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Abstract: Machine learning (ML) approaches are receiving increasing attention from pharmaceutical
companies and regulatory agencies, given their ability to mine knowledge from available data. In
drug discovery, for example, they are employed in quantitative structure–property relationship
(QSPR) models to predict biological properties from the chemical structure of a drug molecule.
In this paper, following the Second Solubility Challenge (SC-2), a QSPR model based on artificial
neural networks (ANNs) was built to predict the intrinsic solubility (logS0) of the 100-compound
low-variance tight set and the 32-compound high-variance loose set provided by SC-2 as test datasets.
First, a training dataset of 270 drug-like molecules with logS0 value experimentally determined was
gathered from the literature. Then, a standard three-layer feed-forward neural network was defined
by using 10 ChemGPS physico-chemical descriptors as input features. The developed ANN showed
adequate predictive performances on both of the SC-2 test datasets. Benefits and limitations of ML
approaches have been highlighted and discussed, starting from this case-study. The main findings
confirmed that ML approaches are an attractive and promising tool to predict logS0; however, many
aspects, such as data quality, molecular descriptor computation and selection, and assessment of
applicability domain, are crucial but often neglected, and should be carefully considered to improve
predictions based on ML.

Keywords: artificial neural networks; machine learning; QSPR; intrinsic aqueous solubility

1. Introduction

Machine learning (ML) is a branch of artificial intelligence (AI) that automatically
learns and finds hidden patterns from available knowledge and uses these patterns to
make predictions on new data. Its application is strongly established in many research
fields, and is also becoming popular in drug discovery and development, especially for
the prediction of in vivo properties of new molecules. An excellent example is given by
computational models based on quantitative structure–property relationships (QSPRs), in
which descriptors accounting for molecule structure are used to predict physico-chemical
properties, such as aqueous solubility. Aqueous solubility is one of the limiting factors to
in vivo drug dissolution and, consequently, to absorption. For this reason, it is considered
as a key physico-chemical parameter in drug discovery [1]. Poor solubility has been
identified as a relevant cause of drug-development failures, and improving the aqueous
solubility of bioactive molecules is a major issue in medicinal chemistry [2,3].

Aqueous solubility, Sw, can be defined as the amount of drug (solute) that dissolves in
a given volume of water (solvent) at a specified pH, temperature, and pressure. However,
intrinsic aqueous solubility, S0, is typically considered in its place, in order to obtain a
more reproducible measure that does not depend on pH. Indeed, S0 is defined as the
solubility of a compound in its free acid or free base form. Several methods are available
to experimentally determine the intrinsic aqueous solubility of a compound, such as
variations of the saturation shake-flask method [4] and, more recently, the CheqSol (Chasing

Pharmaceutics 2021, 13, 1101. https://doi.org/10.3390/pharmaceutics13071101 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-9801-2135
https://orcid.org/0000-0002-8931-4676
https://doi.org/10.3390/pharmaceutics13071101
https://doi.org/10.3390/pharmaceutics13071101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13071101
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13071101?type=check_update&version=1


Pharmaceutics 2021, 13, 1101 2 of 20

Equilibrium Solubility) techniques [5]. However, the experimental solubility determination
proved to be difficult, time-consuming, and too expensive, or simply unrealistic to be
applied in high-throughput screening, in which millions of compounds are tested. For
this reason, in silico prediction of S0 has been widely used in the early stage of the drug
discovery and development process.

One of the first and most popular methods to predict S0 is the general solubility
equation (GSE) proposed by Yalkowsky [6,7]. Just two molecule characteristics, the octanol–
water partition coefficient (logP) and the Celsius melting point (Tmp), both experimentally
determined, are used to estimate the S0 value in log molar unit (logS0):

logS0 = 0.5− logP− 0.001×
(
Tmp − 25

)
(1)

Due to its simplicity, GSE became the gold standard for the in silico prediction of S0.
However, its reliance on experimental parameters such as melting point, the experimental
measurement or calculation of which is as challenging as solubility, limits the GSE’s
applicability, especially for virtual compounds (i.e., compounds developed in silico and
not yet synthesized).

Predictive models based on QSPRs demonstrated to be promising tools to determine
the solubility of drug-like molecules. In the last decades, a plethora of QSPR models based
on ML, such as random forests (RFs), support vector machines (SVMs), partial least squares
(PLS), k-nearest neighbors (k-NN), and artificial neural networks (ANNs), was proposed.
Among these, ANNs were one of the most frequently proposed methods, demonstrating
good predictive performances. Despite the numerous documented applications, the best
models available in the literature were able to predict logS0 with a root-mean-square error
(RMSE) of 0.7–1.1 log unit. Possible causes of the poor predictive performances of the
available QSPR models are the subject of an intense debate in the scientific community, and
are also discussed in this paper.

A primary source of this prediction error was identified in the poor reliability of exper-
imental solubility values. Indeed, the quality of QSPR models is directly influenced by the
quality of the datasets on which they are built. For drug-like molecules, the inter-laboratory
variability, derived by comparing published intrinsic solubility values, is generally esti-
mated to be 0.6–0.7 log unit or higher [8–11], even if Avdeef showed that with a critical
curation of the sources, it could be reduced up to 0.17 log unit [12]. On the contrary, other
studies suggest focusing attention on the improvements of the computational methods and
on an accurate selection of the molecule descriptors used by such methods [8].

In order to engage the scientific community to address the issue of S0 prediction,
two solubility challenges, named the First Solubility Challenge (SC-1) and the Second
Solubility Challenge (SC-2), were organized by Llinas and Adveef in 2009 and 2019,
respectively [13,14]. These challenges had two primary objectives: to assess the current
state of the field and to provide recommendations on the best strategies to apply when
making predictions. SC-1 asked participants to predict the intrinsic aqueous solubility of 32
drugs using a provided training dataset of 100 S0 values, all measured using the CheqSol
method by the same group. On the contrary, in the SC-2 two test datasets, a 100-compound
tight set composed by low variance and a 32-compound loose set of high-variance S0 values
were provided. In SC-2, a common and standardized training dataset was not provided,
and participants were invited to collect their own training set, providing references to the
selected data sources.

The work here presented originates from SC-2 [14,15], with the main objective of
investigating the use of ML approaches on an open research field, to highlight the benefits
and limitations of these techniques on a specific case study and to show and discuss the
fundamental steps necessary to develop an ML predictive model. Within this scope, we
used an ANN, trained on a dataset we built from literature sources, to predict the S0 values
of the 100-compound and 32-compound test sets of the SC-2.



