammatory reactions and tissue damage. ImKCs were
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treated with CDG for 2 h before stimulation with LPS treatment, resulting in reduced NO
production, which occurred in a CDG dose-dependent manner (Figure 2a). In addition, we
measured the iNOS mRNA and protein expression levels to confirm whether LPS-induced
NO production is due to iNOS regulation. The mRNA and protein expression levels of
iNOS were increased after LPS treatment and reduced after CDG treatment in a dose-
dependent manner (Figure 2b,c). This result demonstrated that CDG treatment reduced
NO production via downregulating iNOS expression.
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Figure 2. Effect of CDG on NO production and iNOS expression. The ImKC cells were treated with CDG (5, 10, 20, and
40 µM) for 2 h and stimulated by LPS (1 µg/mL) for the experiment. (a) After LPS treatment for 24 h, the NO production
was measured and quantified using a standard curve for nitrite solution. The NO production level is shown via a bar graph.
Data are represented as the mean ± standard deviation. (b) After LPS treatment for 3 h, the mRNA expression of iNOS was
measured and compared with LPS-treated control group set at 100%. iNOS mRNA expression levels are shown with a bar
graph. Data are represented as the mean ± standard deviation. (c) After LPS treatment for 24 h, the protein expression
levels of iNOS were measured and compared with those in the LPS-treated control group. ## p < 0.01 and ### p < 0.001
relative to the untreated control group. * p < 0.05 and ** p < 0.01 relative to the LPS-treated and CDG-untreated group. CDG,
catechin-7,4′-O-digallate; NO, nitric oxide; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide.

3.3. Regulation of Pro-Inflammatory Cytokine Production by CDG in LPS-Stimulated ImKCs

Inflammatory responses are promoted by inflammatory mediators, such as IL-6, IL-1β,
TNF-α, and NO [29]. Therefore, the effects of CDG on the production of pro-inflammatory
cytokines in LPS-treated ImKCs were investigated by ELISA. CDG treatment inhibited the
production of IL-6 and IL-1β in a dose-dependent manner (Figure 3a,b), but not TNF-α
(Figure 3c). Moreover, the mRNA expression levels of pro-inflammatory cytokines were
measured by qPCR. CDG treatment reduced the expression of IL-6 and IL-1β, but not
TNF-α, in a dose-dependent manner (Figure 4).

Via ELISA, we demonstrated that the levels of IL-6 and IL-1β production were reduced
by CDG treatment. Next, via qPCR, it was confirmed that only the mRNA expression
levels of IL-1β were affected by CDG treatment. In general, quantifying cytokine-encoding
genes’ mRNA levels is the first step towards the production and regulation of cytokines.
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However, interestingly, we observed that the production of IL-6 was reduced despite the
IL-6 mRNA expression not being inhibited.
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Figure 3. Effect of CDG on pro-inflammatory cytokine production. The ImKC cells were treated with CDG (5, 10, 20, and
40 µM) for 2 h and stimulated by LPS (1 µg/mL) for 24 h. After LPS treatment, the pro-inflammatory cytokine such as
(a) IL-6, (b) IL-1β, and (c) TNF-α production were measured and quantified using a standard curve. The pro-inflammatory
cytokine production level is shown with a bar graph. Data are presented as the mean ± standard deviation. ## p < 0.01
and ### p < 0.001 relative to the untreated control group. ** p < 0.01 and *** p < 0.001 relative to the LPS-treated and
CDG-untreated group. CDG, catechin-7,4′-O-digallate; LPS, lipopolysaccharide; IL, interleukin; TNF, tumor necrosis factor.
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Figure 4. Effect of CDG on pro-inflammatory cytokine mRNA expression. The ImKC cells were treated with CDG (5,
10, 20, and 40 µM) for 2 h and stimulated by LPS (1 µg/mL) for 3 h. After LPS treatment, the mRNA expression of
pro-inflammatory cytokines, such as (a) IL-6, (b) IL-1β, and (c) TNF-α, were compared with the LPS-treated group set
at 100%. The mRNA levels of the pro-inflammatory cytokines are shown via a bar graph. Data are represented as the
mean ± standard deviation. ## p < 0.01 and ### p < 0.001 relative to the untreated control group. * p < 0.05, ** p < 0.01, and
*** p < 0.001 relative to the LPS-treated and CDG-untreated group. CDG, catechin-7,4′-O-digallate; LPS, lipopolysaccharide;
IL, interleukin; TNF, tumor necrosis factor.

3.4. Inhibition of Phosphorylation and Degradation of IκBα by CDG in LPS-Stimulated ImKCs

Major signaling pathways for LPS-induced activation of inflammatory response in
macrophages are mitogen-activated protein kinases (MAPKs) and NF-κB [30,31]. To eluci-
date the regulatory mechanism of action of CDG-mediated anti-inflammatory responses,
the alleviation of MAPK phosphorylation by CDG was investigated in LPS-stimulated
macrophages; however, CDG did not change phosphorylation status of MAPKs (Figure
S1). NF-κB, another major inflammatory signaling pathway, is strictly regulated by IκBα,
an NF-κB inhibitor. Upon LPS stimulation, IκBα is phosphorylated and then degraded
by ubiquitination. NF-κB p50/p65 separate from IκBα and translocate into the nucleus,
thereby activating the NF-κB pathway. Activated NF-κB induces the production of inflam-
matory mediators, such as NO and pro-inflammatory cytokines [32,33]. We measured the
levels of IκBα phosphorylation and NF-κB p65 translocation to confirm NF-κB activation.
The levels of p-IκBα were increased after LPS treatment and reduced after CDG treatment
in a dose-dependent manner. In addition, LPS-induced degradation of IκBα was reduced
by CDG treatment in a dose-dependent manner (Figure 5a).
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Figure 5. Effect of CDG on the NF-κB pathway. ImKC cells were treated with CDG (5, 10, 20, and 40 µM) for 2 h and
stimulated by LPS (1 µg/mL) for the experiment. (a) Cell lysates were used for the analysis of the phosphorylation and
degradation of IκBα by Western blotting. β-actin was used as the loading control. (b) Immunofluorescence staining for
NF-κB p65 (green) and compared with DAPI (blue). Scale bars: 10 µm. CDG, catechin-7,4′-O-digallate; NF-κB, nuclear
factor kappa-light-chain-enhancer of activated B cells; LPS, lipopolysaccharide; DAPI, 4′,6-diamidino-2-phenylindole. Scale
bar = 10 µM.

