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Abstract: Due to its low solubility, carbamazepine (CBZ) exhibits slow and incomplete release in the
gastrointestinal tract and, hence, variable pharmacokinetics and pharmacodynamic effect. Lots of
methods have been devised to improve its solubility, the large number of proposed solutions being a
sign that the problem is not yet satisfactorily solved. The persistent problem is that predictable release
kinetics, an increased rate but within defined limits, are required to avoid high absorption variability.
This paper presents a synthesis of a carbamazepine-β-cyclodextrin inclusion complex (CBZ-β-CD),
the characterization of the physical mixture, CBZ, β-CD and the CBZ-β-CD inclusion complex
using Fourier transform infrared spectroscopy, scanning electron microscopy, simultaneous thermal
analysis and X-ray diffraction, formulation of chewable tablets, determination of the dissolution of
carbamazepine in medium containing 1% sodium lauryl sulfate (LSS), and in simulated saliva (SS),
mathematical modeling of release kinetics. The kinetics of total CBZ release from tablets containing
CBZ-β-CD and super-disintegrant F-Melt in both SS and LSS followed two steps: a burst release
in the first minutes and a slower release in intervals up to 60 min. The release in the second phase
has been well described by the Higuchi and Peppas models, which advocate a controlled release by
combined diffusion and with some phenomena of swelling and relaxation of the matrix generated by
the crospovidone component of the F-Melt excipient.

Keywords: carbamazepine; β-cyclodextrin; release kinetics; inclusion complex; F-Melt excipient;
chewable tablets

1. Introduction

Carbamazepine (CBZ) is a medication used primarily in the treatment of epilepsy.
Carbamazepine was discovered in 1953 and it was authorized in therapy in 1962. Although
many new drugs addressing to epilepsy appeared in the next 50 years, carbamazepine
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remained one of the most effective drugs, being included on the World Health Organi-
zation’s List of Essential Medicines [1]. The problem of increasing solubility of active
substances is old as pharmacy itself, and the efforts focused on carbamazepine were a
continuous concern of pharmacists in the last fifty years. In fact, the increasing of solubility
is essentially a method for improving in vitro availability and also implications for in vivo
availability [2–4]. In this direction, a long series of research contributions tried to increase
the solubility of CBZ, particularly by its inclusion in cyclodextrins.

The extent of absorption of carbamazepine from a carbamazepine-2-hydroxypropyl-β-
cyclodextrin complex was significantly greater, and the rate of absorption was faster when
compared with an immediate-release carbamazepine tablet in dogs [5].

The improvement of the aqueous solubility of CBZ using cyclodextrins (CDs) and de-
veloping an aqueous parenteral formulation was successfully accomplished [6]. Injectable
carbamazepine solution obtained by complexing with 2-hydroxypropyl-β-cyclodextrin
(HP-β-CD) was tested in terms of pharmacokinetics in vivo in dogs.

An improvement of oral bioavailability of carbamazepine suspension by inclusion in 2-
hydroxypropyl-β-cyclodextrin was obtained [7]. The extent of absorption in rats was higher
than that of pure drug. Oral solution formulations based on CBZ-CD were also compared
with commercially available tablets and suspensions concerning the pharmacokinetics in
dogs [8].

Physical–chemical characteristics of carbamazepine-cyclodextrin inclusion compounds
and carbamazepine–polyethylene glycol solid dispersions were studied concerning the
dissolution profiles in 0.1 N HCl medium. Inclusion complexes with cyclodextrins demon-
strated a faster dissolution rate in comparison with solid dispersions and CBZ alone [9].
Dissolution of CBZ included in different carriers such as polyethylene glycols (PEG), phos-
pholipids and hydroxypropyl-β-cyclodextrin (HP-β-CD), and in vivo areas under the CBZ
concentration–time curves were significantly higher than those resulting after Tegretol®

suspension [10].
Inclusion complexes of CBZ were also prepared with α-CD, β-CD and di-O-methyl-

β-cyclodextrin (DM-β-CD). The bioavailability and anti-convulsion activity of CBZ were
determined in animals following oral administration of the prepared complexes and
compared with the sole drug [11].

CBZ-CD Tablets. A first formulation of CBZ-CD tablets was performed more than
twenty years ago. The effect of β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin on
the physical properties and dissolution rate of CBZ tablet samples was studied [12]. Later,
the release of a CBZ-CD complex from hydroxypropylmethylcellulose (HPMC) matrix
tablets was evaluated [13]. The study demonstrated the improvement of CBZ aqueous
solubility by adding increasing amounts of β-CD. The bioavailability of the complex from
HPMC matrix tabletswas evaluated in Beagle dogs [14]. The stability constant calculated
from the phase solubility diagram indicated that the CBZ-CD complexes were adequately
stable [15].

Polyethylene glycol 6000 (PEG-6000) was used for the formulation of immediate
release tablets [16], and HPMC for the formulation of extended-release tablets [17]. For-
mulations of fast dissolving tablets of carbamazepine obtained by direct compression
technique of β-cyclodextrin complexes and various super disintegrants, such as Indion-414,
croscarmellose sodium, crospovidone and sodium starch glycolates were characterized by
differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR)
and stability studies [18].