Pharmaceutics 2021, 13, 1101 3 of 20

2. Materials and Methods
2.1. Datasets
2.1.1. Training Dataset

A dataset of known S0 for drug-like molecules was collected from the literature. The
criteria adopted regarding whether to include a source was based on the recommendations
reported in [14]. A list of possible reliable references was provided by Llinas et al. to
support the participants new to the field [14]. Among these, the following 11 sources
listing intrinsic solubility values were considered: Avdeef et al. (2000 and 2001) [16,17],
Bergström et al. (2002, 2004a, and 2004b) [18–20], Sköld (2006) [21], Wassvik (2006) [22],
2008 Solubility Challenge [13,23], DLS-100 [24], and Baek (2018) [25]. All the included
references reported experimental S0 measured using SSF and CheqSol techniques at about
25 ◦C. The list of compounds from the SC-1 [13,23] included four molecules for which two
polymorphic forms were identified; for the purpose of this analysis, both the forms were
considered as replicated values of the same molecules. In addition, five compounds were
too soluble to be measured and two were decomposed during analysis; thus, they were
not considered.

In the references, compounds were often listed by non-standardized names, and
several synonyms for the same molecules were reported. To overcome this issue, CAS
numbers were retrieved from the compound names either through a ChemIDPlus query
(https://chem.nlm.nih.gov/chemidplus/ accessed on 22 February 2021) performed in R
(ci_query() function of the R-package “webchem”), or via manual search. All the molecules
for which a CAS number was not available were excluded.

In addition, solubility data were reported in many concentration units, either in natural
or logarithmic scale. All the values were converted in molarity (mol/L) and tabulated in
logarithmic unit, according to the SC-2 datasets [15]. To convert solubility values from the
practical units (e.g., µg/mL) to molarity, the molecular weight had to be retrieved. First,
for each compound, the Pubchem CID was obtained from the CAS number through the
get_cid() R-function (R-package “webchem”), or via manual search. Then, the pc_prop()
R-function (R-package “webchem”) was exploited to retrieve the molecular weights from
the CIDs.

Since multiple values of intrinsic solubility collected from different sources were
available for several molecules, alternative approaches to treat replicated experimental
data were evaluated. Considered possibilities included taking the arithmetic average or the
median of the experimental values, listing all the available replicates, or picking a single
most-trusted value.

2.1.2. Test Sets

The developed model was tested on the 100-compound low-variance tight set (test
set 1) and the 32-compound high-variance loose set (test set 2) provided by the SC-2 [15],
and detailed in Tables S2 and S3. These test sets were created by the SC-2 organizers with
the specific purpose of challenging the ML methods and assessing their performances in
contexts with different degrees of difficulty.

The two sets of test compounds were gathered from the 870 molecules included in the
database Wiki-pS0 [12], the largest curated intrinsic solubility database known. Set 1 was
composed of 100 drug-like molecules, the logS0 of which had an inter-laboratory standard
deviation, SDinter-lab, ranging from 0.11 to 0.22 log unit [14], with an average value of 0.17
log unit (low-variance tight set). LogS0 fell in the interval (−6.79, −1.18) with a mean =
−4.03 and an inter-compound SD, SDtest1, of 1.27 log unit.

The 32 compounds of set 2 were the molecules with the highest SDinter-lab of the
Wiki-pS0 database, ranging from 0.50 to 0.93 log unit, with an average SDinter-lab = 0.62
log unit (high-variance loose set). Compared to test set 1, test set 2 was characterized by
a wider logS0 range, (intervaltest2 = (−10.4, −1.24), meantest2 = −5.49, and SDtest2 = 2.18
log unit), with the majority of drugs having intrinsic solubility lower than 1 µM. This low
solubility was recognized as the possible main reason for the poor overall reproducibility of

https://chem.nlm.nih.gov/chemidplus/
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experimental logS0 values [14]. Furthermore, several of these molecules (e.g., amiodarone,
clofazimine, and itraconazole) were located in a sparsely populated chemical space, with
very few nearby known similar molecules. For these reasons, an accurate prediction of
their solubility was expected to be challenging.

For each test compound, the CAS number and Pubchem CID were obtained. Based on
the CAS identifier, all the test molecules found in the training set were obviously removed,
as specified in the SC-2 guidelines [14,15].

2.2. Structure Generation and Descriptor Calculation

Canonical SMILES (simplified molecular-input line-entry system) used to represent
the molecular structure of the considered compounds (for both the training and test sets)
were retrieved from the Pubchem CID via the pc_prop() R-function and submitted to a
manual check.

SMILES strings were then used to calculate 35 topological and physico-chemical 2D
descriptors. This was performed through the ChemGPS-NP (Chemical Global Position-
ing System—Natural Products) tool [26], available online at https://chemgps.bmc.uu.se
(accessed on 14 May 2021). ChemGPS-NP uses the proprietary DragonX tool [27] as the
internal engine for the calculation of hundreds of molecular descriptors, from which 35
were selected. Descriptor information is reported in [28].

Descriptors with zero inter-compound variance were removed. In addition, any
compound of the training set with an undefined value for at least one of the descriptors
was excluded from the final dataset. The presence of missing values was evaluated also for
the test compounds.

Considering the limited number of data available in the training set, the high cor-
relation between the obtained descriptors [29], and the fact that ANNs are sensitive to
redundant information [30,31], a feature selection was necessarily performed to reduce the
probability of reaching local minima and improve the ANN’s generalization performances.
One of any pair of descriptors whose absolute correlation coefficient was greater than 0.8
was removed, retaining the descriptor with a higher absolute correlation with logS0 [12,32].
The resulting chemical space was further reduced by selecting the 10 most-relevant descrip-
tors according to their correlation scores with the logS0.

Each descriptor d was scaled into the range (0, 1) according to:

d[0,1],i =
di −minj=1...N

{
dj
}

maxj=1...N
{

dj
}
−minj=1...N

{
dj
} (2)

where di and d[0,1],i are the value of d for the ith compound, respectively, before and after
the scaling; and maxj=1...N

{
dj
}

and minj=1...N
{

dj
}

are the maximum and minimum values
of d across all the N compounds of the training set, respectively. LogS0 values were scaled
into the range (0, 1) in the same way [33]. To ensure that no data from the test sets were
used into the model development and in the prediction steps, both descriptors and logS0
values of the two test datasets were scaled using the maximum and minimum values found
in the training set.