NF-κB p65 translocation was confirmed using immunofluorescence assay. After LPS
treatment, NF-κB p65 translocated from the cytoplasm to the nucleus, indicating NF-κB
activation. However, CDG treatment (40 µM) blocked the nuclear translocation of NF-κB
p65 (Figure 5b). Collectively, CDG inhibited IκBα degradation and phosphorylation as well
as the activation of NF-κB by blocking the nuclear translocation of NF-κB p65, eventually
leading to reduced NO production.

Based on the experimental data, CDG appears to selectively regulate iNOS and IL-1β
production based on the selective regulation of the NF-κB pathway. Several studies have
shown that natural compounds cannot inhibit the production of multiple pro-inflammatory
cytokines simultaneously. Depending on the inhibitory effects of compounds on only
certain signaling pathways, the production of cytokines may be differentially regulated
by various compounds [34,35]. In particular, p38 is the main regulator of TNF-α mRNA
expression [36], and there is a study showing that the downregulation of the components
of only the NF-κB pathway cannot completely inhibit TNF-α production [37]. Furthermore,
extracellular signal-regulated kinase (ERK) is not essential for the production of IL-1β.
Based on these studies, we suggest that the inhibition of iNOS and IL-1β transcriptional
activation by CDG treatment might be due to its selective regulatory effect on NF-κB.

3.5. Inhibition of Arid5a Activation by CDG in LPS-Stimulated ImKCs

In general, cytokine production is tightly regulated by the transcriptional activation
of cytokine-encoding genes. In the present study, though IL-6 secretion was regulated
by CDG, its mRNA expression remained unaffected, as revealed by the ELISA and qPCR
results (Figures 3 and 4). Based on these results, we speculated that CDG treatment does
not affect IL-6 mRNA expression but is involved in the regulation of RNA-binding proteins
(RBPs), such as tristetraprolin (TTP), AT-rich interaction domain 5A (Arid5a), and regnase-
1, which affect its post-transcriptional stability, thereby regulating its secretion [38]. Arid5a
is an RBP that specifically increases the post-transcriptional stability of IL-6 mRNA, while
TTP and regnase-1 affect the mRNA stability of other cytokines in addition to IL-6 [39,40].
Furthermore, it has been reported that Arid5a and regnase-1 act competitively, but Arid5a
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dominates regnase-1 [41–43]. Under normal conditions, Arid5a exists in the nucleus. It is
activated by LPS stimulation and is then translocated to the cytoplasm, where it interacts
with the three prime untranslated regions (3′-UTR) of IL-6 mRNA, enhancing the stability
of IL-6 mRNA [44,45]. We performed immunofluorescence analysis to demonstrate the
effect of CDG on the localization of Arid5a in LPS-stimulated macrophages. Following
LPS stimulation, Arid5a was found to have translocated from the nucleus to the cyto-
plasm. CDG treatment (40 µM) inhibited the LPS-induced translocation of Arid5a to the
cytoplasm (Figure 6). This result indicates that CDG treatment reduced the stability of
IL-6 mRNA and thus its secretion by inhibiting the cytoplasmic localization of Arid5a in
LPS-stimulated macrophages.
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Figure 6. Effect of CDG on Arid5a activation. The ImKC cells were treated with CDG (5, 10, 20, and
40 µM) for 2 h and stimulated by LPS (1 µg/mL) for 3 h. Immunofluorescence staining for Arid5a
(green) and compared with DAPI (blue). Scale bars: 10 µm. CDG, catechin-7,4′-O-digallate; ImKC,
immortalized mouse Kupffer cells; LPS, lipopolysaccharide; Arid5a, AT-Rich interaction domain 5a;
DAPI, 4′,6-diamidino-2-phenylindole. Scale bar = 10 µM.

4. Conclusions

This study aimed to investigate the anti-inflammatory effects of CDG. NO produc-
tion was induced by LPS treatment and inhibited by CDG treatment. Additionally, the
production of the pro-inflammatory cytokines IL-6 and IL-1β, but not TNF-α, was re-
duced by CDG treatment. The levels of IκBα phosphorylation, degradation, and hence
the nuclear translocation of NF-κB p65 were reduced by CDG treatment. The mechanism
underlying the regulation of IL-6 production by CDG involved reducing the stability of
IL-6 mRNA by preventing the cytoplasmic translocation of Arid5a. These results sug-
gested that the mechanism underlying the anti-inflammatory effects of CDG was mediated
through downregulation of the NF-κB pathway and inhibition of cytoplasmic localization
of Arid5a. In conclusion, CDG has the potential to be developed as a drug for treating
inflammatory diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-492
3/13/3/408/s1, General experimental procedure, plant material, Figure S1: Effect of CDG on the
MAPK pathway, Figure S2: 1H NMR spectrum of catechin-7,4′-O-digallate (CDG) in CD3OD, Figure
S3: LC/MS analysis of CDG, Table S1: List of the primer sequences for qPCR.
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