The formulations prepared with mannitol solid dispersion presented disintegration
time in the range of 11.83–17.79 s. However, the formulations prepared with PEG-6000 and
polyvinylpyrrolidone (PVP) solid dispersions did not disintegrate within specified limits
of time for the fast-dissolving tablet [19]. Whatever the time variation of dissolution, an
initial, more or less short burst release was present in all cases.

A series of experiments were performed for the development of fast dissolving tablets.
Croscarmellose was used as disintegrant and different excipients for preparing solid
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dispersions. Complex generic drugs are generally not bio-equivalent with the reference
products: therefore, the increase in number of marketed drug/cyclodextrin formulations is
particularly slow [20].

The present research involved, in the first step, the synthesis of a carbamazepine-
β-cyclodextrin inclusion complex (CBZ-β-CD); the formation of the inclusion complex
was confirmed using Fourier transform infrared spectroscopy (FTIR), scanning electron
microscopy (SEM), simultaneous thermal analysis (STA) and X-ray diffraction (XRD);
finally, the formulation of chewable tablets included the complex and F-Melt excipient. The
second step involved a study of the CBZ dissolution in medium containing 1% sodium
lauryl sulfate (LSS) and in simulated saliva (SS), the mathematical modeling of release
kinetics, and the estimation of the release mechanism. Even though there are many
published reports, the problems of inclusion of carbamazepine in several cyclodextrines’
cavities have not been solved [21–24]. The novelty of the present study consists in the
obtained chewable tablets as a final product. The chewable tablets are a special type of
tablet, as described by European Pharmacopoeia, which have different characteristics
and dissolution performances compared with the conventional ones. Such tablets were
manufactured within the present study, and their dissolution profile was investigated. The
choice of β-CD as host molecule instead of other cyclodextrins was based on its typical
features: (i) as the therapeutical dose of carbamazepine is 200 mg per tablet, a 1:1 inclusion
complex with HP-β-CD would need a quantity of 1304 mg. That would involve high-
weight tablets (minimum 2 g) with a content of 1.5 g of active ingredient. Such tablets
are hardly accepted by patients and have not proven to be stable; (ii) β-CD has a better
flowability than HP-β-CD and, being the main constituent of the final product, it was
important to choose the best cyclodextrin in terms of flowing and compressibility. As the
most abundant ingredient used in the tablets’ formulation is the inclusion complex, the
kneading method, with no addition of any solvent, was chosen for obtaining this complex.
Using “non-solid state” methods would involve supplementary moisture in the powder,
with important decreasesin its flowability and compressibility, and eventually a drastic
alteration of the physical–chemical parameters of the chewable tablets.

2. Materials and Methods
2.1. Materials

Carbamazepine was purchased from Baoji Guokang Bio-Technology Co., Ltd., (Baoji,
China). β-cyclodextrin was obtained from Global Holding Group Co., Ltd., (Ningbo,
China). The ethanol and distilled water were of analytical grade. F-Melt® was purchased
from Fuji Chemical Industries Co., Ltd. (Toyama, Japan).

For the weighing of the substances, a Mettler Toledo AT261 balance (with 0.01 mg
sensitivity) was used.

2.2. Physical Mixture and Inclusion Complex Synthesis

The inclusion complex of CBZ with β-CD (in 1:1 molar ratio) was obtained by the
kneading method of complexation in solid state. This molar ratio was chosen on techni-
cal requirements for obtaining the final product, i.e., acceptable weight, oral dispersion
and mechanical properties for both the compressible powder and chewable tablets. The
actual formation of the 1:1 inclusion complex was proved by post synthesis (kneading)
physical–chemical characterization and by dissolution experiments. The physical mixture
maintaining the same 1:1 molar ratio was used as reference. In the present study, it was not
necessary to calculate a stability constant because the lower 1:1 molar ratio was chosen due
to reasons related to the tablet weight requirements. Available literature data [13–15,21]
indicated values of Ks of 376.5–636 M−1 for various phase solubility diagrams of AL type.
All reported phase solubility diagrams exhibited slopes of less than 1, proving the existence
of a 1:1 molar ratio complex.
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For the physical mixture, the necessary amounts of the raw components were sieved
and accurately weighted (to yield 1:1 molar ratio) and then physically mixed for 15 min in
an agate mortar, at the room temperature, in order to obtain a homogeneous powder.

For the inclusion complex synthesis by kneading, 0.25 mmol of CBZ and 0.25 mmol
of β-CD, in 1:1 molar ratio, were thoroughly mixed together in a mortar, with vigorous
trituration, for about 3 h. During this process, an appropriate volume of 70% ethanol
solution was added until a homogeneous paste was obtained. The resulting paste was
further triturated for 1 h. Then, the obtained product was dried, at room temperature, for
24 h. The solid dried mixture was passed through sieve no. VI [25]. The solid dispersion
was stored in the desiccator, over anhydrous calcium chloride, until use.