2.3. Model Development: Artificial Neural Network (ANN)

The ANN model was developed using the multi-layer perceptron (MLP) algorithm
with backpropagation contained within the Orange software [34]. LogS0 was considered as
the target variable, and the 10 selected descriptors (see the previous section) as independent
variables (features). The architecture of the network consisted of: (i) 10 neurons in the
input layer, which corresponded to the 10 scaled descriptors selected from the correlation
analysis; (ii) a hidden layer whose number of neurons was varied and selected based on
the performances scores computed in the training dataset; and (iii) the output layer with
one neuron, i.e., the scaled logS0. The regulation term α (L2 penalty) was tuned manually,
and a logistic activation function was used for all the neurons in all the layers. Finally, the

https://chemgps.bmc.uu.se
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weight optimization was performed on the training dataset through the Adam solver for a
maximum of 4000 iterations.

In order to select the best architecture, a cross-validation method was applied by
splitting the training test in 10 groups (folds), using each of the folds in turn to validate the
ANN, trained on the remaining 9 folds. The selected ANN was then trained again upon
the entire training dataset and used to predict intrinsic solubility of molecules for the two
SC-2 test datasets.

2.4. Model Performance Evaluation

To compare our results with the SC-2 findings, the same statistical measures of predic-
tion performances (MPPs) were considered. These metrics included the R2, RMSE, bias
(Equations (3)–(5)), and the percentage of predicted values within 0.5 log unit (denoted
with % ± 0.5 log), which were computed using the following formula:

R2 = 1−
∑n

i=1

(
yi − yi,pred

)2

∑n
i=1(yi − y)2 (3)

RMSE =

√√√√∑n
i=1

(
yi − yi,pred

)2

n
(4)

bias =
∑n

i=1

(
yi − yi,pred

)
n

(5)

where n is the number of compounds in the considered dataset; yi and yi,pred are the
experimental and predicted logS0 of the ith compound, respectively; and y is the average
experimental value. These four metrics were computed and reported for the training
dataset, the 10-fold cross validation of the training dataset, and the two test datasets. No
compounds were removed as outliers; however, potential outliers, defined as data points
with an absolute prediction error greater than a 2-fold RMSE, were further investigated to
determine if their features deviated significantly from the rest of the dataset. In addition,
the predictive performances of the ANN model for the two test datasets were compared
with the ones reported by Llinias et al. for the GSE model [15].

Finally, the ANN performances were compared with the correspondent MPPs of the
simplest and naïve prediction model (null model), in which every compound of the test
datasets were predicted using the mean logS0 value computed on the training dataset
(logS0,train). Given a training dataset, every model performing better than this “predict-
average-for-all” model was considered a useful predictor.

2.5. Applicability Domain Assessment

An attempt to evaluate the relationship between the applicability domain coverage
and the predictive performance of the model was performed. The domain of applicability
(DOA) associated with our training set and dictated by the 10 selected descriptors (nor-
malized within (0, 1)) was identified using two different approaches, based on PCA and a
similarity measure.

A PCA was performed on training data, and the 100-compound test set 1 and the
32-compound test set 2 were projected on the obtained principal components (PCs). In
particular, the two most important PCs (PC1 and PC2) were considered, and their 95%
confidence interval was computed on the training data. This approach draws an ellipse
in the 2-dimensional space defined by PC1 and PC2. Test compounds that fell outside
this ellipse were considered poorly represented by the training data, and therefore were
expected to be more difficult to predict.

In addition, an index of similarity (“normalized Euclidean similarity”) between com-
pounds was defined by computing the Euclidean distance on the 10 normalized descriptors
and dividing that distance by the maximum theoretical Euclidean distance (i.e.,

√
10) to
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obtain a normalized score within (0, 1). Then, the similarity index was defined as the
complementary of the normalized Euclidean distance, with 0 representing complete dis-
similarity and 1 complete similarity. Thus, the similarity index between compound A and
B, SimIndex,A−B, was defined as:

SimIndex,A−B = 1−

√
∑10

i=1(dA,i
2 − dB,i

2)
√

10
(6)

3. Results
3.1. Datasets and Descriptors

After the CAS query, the dataset contained 586 values of intrinsic solubility for 357
different molecules obtained from the 11 selected literature sources [13,16–25]. The compar-
ison of our data with the published SC-2 test datasets revealed 57 compounds in common
with the 100-compound test set 1 and 15 with 32-compound test set 2. Their removal from
the training dataset left 430 logS0 values for 285 different molecules.

For each of the 285 compounds, SMILES strings were submitted to ChemGPS and the
list of 35 descriptors [28] was retrieved. One descriptor, presenting the same values for
all the 285 molecules, was excluded from the analysis. In addition, 15 compounds with
an undefined value of at least one of the remaining 34 descriptors were removed. This
resulted in a total of 412 logS0 values for 270 different molecules, with 34 usable descriptors
for each.

The 412 intrinsic solubility values ranged from −11.76 to +1.7 log molarity, with about
53% of them falling between −7 and −3 log unit, which corresponded to the typical range
for drugs and research compounds [35]. The logS0 distribution was essentially a Gaussian
characterized by a mean = −3.66, a median = −3.52, and a SD = 2.02 log unit. In Figure 1a,
the obtained distribution is shown and compared with the distribution of the logS0 values
collected in the Wiki-pS0 database [12]. From this, it is evident that, even if the number of
solubility entries was significantly lower (412 vs. 6355), our dataset was representative of
the more comprehensive Wiki-pS0 database, at least in terms of logS0 values. However,
because the whole collection of Wiki-pS0 molecules is not publicly available, the similarity
in the “chemical feature space” with our training dataset cannot be evaluated.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 6 of 21 
 

 

√10) to obtain a normalized score within (0, 1). Then, the similarity index was defined as 
the complementary of the normalized Euclidean distance, with 0 representing complete 
dissimilarity and 1 complete similarity. Thus, the similarity index between compound A 
and B, 푆푖푚 , , was defined as: 

푆푖푚 , = 1 −
∑ (푑 , − 푑 , )

√10
 (6)

3. Results 
3.1. Datasets and Descriptors 

After the CAS query, the dataset contained 586 values of intrinsic solubility for 357 
different molecules obtained from the 11 selected literature sources [13,16–25]. The com-
parison of our data with the published SC-2 test datasets revealed 57 compounds in com-
mon with the 100-compound test set 1 and 15 with 32-compound test set 2. Their removal 
from the training dataset left 430 logS0 values for 285 different molecules. 