The formulation of chewable tablets with 200 mg of CBZ, the exact composition, the
used pressure and their pharmacotechnical characterization were performed as described in
a previous paper [26]. The powder for direct compression contained the active ingredient—
the inclusion complex CBZ-β-CD at a molar ratio of 1:1—and F-MELT®, Fuji’s patented
F-MELT® system, which was specifically designed for Oral Disintegrating Tablets.

2.3. Characterization

Pure CBZ and β-CD, the physical mixture and the inclusion complex were evaluated
by Fourier transform infrared spectroscopy (FTIR) (Jasco International Co. Ltd., Tokyo,
Japan), scanning electron microscopy (SEM) (Thermo Fisher, Waltham, MA, USA), simul-
taneous thermal analysis (STA) (Netzsch-Geratebau GmbH, Selb, Germany) and X-ray
diffraction (XRD)(Rigaku, Tokyo, Japan). FTIR spectra were recorded using a JASCO
FT/IR-4200 spectrometer equipped with an ATR PRO450-S accessory (Jasco International
Co. Ltd. Tokyo, Japan). The spectra were collected in the spectral range from 4000 to
400 cm−1, with the resolution of 4 cm−1. The spectra are presented in transmittance percent-
ages (T%) versus wavelength (cm−1). Scanning electron microscopy images were carried
out in a FEI Quanta 3D FEG microscope (Thermo Fisher, Waltham, MA, USA). SEM images
were acquired under magnification of 1000× to 4000×. Powder X-ray diffraction patterns
were recorded using an X-ray diffractometer (RigakuUltima IV diffractometer), with CuKα

radiation source (λ = 1.5406 Å), in the 2θ = 5–60◦ range. The used scan speed was 5◦/min
and a step size of 0.02◦, at 40 kV and 30 mA. For phase identification, a Rigaku’s PDXL
software connected to ICDD PDF-2 database was used. The thermal behavior of pure
compounds, physical mixture and the inclusion complex was studied in a dynamic argon
atmosphere flow of 40 mL/min using a Netzsch STA 449 F1 Jupiter simultaneous thermal
analyzer in the range of 30–600 ◦C, at a heating rate of 5 ◦C/min. The accurately weighed
samples (the precision of the balance is 0.1 mg) were placed in Al2O3 pans without lids.
All measurements were performed in duplicate.

While the formation of complexes is possible by many methods, the efficiency of
embedding is different from one method to another, as proved by thermogravimetric
analysis (TG) and DSC analysis in the case of inclusion of meloxicam in β-CD [27].

2.4. Quantitative Analysis of CBZ

The quantitative analysis of carbamazepine was carried out using a Waters liquid
chromatographic system (Waters, Milford, MA, USA) consisting of a 600 E Multisolvent
Delivery System, Waters AF degasser, 486 UV tunable absorbance detector and Waters
717 plus automated sample processor. Empower Pro software (Waters) was used to control
the instrument, data acquisition and processing.

The chromatographic separation was performed using a Hypersil Gold, 5 µm 150 × 4 mm
column (Thermo Fisher Scientific, Waltham, MA, USA) maintained under constant tem-
perature (30 ◦C). The mobile phase consisted of an isocratic mixture of 0.1% trifluoroacetic
acid-acetonitrile (60:40 v/v), delivered at 1.0 mL/min flow rate. The detector was set at
285 nm, and the injection volume was 5 µL. All solutions were filtered through a 0.45 µm
pore size filter (LABTECH VP30) and degassed by sonication.
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The HPLC method was subjected to validation in accordance with the International
Conference on Harmonization (ICH) regulations Q2 (R1) in terms of specificity, linearity,
precision (repeatability and intermediate precision) and accuracy [28].

The linearity assessment was performed using six carbamazepine concentration levels,
in the range of 3.125–100 µg/mL. All analyses were performed in triplicate.

The detection limit (LOD) and quantitation limit (LOQ) were determined based on
the signal-to-noise ratio. The concentrations yielding to signal-to-noise ratios of 3:1 and
10:1 were considered as the LOD and LOQ, respectively.

Precision was evaluated for repeatability and intermediate reproducibility on spiked
quality control (QC) samples, at three different concentration levels (QClow—8 µg/mL;
QCmedium—20 µg/mL; QChigh—80 µg/mL). The RSD% values computed for absolute
peak are as resulting from interpolation on the corresponding calibration curves were
considered as precision indicators. Repeatability study was performed by injection of
five replicates from a single prepared spiked sample within a single experimental session,
whereas intermediate reproducibility was tested by means of five different samples pro-
cessed in different experimental sessions to ascertain the QC level. The bias (%) between
the concentration values determined for the QC samples and their nominal values was
used as an accuracy indicator.

2.5. In Vitro Release Kinetics Studies

The release kinetics of carbamazepine from the experimental chewable tablets con-
taining the CBZ-β-CD inclusion complex were performed on a DT 800H dissolution tester
(Erweka, Langen, Germany). The dissolution test was performed using the USP 32 specifi-
cations [29], with the Apparatus 2 (paddles) at 75 rpm and 900 mL of 1.0% sodium lauryl
sulfate (LSS) aqueous solution at 37.0 ± 0.5 ◦C, as dissolution medium.

Since the CBZ-β-CD inclusion complex was formulated into chewable tablet, a second
dissolution medium, simulating the physical–chemical properties of saliva, was also tested.
The final pH of this medium, which contains 8 g/L NaCl, 0.19 g/L KH2PO4, 2.38 g/L
Na2HPO4, is 6.8 [30,31]. Both the experiments in 1% LSS and in simulated saliva were
run on 12 tablets. Samples (2 mL) were removed after 5, 10, 15, 30, 45 and 60 min in a
glass syringe, filtered through a 0.45-µm Teflon® filter, and diluted 1:10 with methanol.
Quantification of the released carbamazepine was performed using an HPLC method, with
UV detection at 285 nm.

Dissolution profiles were compared using the f 2 similarity factor [32]:

f2 = 50 log


1 +

p
∑

i=1
(xti − xri)

2

P


−1/2

× 100

 (1)

where ri and ti are the average percentage of carbamazepine dissolved at a specific time
from the reference and test products, respectively, and P is number of measured time points
used to evaluate the amount of dissolved carbamazepine.

In order to evaluate the mechanism of the carbamazepine release kinetics, dissolution
data were fitted to different kinetic models: zero order, first-order, Higuchi, Korsmeyer–
Peppas and Weibull [33–36].

3. Results and Discussion
3.1. Organoleptic Evaluation of the Compounds

The color, smell and taste of the tablets were evaluated according to the European
Pharmacopoeia specifications [37]. Both the physical mixture and the inclusion complex,
obtained by the kneading method, were white, crystalline and odorless powders, with a
bitter taste.
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3.2. Physical–Chemical Characterization of Compounds

FTIR spectroscopy. Figure 1 shows the FTIR spectra recorded for the (a) carbamazepine,
(b) β-cyclodextrin, (c) physical mixture of carbamazepine and β-CD and (d) inclusion
complex of carbamazepine-β-cyclodextrin.

Figure 1. FTIR spectra of (a) CBZ, (b) β-CD, (c) CBZ-β-CD physical mixture and (d) CBZ-β-CD inclusion complex.

The FTIR spectrum of carbamazepine (Figure 1a) presents one narrow band at
3463 cm−1, produced by N–H stretching frequencies from the primary amine group bond’s
vibration. Aromatic C–H stretching vibrations occur at 3150 cm−1. A weak absorption band
appears at 1240 cm−1 which is assigned to C–N stretching vibration. The peak at 1372 cm−1

is assigned to N–H deformation. The C=C ring stretching vibration occurs at 1486 cm−1.
The C=O bond of the amide group gives a medium intensity band at 1672 cm−1 (Figure 1a).
A slight difference in wavenumber as compared with literature data is observed [38], but
all the data confirm the presence of CBZ in Form III.

The FTIR spectrum of β-CD (Figure 1b) shows a large band between at 3000 and
3600 cm−1, due to the strong O–H stretching vibrations from the primary or secondary
hydroxyl groups. The peaks at 2925 cm−1 and 1151 cm−1 are attributed to the symmetric
and antisymmetric stretching of the C-H bond in the CH and CH2 groups and ν[C–C],
respectively. A strong band at 1021 cm−1 and a shoulder at 999 cm−1 are produced by the
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O–H bending vibration and C–O bond vibration (Figure 1b) [39,40]. The FTIR spectrum
of the physical mixture (Figure 1c) displays all characteristic peaks for β-CD that overlap
with the characteristic carbamazepine peaks. Their frequencies and intensities remained
practically unaltered. The FTIR spectrum of the carbamazepine-β-CD inclusion complex
(Figure 1d) presents clear spectral changes in comparison with the two separate substances
and with their physical mixture. The characteristic spectral portion for carbamazepine
significantly decreases in intensity and is shifted towards higher frequencies, due to the
dissociation of the intermolecular H bonds of CBZ and its inclusion in the CD molecule.
The FTIR spectrum of the inclusion complex presents a low intense peak at 1684 cm−1

due to the carbonyl group and a broad and low intense peak at 3396 cm−1 due to the
N–H bond.

SEM analysis. The SEM images of the CBZ, β-CD, physical mixture and CBZ-β-CD
inclusion complex are presented in Figure 2. CBZ (Figure 2a) is characterized by the
presence of crystalline particles, described as agglomerates of irregular prismatic crystals
with various sizes of between 2 and 30 µm. Such crystal shapes of Form III were previously
reported in the literature [41].

Figure 2. SEM images (a) CBZ, (b) β-CD, (c) CBZ-β-CD physical mixture and (d) CBZ-β-CD inclusion
complex, at 1000×magnification.

The SEM image of β-CD shows different shapes of homogenous crystalline particles
in polyhedral form [42] with sizes between 5 and 30 µm (Figure 2b).