For each of the 285 compounds, SMILES strings were submitted to ChemGPS and the 
list of 35 descriptors [28] was retrieved. One descriptor, presenting the same values for all 
the 285 molecules, was excluded from the analysis. In addition, 15 compounds with an 
undefined value of at least one of the remaining 34 descriptors were removed. This re-
sulted in a total of 412 logS0 values for 270 different molecules, with 34 usable descriptors 
for each. 

The 412 intrinsic solubility values ranged from −11.76 to +1.7 log molarity, with about 
53% of them falling between −7 and −3 log unit, which corresponded to the typical range 
for drugs and research compounds [35]. The logS0 distribution was essentially a Gaussian 
characterized by a mean = −3.66, a median = −3.52, and a SD = 2.02 log unit. In Figure 1a, 
the obtained distribution is shown and compared with the distribution of the logS0 values 
collected in the Wiki-pS0 database [12]. From this, it is evident that, even if the number of 
solubility entries was significantly lower (412 vs. 6355), our dataset was representative of 
the more comprehensive Wiki-pS0 database, at least in terms of logS0 values. However, 
because the whole collection of Wiki-pS0 molecules is not publicly available, the similarity 
in the “chemical feature space” with our training dataset cannot be evaluated. 

  
(a) (b) 

Figure 1. (a) Distribution for the collected 412 intrinsic solubility entries. The red line represents 
the Gaussian distribution for the 6355 solubility entries of Wiki-pS0 database. (b) Intrinsic solubil-
ity distribution for the 270-compound training dataset composed of the average logS0 values. 

As summarized in Table 1, there were 81 different molecules for which solubility was 
reported from at least two different sources. Based on these 81 replicated values, the av-
erage inter-laboratory standard deviation, SDinter-lab, was determined to be 0.78 log unit. 
This value was comparable to the experimental reproducibility suggested in previous 

Figure 1. (a) Distribution for the collected 412 intrinsic solubility entries. The red line represents the Gaussian distribution
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As summarized in Table 1, there were 81 different molecules for which solubility
was reported from at least two different sources. Based on these 81 replicated values,
the average inter-laboratory standard deviation, SDinter-lab, was determined to be 0.78 log
unit. This value was comparable to the experimental reproducibility suggested in previous
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studies (0.6–0.7 log unit [8–11]), but was significantly greater than the 0.17 log unit value
estimated by Avdeef [12]. The observed difference in the SDinter-lab likely was due to the
wide range of the logS0 values reported in literature for some molecules.

Table 1. Summary of the replicated values of training dataset.

Number of Molecules Number of Replicated Values per Molecule

189 1

50 2

18 3

7 4

1 5

3 6

1 8

1 10

According to the SC-2 test datasets, the training dataset was built considering the
inter-laboratory average values by computing the arithmetic mean of the duplicated logS0
values. The training dataset was thus composed of 270 different molecules, each reported
with its average logS0. The logS0 values fell within the interval (−10.26, +1.7) log unit, and
were characterized by a mean = −3.4 and an SD = 1.95 log unit, as shown in Figure 1b.

For both the test datasets, the ChemGPS descriptors were computed by using the
previously retrieved SMILES strings. No missing values were found in the descriptors of
the two test sets.

3.2. Features Selection

With the aim of reducing redundant information and improving the ANN perfor-
mances, the highly correlated descriptors (absolute correlation coefficient >0.8) were re-
moved. The remaining 18 descriptors were ranked according to their correlation with the
logS0 values of the training dataset, and only the first 10 were selected as input features for
the ANN. Table 2 lists the selected descriptors and their correlation coefficients with logS0.
As expected, the best (negative) correlation was achieved with the ALOGP descriptor, with
a value of −0.637. Descriptor values for the 270-compound training dataset and for the
two test datasets are reported in Tables S1–S3, respectively. More information about their
meaning can be found in [27,28].

Table 2. List of the 10 selected ChemGPS descriptors.

ChemGPS Descriptors
Correlation Coefficient with LogS0

Abbreviation Description

ALOGP Ghose–Crippen octanol–water partition coefficient −0.637

nC number of carbon atoms −0.583

nCIC number of rings −0.511

nBnz number of benzene-like rings −0.510

Ui unsaturation index −0.434

Me mean atomic Sanderson electronegativity (scaled on C atom) 0.310

RBN number of rotatable bonds −0.224

nN number of nitrogen atoms 0.214

nX number of halogens −0.200

Hy hydrophilic factor −0.138



Pharmaceutics 2021, 13, 1101 8 of 20

3.3. Artificial Neural Network

Several ANN models with different numbers of neurons in the hidden layer and
regulation term α were generated with the Orange platform. The optimization of the archi-
tecture was performed with the 10-fold cross-validation of the training dataset, selecting
the best structure in terms of R2 and RMSE. The final ANN structure, with 25 neurons in
the hidden layer and α = 0.2, showed R2

cross = 0.51, RMSEcross = 1.37, biascross = −0.027,
and %0.5 ± logcross = 33.

When the entire training dataset (n = 270) was used to train the selected network (with
a fixed structure), the resulted MPPs were: R2

train = 0.53, RMSEtrain = 1.33, biastrain = −0.022,
and %0.5 ± logtrain = 33, confirming the results obtained in the cross-validation step
(Table 3). A plot with the logS0 experimental and predicted values for the training dataset
is shown in Figure 2.

Table 3. Statistical MPPs obtained with the 10-fold cross validation and the entire training dataset.

Dataset R2 RMSE Bias % ± 0.5 Log

10-fold cross validation 0.51 1.37 −0.027 33

Entire training dataset 0.53 1.33 −0.022 34
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The trained ANN was used to predict the logS0 values for the 100-compound test
set 1 and the 32-compound test set 2 provided by the SC-2. The MPPs computed on the
two test datasets are reported in Table 4, together with the same metrics obtained with the
GSE formula and the null model. Figures 3 and 4 show the experimental versus predicted
solubility and the standard errors (SE) plotted against logS0, respectively. In addition, in
Tables S2 and S3, the predicted values are given.