The SEM image of the CBZ-β-CD physical mixture (Figure 2c) displays the morpho-
logic characteristics of both CBZ and β-CD crystalline particles, with an obvious affinity
between the two. The active ingredient crystals can be seen adhering to the surface of CD’s
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particles. These confirm the onset of the inclusion process that takes place even in their
physical mixture.

The SEM picture for the CBZ-β-CD inclusion complex indicates the formation of a
new morphological pattern: the mostly spherical shaped particles evidenced in Figure 2d
for the inclusion complex are absent in the micrographs of both CBZ (Figure 2a), β-CD
(Figure 2b) and their physical mixture (Figure 2c). There is also an obvious decrease in
particle size. This reveals a strong interaction between the drug and CD in these systems,
indicating that complexation has taken place.

XRD analysis. Powder X-ray diffraction patterns of the CBZ, β-CD, CBZ-β-CD physical
mixture and CBZ-β-CD inclusion complex are presented in Figure 3. X-ray diffractograms
of CBZ (Figure 3a) and β-CD (Figure 3b) present many well-defined sharp diffraction
peaks, which clearly demonstrate their crystalline nature.

Figure 3. XRD patterns of (a) CBZ, (b) β-CD, (c) CBZ-β-CD physical mixture and (d) CBZ-β CD inclusion complex.

The 2θ diffraction values of the high intensity diffraction peaks of CBZ are
2θ = 13.12◦, 15.18◦, 15.9◦, 19.68◦, 24.78◦, 27.20◦ and 31.98◦. These characteristic peaks
confirm the results of FTIR analysis: the utilized carbamazepine is in polymorphic Form
III, in agreement with diffractograms previously reported for this crystalline form [43–45].
The X-ray diffraction pattern of β-CD (Figure 3b) also exhibited well-defined peaks with
the characteristic peaks observed at 8.98◦, 12.50◦, 18.90◦, 19.60◦, 22.78◦, 24.33◦, 25.48◦,
27.1◦ and 35.7◦ 2θ diffraction values. According to JCPDS card 00-054-1476, the diffraction
lines could be indexed to β-cyclodextrindecahydrate C42H70O35–C7H7NO2·10H2O with a
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monoclinic structure. The XRD pattern of CBZ-β-CD physical mixture (Figure 3c) displays
a reduction in the CBZ peaks’ intensities, which indicates a slight decrease in crystallinity.
This confirms an interaction between carbamazepine and β-CD (partial inclusion) even
in the physical mixture. The XRD diffraction pattern of the inclusion complex (Figure 3d)
displayed well-defined peaks at 8.84◦, 12.44◦, 17.04◦, 18.84◦, 20.74◦, 27.14◦ and 31.06◦

2θ diffraction values. The characteristic pattern that corresponds to the crystalline β-CD
is still present with reduced peak intensities, indicating a decrease in crystallinity. The
disappearance of the XRD pattern of carbamazepine supports the assumption of a stronger
interaction between CBZ and β–CD due to the formation of the inclusion complex.

Thermal analysis. The thermal curves (TG-DTG and DSC) of CBZ are shown in
Figure 4A. DSC curves of CBZ (Figure 4A-c) showed an endothermic event at 165.4 ◦C
corresponding to the melting of the polymorphic Form III, the most stable one at ambient
temperature, with a heat of fusion of 8.64 J/g. The DSC curve displayed another endotherm
at 190.4 ◦C (92.41 J/g) due to an immediate recrystallization and subsequent melting corre-
sponding to the polymorph Form I. Similar data are reported in the literature [44,46,47].

Figure 4. Thermal curves of (A) CBZ and (B) β-CD, with (a) TG, (b) DTG and (c) DSC (dynamic argon atmosphere,
β = 5 ◦C min−1).

The thermal curves (TG-DTG and DSC) of β-CD are shown in Figure 4B. The first
process, in the 30–105 ◦C temperature range with a mass loss of 4.18%, is due to the
release of weakly bound water molecules from outside and/or inside of β-CD cavity
(TDSC = 66.5 ◦C). There is no mass loss in the subsequent, significantly wide 105–265 ◦C
(∆T = 160 ◦C) temperature range. A small endothermic peak without mass loss appears on
the DSC curve of β-CD (TDSC = 217 ◦C), which, according to literature data, is attributed to
a reversible structural solid–solid phase transformation [48]. Then, the sample undergoes a
rapid and overlapping melting and decomposition processes (mass loss of 75.3% form TG
curve, Tmin = 300.9 ◦C and Tmax = 335.6 ◦C from DSC curve). The residue at 600 ◦C is 20.5%.