As shown in Table 4, the GSE and ANN performances were almost comparable for
both the SC-2 test sets. Instead, to quantify the gain in performance introduced by the
ANN model, the difference in terms of RMSE was computed between the ANN model and
the null model, in which the average logS0 of the training compounds (logS0,train =−3.4 log
molar) was used as prediction for all the test compounds. A decrease of 0.44 log unit for
test set 1 and of 1.659 log unit for test set 2 was observed, confirming that overall, the ANN
model performed strongly better than a minimally useful predictor model, especially for
the “highly variable” test set 2.
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Table 4. Statistical measures of prediction performances obtained for the SC-2 test datasets.

Model
100-Compound Test Set 1 32-Compound Test Set 2

R2 RMSE Bias % ± 0.5 Log R2 RMSE Bias % ± 0.5 Log

ANN 0.42 0.97 −0.014 42 0.70 1.18 −0.133 31

GSE 0.22 1.12 −0.29 41 0.69 1.20 −0.073 22

Null model −0.25 1.41 −0.63 29 −0.74 2.83 −1.84 13
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It is clear that the 100-compound tight set (test set 1) was generally better modelled in
terms of absolute error measures such as RMSE, bias, and percentage of correct predictions
within ±0.5 log unit. This was expected, since test 2 was created with the explicit purpose
of being more challenging. However, accounting for the higher inter-laboratory uncer-
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tainty affecting the solubility values of the loose set (SDinter-lab,test1 = 0.17 log unit versus
SDinter-lab,test2 = 0.62 log unit), the differences in the prediction performances for the two
datasets were not so relevant: RMSE-SDinter-lab,test2 = 0.56 < RMSE-SDinter-lab,test1 = 0.80.

Similar observations resulted in accounting for the wider solubility range of the loose
set (9.16 log unit span for test set 2 versus only 5.61 log unit for test set 1). Indeed, the
increase in RMSE between test sets 1 and 2 was proportionally smaller than the increase
in the inter-compound standard deviations in the two datasets (i.e., SDtest1 = 1.27 log unit
versus SDtest2 = 2.18 log unit), such that the RMSE/SD ratio was significantly smaller for
the loose set (RMSE/SDtest2 = 0.54 < RMSE/SDtest1 = 0.76). Accordingly, the loose set had
a better R2.

Overall, there was a significant variation in the prediction accuracy between different
test molecules, with better predictions for compounds with intermediate solubility values.
In particular, the ANN model adequately predicted most of compounds, with very few
exceptions for which the prediction error was particularly high (Figure 4). The impact of
these compounds on the MPPs could be relevant, considering both their reported logS0
values and the reduced size of the test datasets.

For the 100-compound set, three molecules were identified as outliers; i.e., with an
absolute prediction error greater than twofold RMSE (2 × RMSE = 1.94 log unit). From the
worst, they were: 17α-estradiol, enalapril, and folic acid. The contribution of each of these
to the MPPs was quantified by removing one compound at a time and re-computing the
statistical metrics on the remaining molecules, as summarized in Table 5. The removal of
the three outliers increased the predictive model performances for R2 from 0.42 to 0.54 and
for RMSE from 0.97 to 0.84.

Table 5. Statistical MPPs obtained on test set 1 after removal of outliers.

Removed Compounds R2 RMSE Bias % ± 0.5 Log

None (full test set 1) 0.42 0.97 −0.014 42

17α-Estradiol 0.51 0.89 −0.024 42

17α-Estradiol, Enalapril 0.52 0.87 −0.049 43

17α-Estradiol, Enalapril, Folic Acid 0.54 0.84 −0.025 43

Similarly, outlier analysis of the 32-compound set showed that for only one molecule,
amiodarone, the absolute SE exceeded the threshold 2×RMSE = 2.36 log unit. The exclusion
of this compound provided a quite relevant gain of model MPPs, as reported in Table 6.

Table 6. Statistical MPPs obtained on test set 2 after removal of outliers.

Removed Compounds R2 RMSE Bias % ± 0.5 Log

None (full test set 2) 0.70 1.18 −0.133 31

Amiodarone 0.74 1.00 −0.019 32

The possible causes of the poor model performances on these “outlier” compounds
were investigated, with particular attention to the issue of applicability domain coverage.

3.4. Outliers and Applicability Domain

To assess the reliability of the solubility predictions and understand the possible causes
of the poorly predicted values, the domain of applicability of the trained model as dictated
by the training dataset was considered.

A PCA on the 10 normalized descriptors (Table 2) was performed for the training
dataset, and the test sets were projected on the obtained PCs. In Figure 5, the 100-compound
test set 1 (panel (a)) and the 32-compound test set 2 (panel (b)) were plotted in the two-
dimensional space defined by PC1 and PC2 of the training dataset, which accounted for
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53% of the total variance. It was evident that for both the test datasets, some compounds
fell outside the 95% CI ellipse that identified the DOA. In addition, several test set 2
molecules, although inside the 95% CI ellipse, were placed in poorly representative areas
of the training domain.
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To investigate the relationship between the model performances and the DOA cov-
erage, the poorly predicted outliers were examined. For test set 1, one of the three worst-
predicted compounds; i.e., 17α-estradiol, fell outside the 95% CI of the training domain
(Figure 6a), suggesting that the prediction quality may deteriorate outside the DOA. To
reinforce this hypothesis, the best-predicted compounds of test set 1 (i.e., with absolute
SE ≤ 0.2 × RMSE = 0.20 log unit) were also considered. Nineteen of the 22 molecules thus
identified clearly laid inside the training domain (95% CI ellipse), in particular in areas of
the PC1–PC2 plane richly populated by training compounds (Figure 6b).
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Using PCA as a basis for the DOA definition, 17α-estradiol was not represented by
the training compounds. Hence, it was of little surprise to find that this compound was
poorly predicted. On the contrary, two of the outliers, enalapril and folic acid, did fall
within the 95% CI of PC1–PC2, and therefore their poor predictability could not be due
to the DOA coverage issue. For both these molecules, a significant difference in the logS0
values was observed compared to those of their 10 nearest neighbors, which were identified
by the similarity index that we introduced based on the normalized Euclidean distance
of the 10 selected descriptors (Equation (6)). In particular, logS0 values of the folic acid
neighborhood varied from −7.11 to −2.04, with a mean of −3.95 log unit. Accordingly, the
predicted value for folic acid was logS0 = −3.68 log molar, almost identical to the average
value of the 10 NN, but extremely different from the experimental logS0 (−5.96 log molar).
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Similarly, the experimental logS0 of enalapril was −1.36 log molar, even outside the range
of its 10 NN, the solubility of which ranged from −5.9 to −2.9 log unit.