Thermal curves (TG, DTG and DSC) of the physical mixture and inclusion complex
are shown in Figure 5. Several features can be mentioned: (a) the characteristic melt-
ing peak of CBZ is shifted from 165.4 ◦C to 188.23 ◦C with a significant reduction in its
intensity; (b) the peak that corresponds to the β-CD structural solid–solid phase trans-
formation disappeared; (c) the mass loss between 30 and 90 ◦C, which is attributed to
loosely bound water molecules; (d) the degradation of the new phase takes place in two
steps with different weights for the physical mixing (T1,DTG = 264.1 ◦C, ∆m1 = 12.7% and
T2,DTG = 311.7 ◦C, ∆m2 = 62.0%) and kneading procedure (T1,DTG = 254.1 ◦C, ∆m1 = 37.3%
and T2,DTG = 320.7 ◦C, ∆m2 = 43.5%). To improve the comparison of DSC signals, the



Pharmaceutics 2021, 13, 915 10 of 19

“relative heat flow”, RHF, was calculated as described in equation (2) and represented in
Figure 6:

RHF =
HF(T)− HFmin

HFmax − HFmin
(2)

where RHF is the relative heat flow, T is the temperature of the thermal process, HF(T)
is the observed heat flow (the DSC output), HFmin is the minimum heat flow signal and
HFmax is the maximum heat flow signal [49].

Figure 5. Thermal curves of (A) CBZ-β-CD physical mixture and (B) CBZ-β-CD inclusion complex, with (a) TG, (b) DTG
and (c) DSC (dynamic argon atmosphere, β = 5 ◦C min−1).

Figure 6. The relative heat flow DSC curves of (a) β-CD, (b) CBZ, (c) CBZ-β-CD physical mixture
and (d) CBZ-β-CD inclusion complex.

The following features of Figure 6 may be noticed: (i) The presence of a small endother-
mic peak, associated with the CBZ melting effect, in the thermogram of the physical mixture,
and an even smaller one in the thermogram of the inclusion complex, at TDSC = 188.23 ◦C
and 188.5 ◦C, respectively. On the one hand, this clearly signifies a consistent amount of
CBZ inclusion into the β-CD cavity, even in the physical mixing procedure; on the other
hand, this peak corresponds to some small amount of non-included CBZ for the inclusion
complex sample. (ii) The absence of the β-CD phase transition endotherm for the physical
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mixture and the inclusion complex. (iii) The significant decrease in intensity of the endo-exo
thermogram feature associated with the melting-decomposition of β-cyclodextrin in the
following order: β-CD > physical mixture >> inclusion complex.

The above-mentioned features confirm the assumption of a loss in the crystalline
structure of CBZ and β-CD, due to both physical mixing and kneading method processing,
respectively. This process is supported by data obtained in FTIR, XRD and SEM analyses.
The partial formation of the inclusion complex even in the physical mixture is also con-
firmed by the residue, at 600 ◦C, of both the physical mixture and the inclusion complex, of
13.69% and 17.88%, respectively.

3.3. Quantitative Analysis of CBZ

The HPLC method was found to be linear in the range of 3.125–100 µg/mL.
The assessment of the precision of the method resulted in values of the RSD between

0.08 and 0.94%. The bias (%) between the experimental and nominal values of the analytic
concentration in the control samples was <2% for all cases. These results demonstrated the
accuracy and precision of the chromatographic method.

The above method was used both for evaluation of carbamazepine content in the
chewable tablets containing the CBZ-β-CD inclusion complex, and in the in vitro kinetic
studies. Representative chromatograms for these determinations are shown in Figure 7.

Figure 7. Representative chromatograms of (a) the carbamazepine assay; (b) a sample obtained in the study of carba-
mazepine in vitro release kinetics from the CBZ-β-CD chewable tablets in simulated saliva (t = 15 min); (c) a sample
obtained in the study of carbamazepine in vitro release kinetics from the CBZ-β-CD chewable tablets in 1% LSS (t = 15 min).

3.4. In Vitro Release Kinetics

In the first short phase, the thickness of the F-MELT tablets immediately after wet-
ting increased continuously for 5–20 s. After the swelling period, the tablets began to
disintegrate rapidly into small particles.

In Table 1 and Figure 8 all release data and curves, both in SS and LSS, are presented.
There are some common characteristics of all curves. There are two distinct phases: the
“burst release” in the first 5 min, followed by a smooth portion from 5 to 60 min.

In all cases, release was almost complete at 60 min. In the 5–60 min interval, release
curves are well described by a square root time model, suggesting a controlled diffusion
mechanism (Figure 8b). Two bundles of parallel straight lines were obtained, corresponding
to the SS and LSS media, similar to the release kinetic reported in the case of nimesulide [50]
from tablets.
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Table 1. The individual and mean values of release in LSS and SS.

Time (min)
LSS 1% Simulated Saliva

Mean SD RSD (%) Mean SD RSD (%)

5 35.60 4.19 11.78 64.04 1.72 2.69

10 43.42 6.02 13.86 69.34 1.15 1.65

15 50.01 6.63 13.26 76.15 4.43 5.82

30 70.29 12.73 18.12 83.99 5.31 6.32

45 85.67 5.90 6.89 88.44 5.19 5.86

60 101.99 0.84 0.82 94.42 2.29 2.42

Figure 8. (a) Release curves from tablets; (b) release curves as function of square root of time.

The relatively low variability between curves within the LSS and SS groups justifies
further evaluation of only mean curves, corresponding, respectively, to SS and LSS.

Comparison of the carbamazepine release profiles in the two-solvent media (LSS
and SS) evidenced that dissolution in simulated saliva is much faster than in LSS, with
more than 60% of the available substance being released within the first 5 min, and more
than 75% within 15 min, compared with only about 50% in 15 min for the LSS profiles.
In spite of a very high concentration of LSS, the release profile is superior in the solvent
simulating saliva, and the similarity factor f 2 between the two profiles is 34.85, underlying
the non-similarity between the carbamazepine release profiles in the two tested media
(Figure 9).

Figure 9. (a) In vitro release profiles of CBZ from the chewable tablets containing the CBZ-β-CD
complex; (b) release curves as function of square root of time.
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In order to estimate the effect of cyclodextrin inclusion on carbamazepine bioavail-
ability, the release of carbamazepine from commercial carbamazepine tablets and from
the formulation based on the CD-CBZ complex and the F-Melt excipient was compared
(Figure 10).

Figure 10. Comparison of the in vitro release profiles of CBZ from the experimental chewable tablets
containing the CBZ-β-CD complex and from the commercial reference carbamazepine tablet product
in LSS 1%.

As can be seen in Figure 10, there is a significant difference (100% vs. 72%) between
the released amount at 60 min, which is most probably the consequence of the higher
solubility of CBZ-CD in comparison with CBZ (it is worth mentioning that the analytical
method measures the entire amount of both CBZ and CBZ-CD).

3.5. Modelling of Release Kinetics

As shown above, a representation of the amount of CBZ released by the square root
of time led to a linear regression with a sufficiently good correlation coefficient. This
is an argument for diffusion-controlled release but, on the other hand, the exclusion of
CBZ from the CBZ-CD complex is a concomitant process, a type of “relaxation”, a less
diffusive process. This combined mechanism could be described, for example, by a simple
heuristically written expression by adding diffusion-controlled and relaxation-controlled
drug administration (Equation (3)) [51].

M(t) = k1t + k2
√

t (3)

Because, in practice, it is difficult to separate these processes, such behavior has been
further described by a widespread expression that has been introduced in the pharmaceu-
tical literature and is known as the “Peppas equation” or “power law” [52]. The power
release law has been widely used to describe the first 60% of the release curves [53–55].

In our experiment, the release was well described by both models for more than 60%,
which is unusual, but not a singular case (Figure 11). In the case of different matrix tablets,
it has been found [56] that the power law describes the entire drug release profile.

To select the best model, there are statistical criteria, which consider both the minimum
sum of error squares and the number of parameters of the model, and phenomenological
criteria [57,58].

A simple comparison between the square root model and the power law model can
be considered starting from the estimated value of “n”. In the particular case in which
n = 0.5, the power law becomes identical with the square root law. It should be noted that
for the release in LSS, a value of n = 0.43 was obtained, which is close to 0.5, thus supporting
the square root model and corresponding to a predominant diffusion mechanism. In the
case of SS, n = 0.16, which suggests a significant contribution of another mechanism, in
parallel with diffusion.
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Figure 11. Peppas release model. Fitting of data from 5 min to 60 min.

The second phase, well described by both the square root and power law, is a transport
controlled mainly by diffusion. In fact, it is possible that this mechanism also characterizes
the burst phase. The difference between the two phases could be given by the significant
increase in the interface between the formulation matrix and the dissolution medium in
the post-disintegration phase.

The ability of a CD to form an inclusion complex is a function of steric factors as well
as thermodynamic factors. The driving force for complexation involves, after removal of
the water molecule from the hydrophobic cavity and the formation of Van der Waal bonds,
hydrophobic interactions, and hydrogen bonds.

A burst release has not been completely ignored so far, but since there is no theoretical
justification for this phenomenon, its existence has usually not been “observed”, although
it is obvious after a careful examination of the release curves [59].

Especially in recent years, release kinetics containing two phases, with a burst release
followed by a slower, diffusion-controlled release—similar to our results—were reported
in a series of experimental reports. Curcuminoids’ release from solid lipid nanoparticles,
includes a burst release of the curcuminoids followed by a controlled release pattern
following the Peppas power model [60]. The same type of release was observed in the case
of curcumin embedded in nanocellulose-reinforced chitosan hydrogel [61]. The two-stage
release profiles of curcumin from aminosilane-functionalized electrospun poly (N-vinyl-2-
pyrrolidone) fibers were fitted well to the Peppas model, indicating a non-Fickian diffusion
mechanism for the initial burst release and a Fickian diffusion-controlled mechanism for
the sustained release [62]. An initial burst release phase followed by a gradual release
phase and good correlation coefficients for the Higuchi model were observed in the case of
release of anastrozole from PLGA microparticles in 0.1 N HCl (pH = 1.2) and phosphate
buffer (pH = 7.4) [63].