The same DOA assessment was performed for the 32-compound test set 2. Figure 7
shows the position of the worst-predicted compound, amiodarone, in the PC1–PC2 plane.
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Although inside the 95% CI of the training dataset, amiodarone clearly laid in a
sparsely populated area of the training chemical space, as confirmed by the values of
the Euclidean similarity index. As for the test set 1 outliers, the 10 nearest neighbors
of amiodarone (logS0 = −10.4 log molar) based on the Euclidean similarity index were
considered. They showed a high variance in terms of logS0, with a range of −9.27 to −0.1,
and a mean of −4.53 log unit. The predicted amiodarone solubility was −6.72 log molar,
barely higher than the mean solubility value of the 10 NN.

4. Discussion

Predicting the intrinsic solubility of drug-like molecules is of extreme relevance for a
vast array of applications, among which is the prediction of in vivo dissolution. For this
reason, any insight into possible strategies to improve solubility prediction are of significant
interest. The release of the SC-2 results [15] created an opportunity to investigate the
possible contribution of ML techniques in this area. Embracing the SC-2 as non-competitive
participants, in this study an ANN model was developed based on literature-harvested
logS0 data, and it was used to predict the intrinsic solubility value for two given SC-2 test
datasets of drug-like molecules.

Intrinsic solubility values for 270 drug-like molecules were collected from a list of
literature sources, and a training dataset was composed based on the inter-laboratory
variability principle, thus computing the average logS0 of the available replicates. On this
training dataset, a standard three-layer feed-forward neural network was developed using
10 ChemGPS-NP physico-chemical descriptors as input features. The developed ANN
demonstrated adequate predictive performances on both the 100-compound low-variance
tight set (test set 1) and the 32-compound high-variance loose set (test set 2) provided by
SC-2 as test datasets, with an RMSE of 0.97 and 1.18 log unit for test set 1 and 2, respectively.
Model predictive ability further improved for a reduced subset of test molecules that
excluded very few poorly predicted outliers, reaching RMSE = 0.84 and RMSE = 1.00 log
unit for a 97-compound subset of test 1 and for a 31-compound subset of test 2, respectively.
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Our results were comparable with the most competent models submitted to the SC-2.
The average RMSE over the 37 models submitted to the SC-2 was approximately 1.1 and
1.58 log unit for the low-variance and high-variance test datasets, respectively. Considering
only predictors based on neural networks (30% of the submissions), the RMSE mean was
approximately 1.45 and 1.87 log unit for test set 1 and 2, respectively. The ANN model that
performed overall better on both the datasets obtained an RMSE of 0.93 and 1.24 log unit
for test set 1 and 2, respectively, equivalent to our results.

According to the SC-2 findings [15], in absolute terms (i.e., RMSE, bias, and % ±
0.5 log) the low-variance tight set was better predicted than the high-variance loose set.
Solubility of inconsistently determined molecules (high SDinter-lab), especially of poorly
soluble molecules from sparse areas of chemical space, was more difficult to predict
compared to the consistently determined solubility (low SDinter-lab) of compounds from
well-represented parts of the drug-like domain. This observation suggests that “some
test sets are harder to model than others”, as concluded by Mitchell et al. [32]. However,
when the average errors of each dataset (SDinter-lab) were considered, model predictive
accuracies on test set 1 (low SDinter-lab) and test set 2 (high SDinter-lab) were about the same.
For this reason, it is not possible to unambiguously discriminate the contribution of the
experimental data quality (low versus high SDinter-lab) and of the training domain coverage
to the different predictive capability of the model on test set 1 and test set 2 compounds.

Overall, the results of this work were aligned with the conclusions of the SC-2. The
adoption of sophisticated ML techniques, such as ANNs, did not provide superior benefits
to the simpler modeling approaches such as GSE, which performed as well as more complex
models. However, the usefulness of the ANN architecture was clearly demonstrated.
Indeed, given a training dataset, a minimally useful predictor is defined as a model
performing better than the “predict-average-for-all” model (null model). The ANN model
proposed in this study outperformed the null model, showing that the prediction quality
of the neural network was substantially better than a minimally useful predictor.

The use of QSPR models based on ML techniques appears to be an attractive approach
that could provide relevant contributions to the solubility field. However, based on our
experience, the following recommendations are of paramount importance during the
development of a ML model to predict intrinsic solubility for drug-like molecules, and
more in general when ML techniques are used.

4.1. Consideration of the Data Quality

Prediction accuracy of computational QSPR models is strongly and directly influenced
by the quality of the data. Thus, knowledge regarding the reliability of data is fundamental
in acknowledging the limitations of any subsequent computational data-driven predictor.

Experimental measurement of S0 is not an easy task to perform, and several factors,
such as temperature, physical form of the precipitate, solution pH, and ionization state,
as well as the presence of different tautomeric forms (which may have different physico-
chemical properties) in equilibrium in the solutes, can contribute to its variability [36,37].
As a result, while taking care to select reliable sources for solubility data, unidentified errors
due to mistakes and variability in the experimental methodologies would be undoubt-
edly introduced. For a significant number of drug-like molecules, inconsistent intrinsic
solubility values are reported in the literature. Despite Adveef determining the average
inter-laboratory reproducibility of 870 molecules from the Wiki-pS0 database as 0.17 log
unit [12], different studies in the literature and our findings suggested that the typical error
of reported intrinsic solubilities of drug-like molecules is around 0.6–0.7 log unit [8–11].
Because the accuracy of a model cannot exceed the accuracy of the experimental data, this
implies that the best realistically possible predictor would achieve an RMSE similar to the
inter-laboratory standard deviation of logS0 data; i.e., around 0.6–0.7 log unit.

If it is true that the quality of QSPR models is directly influenced by the quality of
the datasets on which they are trained, it is equally true that the assessment of predictive
performances of a model is strongly influenced by the accuracy of the data on which it
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is tested. Indeed, the observed performances derive from the contribution of the actual
predictive performances (defined as the accuracy of a model that would be observed on a
test set with zero internal error) and the uncertainty in the test data [38]. In the case of the
intrinsic solubility, due to poor reliability of experimental solubility values, the observed
performances could be significantly influenced by the errors affecting the logS0 values of
the test compounds. For this reason, it is essential to carefully considered the internal
error of the test data. The assessment of the proposed ANN against the 100-compound
low-variance tight set and the 32-compound high-variance loose set, provided by SC-2 and
characterized by a different internal error, was done exactly for this purpose.

4.2. Careful Curation of the Training Dataset

It is a well-known fact that increasing the number of data instances in the training
set has a positive effect on the accuracy of data-driven models. At the same time, data
should be congruent with respect to the problem statement. For example, for the intrinsic
solubility case study, the inclusion of solubility data of organic compounds other than
drug-like molecules, such as industrial organic molecules and agrichemicals (herbicides,
pesticides, insecticides, rodenticides, and acaricides), could significantly increase the size
of the training dataset. However, it was observed that the predictive performances of ML
models developed on a training dataset including non-drug-like compounds were usually
inadequate [15,39].

In addition, the use of training data harvested from the literature leads to the usual
critical problem of combining data from many sources, which could be obtained under vary
experimental conditions not always well documented in the original sources. The presence
of replicated and often contradictory solubility values for the same compound highlights
the issue of selecting an adequate strategy to manage them. Different approaches were
discussed in the literature, such as computing the mean or the median of the replicates,
or selecting either a single most-trusted data per molecule or else the average of only
the replicates considered trustworthy [32]. Because the SC-2 test datasets were compiled
based on inter-laboratory average values, our training dataset was built following the same
strategy (arithmetic mean of logS0). However, the impact of alternative strategies to handle
replicated solubility values was evaluated. Two different training datasets were built by
including all the replicated logS0 values for each molecule (Trainingreplicates) or taking
their median (Trainingmedian). In both the cases, the number of neurons in the hidden
layer and the value of the α regulation term was optimized with a 10-fold cross validation
step. Twenty-five neurons and α = 0.2 provided the best performances on the training
datasets. Interestingly, the performances of the obtained ANN models were comparable
with only a slight deterioration on test 2 for the Trainingreplicates (Table 7). These results
suggest that using the mean or median did not have a relevant impact on the model
performances, and that including replicates of the same compounds did not improve or, in
case of contradictory values, even reduced the performances of the ANN model.

Table 7. Statistical measures of prediction performances obtained on the SC-2 test sets with ANN based on Trainingmedian

and Trainingreplicates datasets.

Training Datasets
100-Compound Test Set 1 32-Compound Test Set 2

R2 RMSE Bias % ± 0.5 Log R2 RMSE Bias % ± 0.5 Log

Trainingmedian 0.40 0.98 −0.013 44 0.70 1.18 −0.161 28

Trainingreplicates 0.34 1.03 0.339 40 0.64 1.27 −0.027 28

4.3. Assessment of the Applicability Domain

The definition of a predictive domain of a model is a critical step to set up a data-driven
model. ANNs, as well as other ML approaches based on the information encoded in the
data, hardly extrapolate beyond the domain of their training dataset. Although predictions
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made outside of the DOA are not necessarily “wrong”, such predictions are considerably
less reliable and should be treated with extreme caution. Therefore, the knowledge of the
DOA is fundamental when making a prediction. In this work, the relationship between the
DOA coverage and the predictive performance of the ANN was evaluated. The training
domain was defined using tailored similarities based on PCA and Euclidean distance,
and considering only the relevant descriptor selected for the model. From the PCA, it
resulted that for both the test datasets, some compounds fell outside the training domain
or were placed in very poorly populated areas. In addition, the position with respect to the
DOA of the worst- (SE > 2 × RMSE) and best-predicted (SE < 0.2×RMSE) compounds was
investigated. Of interest, the latter clearly laid in richly populated areas within the training
domain. On the contrary, the poorly predicted outliers were not well represented by the
training compounds. Indeed, some of them were completely outside the predictive domain
of the model (i.e., 17α-estradiol) or in sparsely populated area (i.e., amiodarone); others,
although inside the DOA, showed logS0 value extremely different from their neighborhood
in the training dataset (i.e., folic acid and enalapril). In such situations, it was not surprising
that poor predictions were obtained.

4.4. Selection of Input Features

Molecular descriptors provide a mathematical representation of the chemical infor-
mation of a compound. A vast array of descriptors, coding for a plethora of properties
(hydrophobicity, steric, hydrogen bonding, molecular flexibility, and electrostatic and topo-
logical interactions) can be computed from the SMILES representation via a multitude of
software tools, both proprietary and freely available. All these descriptors are possible
candidate inputs for QSPR models aimed to predict chemical properties of molecules, such
as aqueous solubility. However, on one side, the large number of chemical descriptors
could cause identification issues in the model-development process, while on the other side,
the presence of redundant information due the notoriously high correlation of descriptors
could lead to overfitting problems. Thus, it is usually preferred to use a modest number of
relevant input features. Which descriptors could be the most relevant for the prediction of
the intrinsic solubility of drug-like molecules is a point of considerable debate. In addition,
the absence of descriptors coding for some physico-chemical property relevant to the
solubility has been enumerated as one of the possible reasons for the poor predictive per-
formance of the QSPRs. In this work, descriptors computed by ChemGPS-NP, a validated
tool based on DragonX, were considered. ChemGPS-NP provides 35 molecular features
that are selected from a total of 926 descriptors computed via DragonX in order to (1)
provide descriptors with a comprehensible physical meaning (improving the explanation
of chemical space), (2) distinguish between compounds, (3) encode relevant aspects of
molecular complexity, and (4) describe important molecular properties such as lipophilicity,
polarity, size/shape, hydrogen bond capacity, polarizability, flexibility, and rigidity [28].

Several software tools computing alternative sets of molecular descriptors are available
and could be considered. In the preliminary phases of this work, the 1444 1D and 2D
descriptors computed with the PaDEL-descriptor software [40] based on the Chemistry
Development Kit (CDK) [41] have been evaluated without any improvements in the model
performances (data not shown). Another frequently considered software tool is RDKit [42],
the descriptors of which have been considered as input features by Avdeef [12] and some
of the SC-2 participants. The results did not provide any evidence that the use of the
consolidated RDKit descriptors improves the intrinsic-solubility predictions.

Due to the high correlation of the 35 ChemGPS-NP descriptors and the limited size
of the training dataset, a further selection based on their correlation with solubility was
performed, thus reducing the considered descriptors to a subset of 10 input features.
Among them, the best (negative) correlation was achieved by ALOGP. This was expected,
considering the historical relevance of the octanol–water partition coefficient, logP, in
the prediction of intrinsic solubility. Indeed, logP, together with melting point, Tmp, was
one of the two variables composing the GSE. Due to the relevance of the GSE and, in
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turn, of experimental logP and Tmp in the intrinsic-solubility prediction, few additional
considerations of these two important molecular characteristics were undertaken.