It seems that biodegradable nanoparticles of polycaprolactone represent a matrix
that favors a two-phase release kinetic. An initial burst release of ellagic acid followed
by Higuchi’s square root pattern in the case of both PLGA and PCL nanoparticles was
reported [64]. Burst release is sometimes useful, allowing rapid installation of the effect, but
this also involves a risk of increased adverse effects; it is, therefore, sometimes is necessary
to reduce the burst phase [65]. Regarding the explanation of the appearance of the burst
phase in our experiment, it must be examined in connection with the CBZ-CD complex, as
well as the properties of the disintegrating excipient. F-MELT® consists of porous particles
with free flow, which are directly compressible. F-MELT®-Type C is for faster disintegration
needs and has, as its main functional components, microcrystalline cellulose (MCC) and
super disintegrating crospovidone. Its main disintegration mechanism is water wicking
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through the capillary network with only a little swelling. MCC swells notably prior to
disintegration [66].

Raman examinations and electron microscopy found that nimesulide is constrained
by crospovidone in three main arrangements: an amorphous phase dispersed in the
crosslinked molecular network of the polymer, polymer-wrapped nanocrystals, and drug
layers composed of micro- and nanocrystals [67].

We do not know whether the same mechanism is applicable to CBZ-CD, but different
types of conditions may occur in relation to the povidone cross-matrix, involving different
dissociations. The inclusion of CBZ in CD is an association–dissociation balance. The last
argument for the reliability of a burst launch was found by DSC and IR analysis, which
suggested the existence of a CBZ-free fraction in the structure of the CBZ-CD complex.

As all individual curves suggest, after the immediate, massive release of a free fraction,
available at the surface, there is a diffusion-controlled release of molecules into the frag-
ments of the matrix of the tablet. Assuming approximately the same diffusion coefficient D
for the two types of molecules, one must think of a common diffusion equation, but with
different initial and limit conditions.

As for the square root law, it can be obtained in two different sets of initial and
boundary conditions. One case is when the front of the solvent enters the matrix step by
step and the concentration gradient is in the matrix, as Higuchi considered in 1963:

Q(t) =
√
(2M− Cs)CsDt (4)

where M is the total initial quantity, Q is the cumulated released quantity and Cs is the
saturation concentration of the active substance in the release medium.

Another case, considered in analogy with heat transfer from a thermostat [68,69], is a
release given by the formula:

Q(t) = cs
2A√

π

√
Dt (5)

where the released quantity Q is proportional with the surface A, concentration (constant
at the surface) cs, and with the square root of the time.

The kinetics of CBZ release from a physical mixture of β-CD and from two CBZ-
CD complexes from hydroxypropylmethyl cellulose matrix (HPMC) slow-release tablets
was modeled using different mathematical equations [70]. The data were fitted by four
mathematical models: zero-order kinetics, first-order, Higuchi and Weibull. The Higuchi
model was able to match the release from the complexes, but not from the physical mixture.
The Weibull model parameters were more sensitive to the differences between the two sets
of kinetic release data. HPMC and commercial Tegretol CR 200® tablets were tested in 1%
sodium lauryl sulfate [14]. In the case of HPMC matrices, the tablets underwent gelation
and erosion, and very slow dissolution of the matrix followed a zero-order kinetics in the
range of 0–300 min. CBZ release from Tegretol CR 200® was faster compared to matrices
and exhibited distinct kinetic behavior. It should be noted that in those experiments, burst
release occurred only in the case of Tegretol tablets.

One final issue that needs to be discussed is that the release was higher in SS than in
LSS. As observed in other studies [4], the effect of surfactants on the dissolution kinetics of
poorly soluble drugs is higher in terms of release extent and lower in terms of release rate.
In the case of soluble drugs, the effect is low on both the rate and the extent [71].

4. Conclusions

The properties of a novel inclusion complex of CBZ and β-CD were investigated as a
promising candidate for the preparation of orodispersible tablets. The studied inclusion
complex was obtained in a molar ratio of 1:1, using the kneading method of complexa-
tion, in a solid state. For comparison, a physical mixture between CBZ and β-CD, in the
same molar ratio, was prepared and analyzed. The SEM images of the complex show
aggregation into irregularly shaped more amorphous particles in which the morphology of
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both components has disappeared. This remarkable change indicates the formation of a
binary inclusion complex between CBZ and β-CD. This is confirmed by FTIR, XRD and
thermal analysis investigations. The formation of the CBZ-β-CD inclusion complex results
in important modifications of the pharmacological properties (solubility, absorbability, and
consequently bioavailability) of the active ingredient. These modifications may have a
significant impact on the biological effects of the drug. Therefore, the natural development
of this study was the preparation and characterization of several formulations of orodis-
persible tablets containing this new CBZ-β-CD inclusion complex. Tablet formulations
that included the CBZ-CD complex and the super-disintegrant F-Melt® release CBZ faster
compared to commercial CBZ Tegretol tablets. The kinetic release of total carbamazepine
from tablets containing CBZ-CD and super-disintegrant F-Melt, in both SS and LSS, follows
two stages: (i) a burst release in the initial minutes and (ii) a slower release at different
time intervals up to 60 min. The release in the second phase is well described by the
Higuchi and Peppas models, which support a diffusion-controlled release combined with
some phenomena of swelling and relaxation of the matrix generated by the crospovidone
component of the F-Melt excipient.
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