First of all, in accordance with general accepted choices in solubility QSPR model
development, a predicted value of logP was used in our analysis instead of the experimental
value. In particular, we used the Ghose–Crippen ALOGP computed by ChemGPS-NP,
which is one of the computational methods most widely applied to predict logP [43]. The
ChemGPS-NP ALOGP and the experimental logP values (provided by the SC-2 organizers)
of the 132 test molecules were compared to verify their consistency. The predicted and
experimental logP were in good agreement (R2 = 0.87) with very few exceptions. Of interest,
17α-estradiol, one of the outliers of our ANN, had the worst predicted logP. After replacing
the ALOGP value of 17α-estradiol with its experimental measure, an improvement of its
solubility prediction (absolute prediction error decreased from 3.8 to 2.48 log unit) was
observed. Moreover, considering that the octanol–water partition coefficient summarizes
several molecular characteristics and is strongly related to the (polar) molecular surface
area and the presence of polar groups, we explored the possibility of training a network
in which the ALOGP input was replaced by some descriptors related to surface area and
polarity [28]: topological polar surface area (TPSA (NO)); hydrophilic factor (Hy); and
the counts for oxygen (nO), aliphatic/aromatic hydroxyl groups (nROH/nArOH), and
nitrogen (nN), for a total of 13 input features. As shown in Table 8, predictive performances
of the obtained model were worse than those obtained using the ALOGP descriptor.

Table 8. Statistical measures of prediction performances obtained on SC-2 test sets with ANN using
alternative descriptors for ALOGP.

100-Compound Test Set 1 32-Compound Test Set 2

R2 RMSE Bias % ± 0.5 Log R2 RMSE Bias % ± 0.5 Log

0.15 1.06 0.3 38 0.154 1.44 0.55 13

A similar analysis was performed for the Tmp. Because ChemGPS-NP does not provide
Tmp, it was not included into the list of the possible input features of the trained ANN. To
evaluate if the availability of Tmp could improve the ANN performance, the experimental
melting points for 188 training compounds were subsequently retrieved from the CAS
number by using the MPBPWIN module of EPI (estimation programs interface) [44]. The
ANN was re-trained on these 188 molecules, both adding Tmp or not to the 10 previously
selected descriptors. Interestingly, when the obtained models were used to predict the
compound solubility, they demonstrated comparable performances (Table 9).

Table 9. Statistical measures of prediction performances obtained on SC-2 test sets with ANN based on 188 compounds of
the training dataset.

Training Datasets
100-Compound Test Set 1 32-Compound Test Set 2

R2 RMSE Bias % ± 0.5 Log R2 RMSE Bias % ± 0.5 Log

188-compound, without Tmp 0.37 1.01 0.252 39 0.68 1.21 0.122 22

188-compound, with Tmp 0.39 0.99 0.244 38 0.69 1.18 0.114 22

Other aspects that are important to keep in mind during the selection of input fea-
tures are the intrinsic limitations affecting the molecular descriptors computed from the
SMILES representation. First, a single molecular structure can be represented by multi-
ple SMILES [45]. It is thus essential to retrieve the canonical SMILES, which provides a
unique string for each molecule. Second, the SMILES string (even in the canonical one) is
a bi-dimensional approximation of the molecular structure that does not retain 2D or 3D
coordinates for individual atoms. Therefore, the impact of the 3D structure on the physico-
chemical properties, such as solubility, is not accounted for. Finally, the use of molecular
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descriptors computed from the SMILES is complicated by tautomerization. Indeed, some
molecules can exist in several tautomeric forms, that may show different physico-chemical
properties [46], and their equilibrium in the solutes is influenced by the experimental
conditions. This information is rarely reported in the literature, making it impossible to
know the tautomer to which the retrieved solubility value refers. Therefore, the choice of
which tautomer has to be used to compute the descriptors could have a significant impact
on the model’s prediction performances. Note that the canonical SMILES retrieved from
PubChem used in this work refers only to one tautomeric form, which may not correspond
to the one for which the available experimental logS0 was measured. Consequently, the
accuracy of the QSPR model could be affected.

4.5. Interpretability and Reproducibility of the Results

The fact that ANNs and other ML approaches produce “black-box” models that are
hard to interpret by humans is widely acknowledged. In addition, in a large number of
published works, details on datasets, selected features, steps of the model building and
parameters settings, and criteria for the evaluation of the results are often not fully provided
and clearly explained. This lack of transparency significantly hampers the interpretability
and the comparison of the results, even becoming the major problem in trusting these
kinds of approaches. Reproducibility of the results should be one of the main aspects on
which to focus future efforts.

For example, in both the Solubility Challenges, the participants were not asked to
provide details about the computational methods they used, the molecular descriptors
actually included as input features of their ML models, or any additional experimental data
they employed. For these reasons, although SC-1 and SC-2 provided useful benchmarks
to the solubility field, the results were difficult to interpret. Many actions could be taken
to improve the understanding and reproducibility of the current computational methods;
for example, the creation of open data sharing with the values of solubility for both the
training and test compounds, as well as the molecular descriptors; a more transparent
report of the adopted methodologies for features selection and ML algorithm; and finally,
the adoption of standardized metrics for the evaluation of performances in the prediction
of solubility for drug-like compounds.

5. Conclusions

The use of ML approaches to develop a predictive QSPR model was investigated
in this work on the particularly challenging issue of the prediction of intrinsic solubility
of drug-like molecules, with a primary objective of providing a detailed overview of the
required steps and the main problems encountered when such task is performed.

The conclusion of the present work is that developing ML-based QSPR models to
accurately predict intrinsic aqueous solubility of drug-like molecules is still a formidable
challenge. Confirming the results of the Solubility Challenges, we highlighted that more
high-quality solubility data and more discriminant descriptors are needed. Moreover, as
some of the considered drugs illustrated, there are still under-populated neighborhoods in
the chemical space of drug-like molecules.

In summary, the adoption of ML approaches to accurately predict intrinsic solubil-
ity is promising and attractive, but it needs to be further enhanced. Nonetheless, it is
an issue that is still of great importance, with aqueous solubility being at the heart of
pharmaceutical design.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
article/10.3390/pharmaceutics13071101/s1, Table S1: Training dataset, Table S2: Test set 1, Table S3:
Test set 2.
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